o

Basic Game Al

Technical Game Development I

Professor Charles Rich
Computer Science Department
rich@wpi.edu

IMGD 4000 (D 09)

~

Definitions?

o

) YY1 imep 4000 (D 09)

= What is artificial intelligence (Al) ?
* subfield of computer science ?
« subfield of cognitive science ?
= What is “Al for Games” ?
 versus “academic Al” ?
* arguments about “cheating”

In games, everything (including the Al) is in service of the
player’s experience (“fun”)

Resources: introduction to Buckland, www.gameai.com,
aigamedev.com, www.aiwisdom.com, www.ai4games.org

(D)

@WEL

What'’s the Al part of a game?

= Everything that isn’t graphics (sound) or
networking... ©
 or physics (though sometimes lumped in)
* usually via the non-player characters

* but sometimes operates more broadly, e.g.,
— Civilization games
— interactive storytelling

)V P maD 4000 (D 09)

$

“Levels” of Game Al

= Basic

* decision-making techniques commonly used in
almost all games

= Advanced
 used in practice, but in more sophisticated games

= Future
* not yet used, but explored in research

)V P1 meD 4000 (D 09)

22

This course

/

= Basic game Al

* decision-making techniques commonly used in
almost all games

— decision trees (Today)

— (hierarchical) state machines (Today)

— scripting (Monday)

— minimax search (Tuesday)

— basic pathfinding (A*) (IMGD 3000)

= Advanced game Al (Later...)

e used in practice, but in more sophisticated games
— task/behavior trees in Halo 3
— autonomous movement, steering
— advanced pathfinding

)Y P 1mGD 4000 (D 09)

%

Future Game Al ?

= Take IMGD 400X next year (B)
“Al for Interactive Media and Games’
 fuzzy logic
* more goal-driven agent behavior

= Take CS 4341 “Artificial Intelligence”
* machine learning
* planning

7959 1 IMGD 4000 (D 09)

i

Two Fundamental Types of Al Algorithms

= Search vs. Non-Search
* non-search:amount of computation is predictable
— e.g., decision trees, state machines
e search: upper bound depends on size of search space
(often large)
— e.g., minimax, planning
— scary for real-time games
— need to otherwise limit computation (e.g., threshold)
= Where’s the “knowledge”™?
* non-search: in the code logic (or external tables)
e search: in state evaluation and search order functions
B Scripting?
) YY1 imep 4000 (D 09) 7

First Basic Al Technique:

Decision Trees

Reference: Millington, Section 5.2

IMGD 4000 (D 09) 8

Decision Trees

The most basic of the basic Al techniques

Easy to implement

Fast execution

Simple to understand

o

) YY1 imep 4000 (D 09) 9

Deciding how to respond to an enemy

if (visible) { visible”?
if (close) {
attack;
} else {
if (flank) {
move;
} else {
attack;
}
}
} else {
if (audible) {
creep;
3
b

o

) YY1 imep 4000 (D 09) 10

Which would you rather modify?

visible?

if (visible) {

if (close) {
attack;

} else if (flank) {
move;

} else {
attack;

)

} else if (audible) { P N
creep;

}

audible?

g 70) [
)Y/ P 1MaD 4000 (D 09) 11

OO Decision Trees (Pseudo-Code)

(see Millington, Section 5.2.3)

class Node class Boolean : Decision
def decide() yesNode
. noNode
class Action : Node
def decide() class MinMax : Decision
return this minValue
o maxValue
class Decision : Node testValue
def getBranch() def getBranch()
. if maxValue >= testValue >= minValue
def decide() return yesNode

return getBranch().decide() else
return noNode

o

) VY Pl mMeD 4000 (D 09)

Building and Maintaining a Decision Tree

visible = decision[0] = new Boolean...
audible = decision[1l] = new Boolean...
close = decision[2] = new MinMax...
flank = decision[3] = new Boolean...

attack = action[0] = new Move...
move = action[1l] = new Move...
creep = action[2] = new Creep...

visible.yesNode = close
visible.noNode = audible

audible.yesNode = creep

close.yesNode = attack
close.noNode = flank

|aﬁack| | movel

flank.yesNode = move
flank.noNode = attack

...or a graphical editor
)V P 1MGD 4000 (D 09) 13

P

Performance Issues

= individual node tests (getBranch) typically
constant time (and fast)

= worst case behavior depends on depth of tree
* longest path from root to action

= roughly “balance” tree (when possible)
* not too deep, not too wide
* make commonly used paths shorter
e put most expensive decisions late

)V P 1MGD 4000 (D 09) 14

P

Next Basic Al Technique:

