Advanced Pathfinding

Technical Game Development I

Professor Charles Rich
Computer Science Department
rich@wpi.edu

References: Buckland, Chapter 5, 8
Millington, Chapter 4

IMGD 4000 (D 09) 1

A* Pathfinding Search

= Covered in IMGD 3000
= Review below if needed

References: Buckland, Chapter 5 (pp. 241-247)
Millington, Section 4.3

NI
() Y971 meD 4000 (D 09) 2

Practical Path Planning

= Just raw A* not enough

= Also need:
* navigation graphs
— points of visibility (POV)
— navmesh
* path smoothing
* compute-time optimimzations
* hierarchical pathfinding
* special case methods

) VY Pl imaD 4000 (D 09)

Navigation Graph Construction

= Tile (cell) based

e very common, esp. if env’t already designed in
squares or hexagons

» each cell already labeled with material (mud, etc.)

e downside:
— modest 100x100 cell map
— 10,000 nodes and 78,000 edges

— can burden CPU and memory, especially if multiple Al's
calling in

Rest of lecture is a survey about how to do
better...

) VY Pl imaD 4000 (D 09)

Point of Visibility (POV) Navigation Graph

= Place graph nodes (usually by hand) at
important points in env’t

= Such that each node has line of sight to at
least one other node

QJ Y Pl IMGD 4000 (D 09) 5

POV Navigation

« find closest visible node (a) to current location
« find closest visible node (b) to target location
 search for least cost path from (a) to (b)

* move to (a)

« follow path to (b)

* move to target location

note “backtracking”

QJ Y21 IMGD 4000 (D 09) 6

Blind Spots in POV

= No POV point is visible from red spots!
= Easy to fix manually in small graphs
= A problem in larger graphs

DT DEMO
) %Y1 ImGD 4000 (D 09) 7

POV Navigation

= Obvious how to build and expand

= Downsides
» can take a lot of developer time, especially if
design is rapidly evolving
* problematic if random or user generated maps
e can have “blind spots”
e can have “jerky” paths
= Solutions
» automatically generate POV graphs
* make finer grained graphs
* path smoothing

‘(("' X7 ,J«
) %Y1 ImGD 4000 (D 09) 8

Automatic POV by Expanded Geometry

1. expand geometry by
amount proportional
to bounding radius of
agents

2. add vertices to graph

3. prune non line of
sight points

/// Y/ P1 1MGD 4000 (D 09)

A

<

[N

Simple Geometry

Expanded Geometry

C

The finished POV graph

NavMesh

= network of convex polygons

= very efficient to search

= can be automatically generated from polygons

= becoming very popular

/// Y/ P1 iMGD 4000 (D 09)

Finely Grained Graphs

= Improves blind spots and path smoothness

= Typically generate automatically using “flood
fill”

)V P meD 4000 (D 09) 1

Flood Fill

? ﬂ
* same algorithm as

in “paint” programs 3

) VY Pl mep 4000 (D 09) 12

Path Finding in Finely Grained Graph

= use A* or Dijkstra depending on whether
looking for one or multiple targets

) V721 map 4000 (0 09)

Kinky Paths

The solution: Path smoothing

@ Y/ 21 imeD 4000 (D 09)

Simple Smoothing Algorithm

/\ »

< e
A A

There is no obstacle obstructing the path from A to C so
the two edges can be replaced with one.

)

With an obstacle in the way both edges are necessary

= Check for “passability” between adjacent edges

Q ‘I IMGD 4000 (D 09) 15

Smoothing Example

I A Start l s . 2
ini A Start A Start
L

2

l A Start
@® Finish

@ 'P[IMGD 4000 (D 09) 16

Methods to Reduce CPU Overhead

time/space tradeoff

A[B|C|D|E

312 |4

0 |3.5]1

5|0 14.5[6.5

R B> > > >
(| W W
s lNalNalia)

1 [4.5|0

m| Qo Nn| o >
mim @ QO(m m

A|D|D|D

m|g(Nn|[w|>
n [[|w o
w
[9;]

3 16,512 |0

shortest path table

(4)) V721 maD 4000 (D 09)

path cost table

Hierarchical Path Planning

e

High-Level Graph

= reduces CPU overhead
= typically two levels, but can be more
= first plan in high-level, then refine in low-level

(4)) V721 maD 4000 (D 09)

Low-Level Graph

Getting Out of Sticky Situations

V@ oC oC
- B
& Q@ ° = oB
J A g Q@/v
oC oC
2 B
@
&
O @ @ l
oN
» bot gets “wedged” against wall
* looks really bad!
e DEMO
(9) /21 1mMeD 4000 (D 09) 19

Getting Out of Sticky Situations

= Heuristic:

* calculate the distance to bot’s current waypoint
each update step

« if this value remains about the same or
consistently increases

* then it’s probably wedged
* backup and replan

“/‘ W\ Q. ,/«
) %Y1 ImGD 4000 (D 09) 20

10

Advanced Pathfinding Summary

o

) VY P mMeD 4000 (D 09)

= You would not necessarily use all of these
techniques in one game

= Only use whatever your game demands and
no more

/T

21

11

