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Definitions? 

  What is artificial intelligence (AI) ? 
•  subfield of computer science ? 
•  subfield of cognitive science ? 

  What is “AI for Games” ? 
•  versus “academic AI” ? 
•  arguments about “cheating” 

In games, everything (including the AI) is in service of the  
player’s experience (“fun”) 

Resources: introduction to Buckland, www.gameai.com, 
aigamedev.com, www.aiwisdom.com, www.ai4games.org 
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What’s the AI part of a game? 

  Everything that isn’t graphics (sound) or 
networking...   
•  or physics (though sometimes lumped in) 
•  usually via the non-player characters 
•  but sometimes operates more broadly, e.g., 

– Civilization games 
–  interactive storytelling 
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“Levels” of Game AI 

  Basic 
•  decision-making techniques commonly used in 

almost all games 

  Advanced 
•  used in practice, but in more sophisticated games 

  Future 
•  not yet used, but explored in research 
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This course 

  Basic game AI 
•  decision-making techniques commonly used in 

almost all games 
–  decision trees                                    (Today) 
–  (hierarchical) state machines            (Today) 
–  scripting             (Monday) 
– minimax search            (Tuesday) 
–  basic pathfinding (A*)           (IMGD 3000) 

  Advanced game AI  (Later...) 
•  used in practice, but in more sophisticated games 

–  task/behavior trees in Halo 3 
–  autonomous movement, steering 
–  advanced pathfinding 
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Future Game AI ? 

  Take IMGD 400X next year (B)                      
“AI for Interactive Media and Games” 
•  fuzzy logic 
•  more goal-driven agent behavior 

  Take CS 4341 “Artificial Intelligence” 
•  machine learning 
•  planning 
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Two Fundamental Types of AI Algorithms 

  Search vs. Non-Search 
•  non-search:amount of computation is predictable 

–  e.g., decision trees, state machines 

•  search: upper bound depends on size of search space 
(often large) 

–  e.g., minimax, planning 
–  scary for real-time games 
–  need to otherwise limit computation (e.g., threshold) 

  Where’s the “knowledge”? 
•  non-search: in the code logic (or external tables) 
•  search: in state evaluation and search order functions 

Scripting? 

First Basic AI Technique: 

Decision Trees 

Reference:  Millington, Section 5.2 
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Decision Trees 

  The most basic of the basic AI techniques 

  Easy to implement 

  Fast execution 

  Simple to understand 
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Deciding how to respond to an enemy 

if (visible) { 
   if (close) { 
      attack; 
   } else { 
      if (flank) { 
         move; 
      } else { 
         attack; 
      } 
   }  
} else { 
   if (audible) { 
     creep; 
   } 
} 

attack 

move attack 

creep 

yes 

visible? 

flank? 

close? audible? no 
yes 

yes 

yes 

no 

no 

no 
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Which would you rather modify? 

if (visible) { 
   if (close) { 
      attack; 
   } else { 
      if (flank) { 
         move; 
      } else { 
         attack; 
      } 
   }  
} else { 
   if (audible) { 
     creep; 
   } 
} 

attack creep 

yes 

visible? 

close? audible? no 
yes 

yes 

no 

no 

move attack 

flank? 

yes no 

if (visible) { 
   if (close) { 
      attack; 
   } else if (flank) { 
      move; 
   } else { 
      attack; 
   } 
} else if (audible) { 
  creep; 
} 

??? 
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OO Decision Trees (Pseudo-Code) 

class Node  
   def decide() 

class Action : Node 
   def decide()  
      return this 

class Decision : Node 

   def getBranch() 

   def decide() 
      return getBranch().decide() 

class Boolean : Decision 
   yesNode 
   noNode 

class MinMax : Decision 
   minValue 
   maxValue 
   testValue 

   def getBranch() 
      if maxValue >= testValue >= minValue 
         return yesNode 
      else  
         return noNode 

(see Millington, Section 5.2.3) 

yes 

no 
yes 

yes 

yes 

no 

no 

no 
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Building and Maintaining a Decision Tree 
visible = decision[0] = new Boolean... 
audible = decision[1] = new Boolean... 
close = decision[2] = new MinMax... 
flank = decision[3] = new Boolean... 

attack = action[0] = new Move... 
move = action[1] = new Move... 
creep = action[2] = new Creep... 

visible.yesNode = close 
visible.noNode = audible 

audible.yesNode = creep 

close.yesNode = attack 
close.noNode = flank 

flank.yesNode = move 
flank.noNode = attack 
... 

attack 

move attack 

creep 

yes 

visible? 

flank? 

