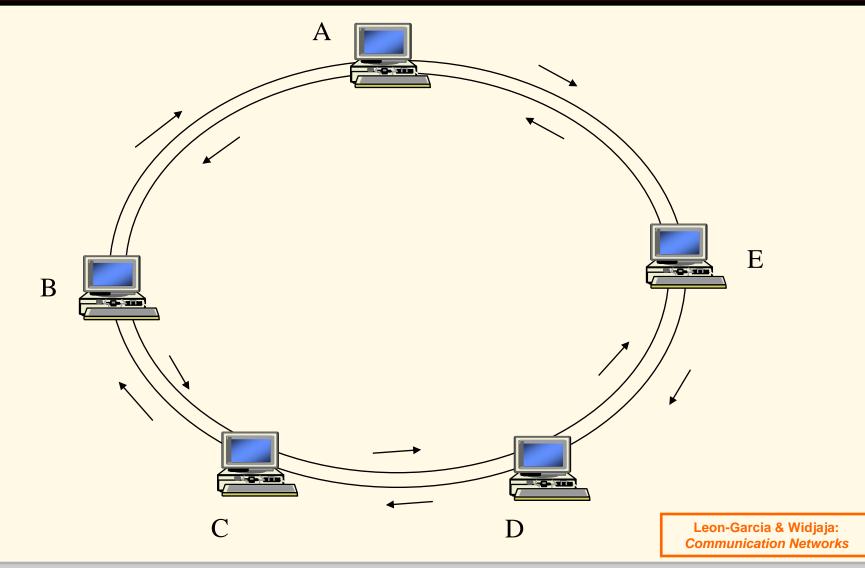
Fiber Distributed Data Interface (FDDI)

Advanced Computer Networks D12

FDDI Oultine

- FDDI


- 100 Mbps Dual Ring
- Multiple-Token
- Self-Healing Ring
- . Target Token Rotation Time (TTRT)
- . 4B/5B Encoder

- FDDI uses a ring topology of multimode or single mode optical fiber transmission links operating at 100 Mbps to span up to 200 kms and permits up to 500 stations.
- Employs dual counter-rotating rings.
- . 16 and 48-bit addresses are allowed.
- In FDDI, token is absorbed by station and released as soon as it completes the frame transmission {multi-token operation}.

