Name

CS4516 D11 Computer Networks Mid Term Exam April 4, 2010

Question	Points	Score
0	1	
1	6	
2	4	
3	16	
4	4	
5	4	
6	6	
7	4	
8	3	
9	2	
10	5	
11	3	
12	3	
13	20	
Total	80	

Trivia Question (1 extra credit point)
0. (a) What is the capital of Libya?
-OR-
(b) What city is hosting this year's NCAA men's basketball Final Four games?
(3 pts.) 1a. What is a network protocol?
(3 pts.) b. Explain the differences between the OSI Reference Model and the TCP/IP Internet stack.
(2 pts.) 2a. Explain the difference between channel utilization and channel efficiency.
(2 pts.) b. What is the difference between end-to-end packet latency and end-to-end packet delay?
(16 pts.) 3. Provide pseudo-code (in Tanenbaum style) for a one-directional flow of data from a sending node to a receiving node in a one-bit sliding window protocol where the receiver sends an ACK when a frame is transmitted correctly and a NAK when a frame is received with errors detected.

Sender
Receiver
(4 pts.) 4. Explain the HDLC scheme for framing and byte stuffing.
(2 pts.) 5a. Why is error correction not normally used at the data link layer?
(2 pts.) b. What is used instead?
(6 pts.) 6. Give the algorithm that the sender uses to prepare and send a frame for transmission that includes a CRC field.
(4 pts.) 7. Assume that the voltage level at time $t=0$ is low, fill in the diagram below to show the Differential Manchester encoding for the bit stream 00010110 traveling to the left.

(3 pts.) 8. A V. 34 modem runs at 2400 baud to achieve 33,600 bps. Based on Nyquist's theorem, how many levels does this modem use to achieve this data rate?
(2 pts.) 9. Explain the difference between amplitude modulation and phase modulation.
(5 pts.) 10. Draw a diagram and explain how a T1 carrier works?
(3 pts.) 11. How does delta modulation work and where it would be used?
(3 pts.) 12. Briefly explain the components of the HFC architecture.
(20 pts.) 13. Two nodes \mathbf{A} and \mathbf{B} are $\mathbf{6 0} \mathbf{~ k m}$ apart at opposite ends of a $\mathbf{1 0 0} \mathbf{~ M b p s}$ optical fiber link. Assume the speed of light is 3×10^{8} meters/sec. Assume node A has a 51,231 byte image stored in memory to send to \mathbf{B}.

A and B share a three-layer 'home brew' network where:

Network layer packets have the following format:

Header	Trailer	
36 bytes	$4-256$ bytes	8 bytes

DATA frames have the following format:

Header	Payload	Trailer
30 bytes		

ACK frames have the following format:

Header	Payload	Trailer
30 bytes	75 bytes	20 bytes

Processing time for \mathbf{A} or \mathbf{B} to prepare to send any frame is $\mathbf{4}$ microseconds. Processing time for \mathbf{A} or \mathbf{B} to receive any frame is $\mathbf{1}$ microsecond.

The Data Link layer of the 'home-brew' network uses a simple STOP-and-WAIT protocol and for channel efficiency it tries to combine multiple packets into a single frame prior to transmission.

How long does it take \mathbf{A} to successfully send the image to \mathbf{B} under the best of circumstances (i.e., the channel is error-free)? (Show ALL calculations to get full or partial credit!)

Blank Work Page