close? audible? 
no 

yes 
yes 

yes 

no 

no 

no 

...or a graphical editor 
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Performance Issues 

  individual node tests (getBranch) typically 
constant time (and fast) 

  worst case behavior depends on depth of tree 
•  longest path from root to action 

  roughly “balance” tree (when possible) 
•  not too deep, not too wide 
•  make commonly used paths shorter 
•  put most expensive decisions late 

yes 

no 
yes 

yes 

yes 

no 

no 

no 
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Next Basic AI Technique: 

(Hierarchical) State Machines 

References: Buckland, Chapter 2  
                    Millington, Section 5.3 
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State Machines 

on guard 

run away 

fight 
small enemy 

large enemy 
losing fight escaped 
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Hard-Coded Implementation 

class Soldier 

   enum State 
      GUARD 
      FIGHT 
      RUN_AWAY 

   currentState 

   def update() 
      if currentState = GUARD { 
         if (small enemy)  
            currentState = FIGHT 
            startFighting 
         if (big enemy)  
            currentState = RUN_AWAY 
            startRunningAway 
      } else if currentState = FIGHT { 
         if (losing fight) c 
            currentState = RUN_AWAY 
            startRunningAway 
      } else if currentState = RUN_AWAY { 
         if (escaped)  
            currentState = GUARD 
            startGuarding 
      } 

on guard 

run away 

fight 
small enemy 

large enemy 
losing fight escaped 
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Hard-Coded State Machines   

  Easy to write (at the start) 

  Very efficient 

  Notoriously hard to maintain (e.g., debug) 
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Cleaner & More Flexible Implementation 
class State 
   def getAction() 
   def getEntryAction() 
   def getExitAction() 
   def getTransitions() 

class Transition 
   def isTriggered() 
   def getTargetState() 
   def getAction() 

class StateMachine 

   states 
   initialState 
   currentState = initialState 

   def update() 

      triggeredTransition = null 

      for transition in currentState.getTransitions() 
         if transition.isTriggered() 
            triggeredTransition = transition 
            break 

      if triggeredTransition 
         targetState = triggeredTransition.getTargetState() 
         actions = currentState.getExitAction() 
         actions += triggeredTransition.getAction() 
         actions += targetState.getEntryAction() 
         currentState = targetState 
         return actions 
      else 
         return currentState.getAction() 

...add tracing 

(see Millington, Section 5.3.3) 
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Combining Decision Trees & State Machines 

  Why? 
•  to avoid duplicating expensive tests 

alert 

defend 

alarm player in sight AND far 

player in sight AND near 
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Combining Decision Trees & State Machines 

alert 

defend 

alarm 

player in sight? 

far? 

yes 

yes 

no 

no 
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Hierarchical State Machines 

  Why? 

search 

goto  
disposal 

goto 
 trash 

see trash 

trash disposed 

have trash 
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Interruptions (Alarms) 

search 

goto  
disposal 

goto 
 trash 

see trash 

trash disposed 

have trash 

recharge 

low power recharged 

recharge 

low power recharged 

recharge 

low power recharged 

(search) (trash) 

(disposal) 
6 - doubled the number of states! 
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Add Another Interruption Type 

12 - doubled the number of states again! 

hide 

battle all clear 

(search/recharge) 

hide 

hide 

hide 

hide 
hide 
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Hierarchical State Machine 

search 

goto  
disposal 

goto 
 trash 

see trash 

trash disposed 

have trash 

clean 

recharge 
low power 

recharged 

•  leave any state in (composite) ‘clean’ state when ‘low power’ 

•  ‘clean’ remembers internal state and continues when returned to via ‘recharged’’ 
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Add Another Interruption Type 

search 

goto  
disposal 

goto 
 trash 

see trash 

trash disposed 

have trash 

clean 

recharge 
low power 

recharged 

hide 
battle 

all clear 

7 states (including composite) vs. 12 

battle all clear 

hide 
(recharge) 

(clean) 
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Cross-Hierarchy Transitions 

  Why? 
•  suppose we want robot to top-off battery if it 

doesn’t see any trash 

search 

goto  
disposal 

goto 
 trash 

see trash 

trash disposed 

have trash 

clean 

recharge 
low power 

recharged 

IMGD 4000 (D 09) 28 

Cross-Hierarchy Transitions 

search 

goto  
disposal 

goto 
 trash 

see trash 

trash disposed 

have trash 

clean 

recharge 
low power 

recharged 

less than 75% power 
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Implementation Sketch 

class State  

   # stack of return states 
   def getStates() return [this] 

   # recursive update 
   def update() 

   # rest same as flat machine 

class Transition 

   # how deep this transition is 
   def getLevel()  

   # rest same as flat machine 

struct UpdateResult # returned from update 
   transition 
   level 
   actions # same as flat machine 

class HierarchicalStateMachine 

   # same state variables as flat machine 

   # complicated recursive algorithm 
   def update () 

class SubMachine : HierarchicalStateMachine. 
                   State                    

   def getStates() 
      push this onto currentState.getStates() 

(see Millington, Section 5.3.9) 