FDDI: Dual Token Ring

Advanced Computer Networks FDDI

FDDI Repair

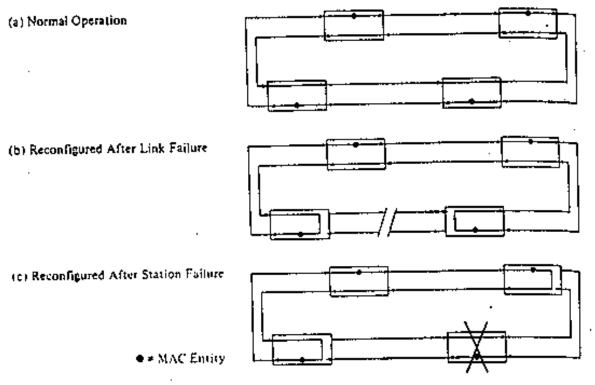
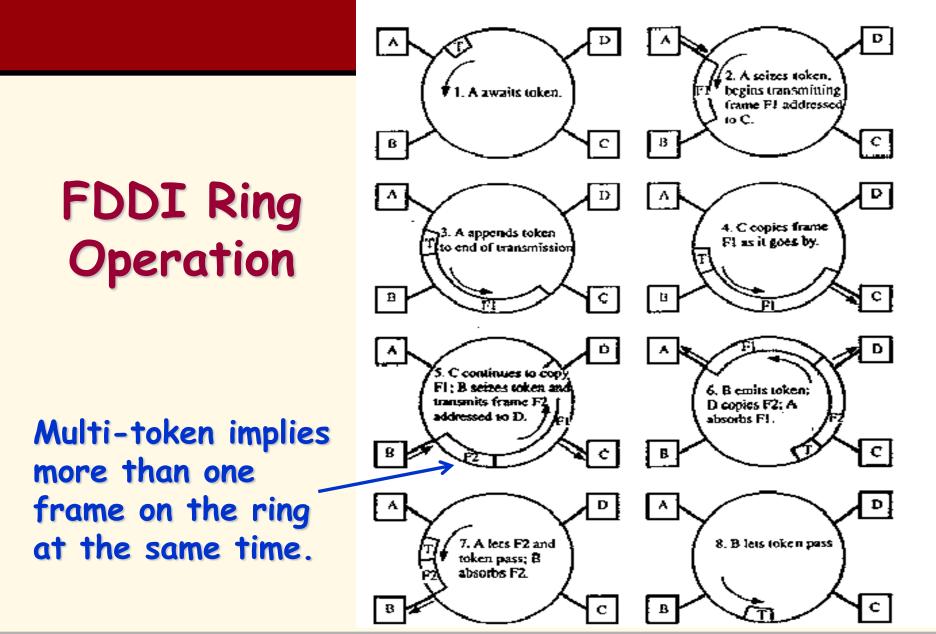
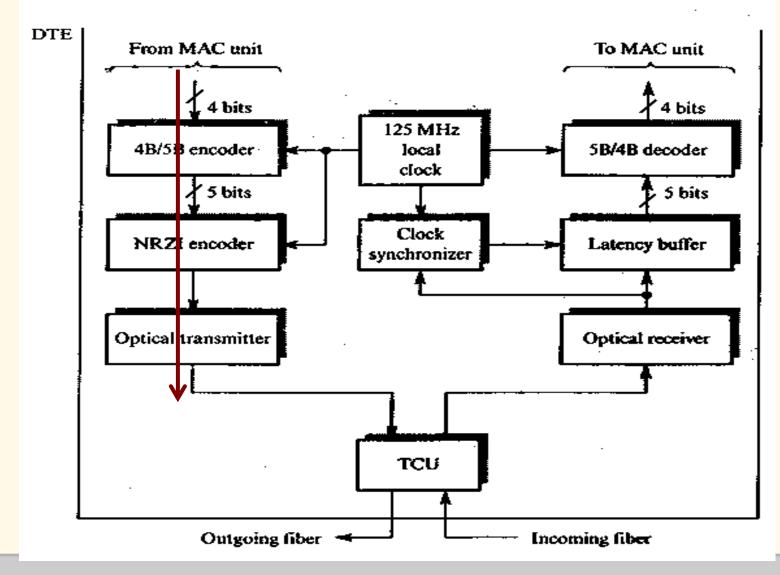



FIGURE 6.7 FDD1 Dual-Ring Operation

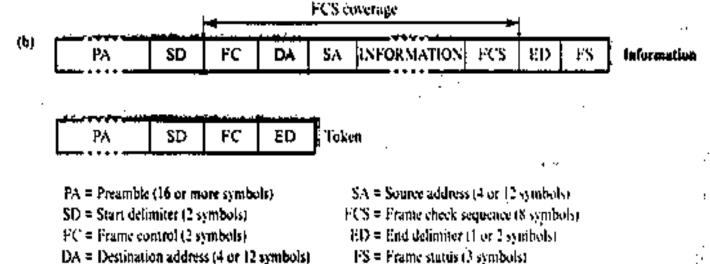
Self-healing dual ring

- To accommodate a mixture of stream and bursty traffic, FDDI is designed to handle two types of traffic:
 - Synchronous frames that typically have tighter delay requirements (e.g., voice and video).
 - Asynchronous frames have greater delay tolerances (e.g., data traffic).
- FDDI uses TTRT (Target Token Rotation Time) to ensure that token rotation time is less than some value.

FDDI Data Encoding


- Cannot use differential Manchester because 100 Mbps FDDI would require 200 Mbaud!
- Instead each ring interface has its own local clock.
 - Outgoing data is transmitted using this clock.
 - Incoming data is received using a clock that is frequency and phase locked to the transitions in the incoming bit stream.