(Hierarchical) State Machines

References: Buckland, Chapter 2
Millington, Section 5.3
IMGD 4000 (D 09) 15

State Machines

small enemy

on guard

large enemy
escaped losing fight

)

run away

SR D
() Y921 mGD 4000 (D 09) 16

Hard-Coded Implementation

class Soldier
enum State def update()
GUARD if currentState = GUARD {
FIGHT if (small enemy)
RUN_AWAY currentState = FIGHT
startFighting
currentState if (big enemy)

currentState = RUN_AWAY
startRunningAway
} else if currentState = FIGHT {
if (losing fight) c
currentState = RUN_AWAY
startRunningAway

if (escaped)
currentState = GUARD
startGuarding

7)Y/ P imeD 4000 (D 09)

} else if currentState = RUN_AWAY {

Hard-Coded State Machines

o

) YY1 imep 4000 (D 09)

= Easy to write (at the start)
= Very efficient

= Notoriously hard to maintain (e.g., debug)

Cleaner & More Flexible Implementation

cl aZZfS;:::ction() Class StateMachine (see Millington, Section 5.3.3)
def getEntryAction()
def getExitAction() SRS
initialState

def getTransitions ...

9 O currentState = initialState

class Transition
def isTriggered()

def getTargetState() . .
def getActgon() triggeredTransition = null

def update()

for transition in currentState.getTransitions()
if transition.isTriggered()
triggeredTransition = transition
break

if triggeredTransition
g targetState = triggeredTransition.getTargetState()
add traCIng actions = currentState.getExitAction()
actions += triggeredTransition.getAction()
actions += targetState.getEntryAction()
currentState = targetState
return actions
else
ST return currentState.getAction()
) Y91 IMGD 4000 (D 09) 19

Combining Decision Trees & State Machines

= Why?
 to avoid duplicating expensive tests

player in sight AND far { alarm I
| alert |

player in sight AND near
defend

S
) Y91 IMGD 4000 (D 09) 20

10

Combining Decision Trees & State Machines

yes
alarm
player in sight?
N Ve
| alert l l - > far?
no

Ve

no

i

defend

) VY21 iImGD 4000 (D 09) 21

Hierarchical State Machines

= Why?
see trash goto
e—— search trash
have trash

trash disposed I goto
disposal

) VY21 iImGD 4000 (D 09) 22

11

Interruptions (Alarms)

recharge recharge
_ (searchy) (trash)
recharged low power recharged low power
f) see trash goto
e—1 search trash
-) ras
have trash
trash disposed l goto
(disposal
recharged low power
6 - doubled the number of states! recharge
disposa

2

)Y/ P meD 4000 (D 09)

23

Add Another Interruption Type

(search/recharge)

all clear battle

CJ)—|hide
§ -

7%25"@

12 - doubled the number of states again!

2

)Y/ P meD 4000 (D 09)

24

12

Hierarchical State Machine

* leave any state in (composite) ‘clean’ state when ‘low power’

* ‘clean’ remembers internal state and continues when returned to via ‘recharged”

low power

recharge I
see trash goto recharged
e—| search trash

have trash

frash disposed [goto
disposal

- 1/

79 Y9 21 IMGD 4000 (D 09) 25

$

clean

Add Another Interruption Type

7 states (including composite) vs. 12 | hide I
(recharge)

battle all clear
clean
low power
rechargel
see trash goto recharged
e—— search trash

have trash

trash disposed | goto battle
Ldisposal] hide I
clean

k I / all clear

7959 Pl IMGD 4000 (D 09) 26

$

13

Cross-Hierarchy Transitions

= Why?

clean

see trash goto

o

have trash

trash disposed goto
disposal

J

!

» suppose we want robot to top-off battery if it
doesn’t see any trash

low power
!rechargel
recharged

Cross-Hierarchy Transitions

less than 75% power

clean

o

see trash gOtO
e—| search trash

low power

have trash

trash disposedl goto
disposal

/

l

recharged

.
recharge I

14

Implementation Sketch

clase Siaie class HierarchicalStateMachine

& cimdl @F FEUIT Staies # same state variables as flat machine
def getStates return [this
2 O [] # complicated recursive algorithm
recursive update def update O
def update()

4 resE sEnE a5 Flad nedidne class SubMachine : HierarchicalStateMachine.
State
class Transition
def getStates()
how deep this transition is push this onto currentState.getStates()
def getLevel()

rest same as flat machine

(see Millington, Section 5.3.9)
struct UpdateResult # returned from update

transition
Tevel
actions # same as flat machine

() Y921 meD 4000 (D 09) 29

15

