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A* Pathfinding Search

= Covered in IMGD 3000
= Review below if needed

References: Buckland, Chapter 5 (pp. 241-247)
Millington, Section 4.3
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Practical Path Planning

= Just raw A* not enough

= Also need:
* navigation graphs
— points of visibility (POV)
— navmesh
* path smoothing
* compute-time optimimzations
* hierarchical pathfinding
* special case methods
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Navigation Graph Construction

= Tile (cell) based

e very common, esp. if env’t already designed in
squares or hexagons

» each cell already labeled with material (mud, etc.)

e downside:
— modest 100x100 cell map
— 10,000 nodes and 78,000 edges

— can burden CPU and memory, especially if multiple Al's
calling in

Rest of lecture is a survey about how to do
better...
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Point of Visibility (POV) Navigation Graph

= Place graph nodes (usually by hand) at
important points in env’t

= Such that each node has line of sight to at
least one other node
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POV Navigation

« find closest visible node (a) to current location
« find closest visible node (b) to target location
 search for least cost path from (a) to (b)

* move to (a)

« follow path to (b)

* move to target location

note “backtracking”
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Blind Spots in POV

= No POV point is visible from red spots!
= Easy to fix manually in small graphs
= A problem in larger graphs
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POV Navigation

= Obvious how to build and expand

= Downsides
» can take a lot of developer time, especially if
design is rapidly evolving
* problematic if random or user generated maps
e can have “blind spots”
e can have “jerky” paths
= Solutions
» automatically generate POV graphs
* make finer grained graphs
* path smoothing
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Automatic POV by Expanded Geometry

1. expand geometry by
amount proportional
to bounding radius of
agents

2. add vertices to graph

3. prune non line of
sight points
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Simple Geometry

Expanded Geometry
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The finished POV graph

NavMesh

= network of convex polygons

= very efficient to search

= can be automatically generated from polygons

= becoming very popular
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Finely Grained Graphs

= Improves blind spots and path smoothness

= Typically generate automatically using “flood
fill”
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Flood Fill

? ﬂ
* same algorithm as

in “paint” programs 3
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Path Finding in Finely Grained Graph

= use A* or Dijkstra depending on whether
looking for one or multiple targets
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Kinky Paths

The solution: Path smoothing
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Simple Smoothing Algorithm
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There is no obstacle obstructing the path from A to C so
the two edges can be replaced with one.
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With an obstacle in the way both edges are necessary

= Check for “passability” between adjacent edges

Q ‘I IMGD 4000 (D 09) 15

Smoothing Example
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Methods to Reduce CPU Overhead

time/space tradeoff
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shortest path table
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path cost table

Hierarchical Path Planning

e

High-Level Graph

= reduces CPU overhead
= typically two levels, but can be more
= first plan in high-level, then refine in low-level
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Low-Level Graph




Getting Out of Sticky Situations
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» bot gets “wedged” against wall
* looks really bad!
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Getting Out of Sticky Situations

= Heuristic:

* calculate the distance to bot’s current waypoint
each update step

« if this value remains about the same or
consistently increases

* then it’s probably wedged
* backup and replan
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Advanced Pathfinding Summary

o
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= You would not necessarily use all of these
techniques in one game

= Only use whatever your game demands and
no more
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