FDDI Data Encoding


- Data is encoded using a 4B/5B encoder.
 - For each four bits of data transmitted, a corresponding five-bit codeword is generated by the encoder.
 - There is a maximum of two consecutive zero bits in each symbol.
- The symbols are then shifted out through a NRZI encoder which produces a signal transition whenever a 1 bit is being transmitted and no transition when a 0 bit is transmitted.
- Local clock is 125MHz. This yields 100 Mbps (80% due to 4B/5B).

	R)	Deta symbols 4-bit data group - 5-bit symbol	Control symbols		
		0000 01001 0000 01001 0010 10100 0011 10100 0100 01010 0100 01010 0110 01110 0111 01111 1000 10010 1001 10010	IDLE J K T R S QUIET HALT	11111 11000 10001 01101 00111 11001 00000 00100	- SD
FDDI		<pre>1010 - 10110 1011</pre>		. [.]	. 1

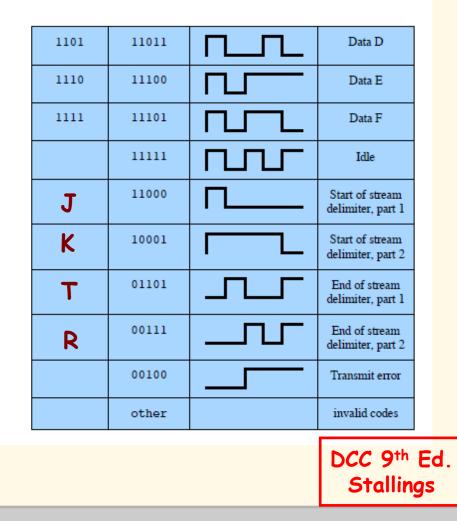
DA = Destination address (4 or 12 symbols)

Figure 7.15 FDDI line coding and

- framing detail:
- (a) 4858 codes;

(b) frame formats.

÷.


s ____

4B/5B Codes

Table 16.5 4B/5B Code Groups (page 1 of 2)

Table 16.5 4B/5B Code Groups (page 2 of 2)

Data Input (4 bits)	Code Group (5 bits)		
0000	11110		Data 0
0001	01001		Data 1
0010	10100		Data 2
0011	10101		Data 3
0100	01010		Data 4
0101	01011		Data 5
0110	01110		Data 6
0111	01111		Data 7
1000	10010		Data 8
1001	10011		Data 9
1010	10110		Data A
1011	10111		Data B
1100	11010		Data C

Advanced Computer Networks FDDI

FDDI Frame Structure

Token Frame Format

Data Frame Format

8	1	1	2 or 6	2 or 6		4	1	1
PRE	SD	FC	Destination Address	Source	Information	FCS	FD	FS
			Address	Address		- 50		. 0

Preamble

- Frame CLFFZZZZ Control
- C = Synch/Asynch L = Address length (16 or 48 bits) FF = LLC/MAC control/reserved frame type

Leon-Garcia & Widjaja: Communication Networks

More FDDI Details

- FDDI Transmission on optical fiber requires ASK (e.g., coding is done via the absence or presence of a carrier signal {Intensity Modulation}.)
- Specific 5-bit codeword patterns chosen to guarantee no more than three zeroes in a row to provide for adequate synchronization.
- . 1300 nm wavelength specified.
- Dual rings (primary and secondary) transmit in opposite directions.
- Normally, second ring is idle and used for redundancy for automatic repair (self-healing).

IEEE 802.5 versus FDDI

802.5 Token Ring

- Shielded twisted pair
- . 4, 16 Mbps
- No reliability specified
- Differential Manchester
- Centralized clock
- Priority and Reservation bits
- Three distinct token operations are possible.

- Optical Fiber
- 100 Mbps
- Reliability specified (dual ring)
- . 4B/5B encoding
- Distributed clocking
- Timed Token Rotation
 Time (TTRT)
- Multi-token operation

FDDI Summary

- FDDI

- 100 Mbps Dual Ring
- Multiple-Token
- Self-Healing Ring
- . Target Token Rotation Time
 - Two classes of traffic
- . 4B/5B Encoder

