
3/25/09

1

Professor Charles Rich
Computer Science Department
rich@wpi.edu

CS 525U (S 09) 1

Speech Technology in CE Task Guide

Intelligent User Interfaces

CS 525U (S 09) 2

Options for Speech Systems

  Dictation vs. Grammar-Driven

  Microphone:
•  open (typically adaptive)
•  push-to-talk
•  push-to-talk with automatic endpointing

  Speaker Trained vs. Independent

3/25/09

2

CS 525U (S 09) 3

Sphinx4 Speech Engine

  a state-of-the-art speech recognition system written
entirely in Java

  joint effort between Carnegie Mellon University, Sun
Microsystems Laboratories, Mitsubishi Electric
Research Labs, and Hewlett Packard, with
contributions from the University of California at
Santa Cruz and the Massachusetts Institute of
Technology

  http://cmusphinx.sourceforge.net/sphinx4/

CS 525U (S 09) 4

Sphinx4 Data Files

  Acoustic and language model
•  speech/WSJ_8gau_13dCep_16k_40mel_130Hz_6800Hz.jar
•  20,000 words, 10.6MB (considered “medium size”)
•  trained on people reading the Wall Street Journal

  Dictionary
•  java/edu/wpi/cetask/guide/commands.dict
•  CMU dictionary: 125,000 words
•  add phonetic spelling of new words here, e.g.,

 HEINLEIN HH AY N L AY N

3/25/09

3

CS 525U (S 09) 5

JSGF Grammars

  http://java.sun.com/products/java-media/speech/forDevelopers/JSGF

  restrict recognition to only words and order of words specified by
grammar

  greatly increases effectiveness of recognition

  greatly restricts what person can say --- how does person know what s/
he can say?

  output of successful recognition can be:

•  parse tree

•  sequence of “tags” (see later)

•  serves as input to semantic interpretation (“understanding”)

CS 525U (S 09) 6

JSGF Grammars in CE Task Guide

  java/edu/wpi/cetask/guide/commands.gram
•  generic grammar
•  includes commands, such as ‘status’, etc.
•  output sequence of tags directly interpreted as command

line input
•  stubs for application-specific task names, parameters, etc.

  models/<taskmodel>.gram
•  extension grammar associated with task model in

<taskmodel>.xml
•  provides specialized expressions for tasks and parameters

3/25/09

4

CS 525U (S 09) 7

commands.gram

public <commands> = <task> | <by> | <next> | <done> | <execute> | <yes> | <no> | <status>
 | <clear> | <quit> | <verbose> | <debug>;

<task> = ((Let's | I want to | Please) [perform]) { task } <task_name> [<values>];

<by> = by { by } <decomp_name>;

<values> = [on | of] <NULL> { / } <value> ([and] <NULL> { / } <value>)*;

<value> = something |
 (failed { false } | succeeded { true } | <digit> | <boolean> | <domain_value>);

<digit> = zero { 0 } | one { 1 } | two { 2 } | three { 3 } | four { 4 } | five { 5 }
 | six { 6 } | seven { 7 } | eight { 8 } | nine { 9 };

/* note simple "failed" and "succeeded" only for proposed tasks with no declared slots */

<done> = (done { done } [<task_name> [<values>]])
 | failed { done / false } | succeeded { done / true };

<execute> = execute { execute } [<task_name> [<values>]];

<next> = [what] next { next };

guide command

CS 525U (S 09) 8

command.gram (cont’d)

<yes> = (yes | ok) { yes };

<no> = no { no };

<status> = status { status };

<clear> = clear { clear };

<quit> = (quit | exit | goodbye) { quit };

<verbose> = verbose { verbose } [<boolean>];

<debug> = debug { debug } [<boolean>];

<boolean> = (true | on) { true } | (false | off) { false };

/* following are placeholders for task names and additional domain values defined
 in .gram files associated with task models */

<task_name> = <NULL>;

<decomp_name> = <NULL>;

<domain_value> = <NULL>;

3/25/09

5

CS 525U (S 09) 9

Library.gram

<task_name> = (borrow [a book]) { Borrow } |
 (go to the library) { GoToLibrary } |
 (choose [a book]) { ChooseBook } |
 (look [a book] up in the catalog) { LookupInCatalog } |

 (take [a book]) { TakeFromShelf } |
 (use search engine) { UseSearchEngine } |
 (check out [a book]) { CheckOut } ;

<domain_value> = (Stranger [in a Strange Land]) { stranger } |
 Mindscan { mindscan } |
 ([A] Fire [Upon the Deep]) { fire } |

 Heinlein { "Heinlein" } |
 Sawyer { "Sawyer" } | Vinge { "Vinge" } ;

CS 525U (S 09) 10

Examples from Library2.guide

CE> say let's borrow Mindscan
 # task Borrow / mindscan

CE> say please use search engine on Vinge
 # task UseSearchEngine / "Vinge"

3/25/09

6

CS 525U (S 09) 11

Limitations of Current Scheme

  Simple tags interpretation restricts order of
output tags to correspond to input word order

  Many other ways of using tags
•  e.g., tags can be JavaScript
•  sphinx4-1.0beta/demo/jsapi/tags/FeatureValueDemo.gram

  No connection between input and “output”
language
•  gloss strings in <taskmodel>.properties file

Library.properties

CS 525U (S 09) 12

Borrow@format = borrow %s
Borrow.book@definite = the book you want to borrow
Borrow.book@indefinite = a library book

GoToLibrary@format = go to the library

ChooseBook@format = choose %s
ChooseBook.input@definite = the book you want to choose
ChooseBook.output@definite = the book you chose

LookupInCatalog@format = look %s up in the catalog
LookupInCatalog.book@definite = the book you want to look up

TakeFromShelf@format = take %s from %s
TakeFromShelf.location@indefinite = a shelf

UseSearchEngine@format = use the search engine

CheckOut@format = check out %

Need to manually keep consistent....

3/25/09

7

CS 525U (S 09) 13

JavaScript Tags

public <order> = [I (want | would like) a]
 (<pizza> { this.command = "buyPizza"; }

 | <burger> { this.command = "buyBurger"; }
) { this.item = $; };

<pizzaTopping> = cheese | pepperoni | mushrooms | mushroom | onions | onion | sausage;

<pizza> = <NULL> { this.toppings = new Array(); }
 ([and] <pizzaTopping> {

 this.toppings = this.toppings.concat($.$value);
 })*
 (pizza | pie) { this.itemType = "pizza"; }

 [with] ([and] <pizzaTopping> {
 this.toppings = this.toppings.concat($.$value);
 })*;

<burgerTopping> = onions | pickles | tomatoes | lettuce | cheese;

<burgerCondiment> = mayo | relish | ketchup | mustard | special sauce;

<burger> = <NULL> { this.toppings = new Array(); }
 ((burger | hamburger) { this.itemType = "burger"; }
 | cheeseburger { this.itemType = "burger";
 this.toppings = this.toppings.concat("cheese"); }
)
 [with]

 ([and] (<burgerTopping> | <burgerCondiment>) {
 this.toppings = this.toppings.concat($.$value); }
)*;

