Fiber Distributed Data Interface (FDDI)

Computer Networks
Spring 2012

FDDI Oultine

- . FDDI
 - 100 Mbps Dual Ring
 - Multiple-Token
 - Self-Healing Ring
- Target Token Rotation Time (TTRT)
- 4B/5B Encoder

- FDDI uses a ring topology of multimode or single mode optical fiber transmission links operating at 100 Mbps to span up to 200 kms and permits up to 500 stations.
- Employs dual counter-rotating rings.
- . 16 and 48-bit addresses are allowed.
- In FDDI, token is absorbed by station and released as soon as it completes the frame transmission {multi-token operation}.

FDDI: Dual Token Ring

FDDI Repair

Self-healing dual ring

FDDI Ring Operation

Multi-token implies more than one frame on the ring at the same time.

- To accommodate a mixture of stream and bursty traffic, FDDI is designed to handle two types of traffic:
 - Synchronous frames that typically have tighter delay requirements (e.g., voice and video).
 - Asynchronous frames have greater delay tolerances (e.g., data traffic).
- FDDI uses TTRT (Target Token Rotation Time) to ensure that token rotation time is less than some value.

FDDI Data Encoding

- Cannot use differential Manchester because 100 Mbps FDDI would require 200 Mbaud!
- Instead each ring interface has its own local clock.
 - Outgoing data is transmitted using this clock.
 - Incoming data is received using a clock that is frequency and phase locked to the transitions in the incoming bit stream.

FDDI Data Encoding

- Data is encoded using a 4B/5B encoder.
 - For each four bits of data transmitted, a corresponding five-bit codeword is generated by the encoder.
 - There is a maximum of two consecutive zero bits in each symbol.
- The symbols are then shifted out through a NRZI encoder which produces a signal transition whenever a 1 bit is being transmitted and no transition when a 0 bit is transmitted.
- Local clock is 125MHz. This yields 100 Mbps (80% due to 4B/5B).

		FC	ΕD	Token

Figure 7.15
FDDI line coding and
framing detail:

(a) 4858 codes;

(b) frame formats.

PA = Preamble (16 or more symbols)

SD = Start delimiter (2 symbols)

FC = Frame control (2 symbols)

DA = Destination address (4 or 12 symbols)

SA = Source address (4 or 12 symbols)

FCS = Frame check sequence (8 symbols)

ED = End delimiter (1 or 2 symbols)

FS = Frame status (3 symbols)

4B/5B Codes

Table 16.5 4B/5B Code Groups (page 1 of 2)

Data Input (4 bits)	Code Group (5 bits)	NRZI pattern	Interpretation	
0000	11110		Data 0	
0001	01001		Data 1	
0010	10100		Data 2	
0011	10101		Data 3	
0100	01010		Data 4	
0101	01011	7	Data 5	
0110	01110		Data 6	
0111	01111	<u></u>	Data 7	
1000	10010		Data 8	
1001	10011		Data 9	
1010	10110		Data A	
1011	10111		Data B	
1100	11010		Data C	

Table 16.5 4B/5B Code Groups (page 2 of 2)

1101	11011		Data D
1110	11100	5	Data E
1111	11101		Data F
	11111		Idle
	11000		Start of stream delimiter, part 1
	10001		Start of stream delimiter, part 2
	01101	7	End of stream delimiter, part 1
	00111	7	End of stream delimiter, part 2
	00100		Transmit error
	other		invalid codes

DCC 9th Ed. Stallings

FDDI Frame Structure

Token Frame Format

PRE SD FC ED

Data Frame Format

8	1	1	2 or 6	2 or 6		4	1	1
PRE	SD	FC	Destination Address	Source	Information	FCS	ED	FS
FKC	30		Address	Address	Injui marion	rc5	ובט	r

Preamble

Frame CLFFZZZZ
Control

C = Synch/Asynch

L = Address length (16 or 48 bits)

FF = LLC/MAC control/reserved frame type

Leon-Garcia & Widjaja: Communication Networks

More FDDI Details

- FDDI Transmission on optical fiber requires ASK (e.g., coding is done via the absence or presence of a carrier signal {Intensity Modulation}.)
- Specific 5-bit codeword patterns chosen to guarantee no more than three zeroes in a row to provide for adequate synchronization.
- . 1300 nm wavelength specified.
- Dual rings (primary and secondary) transmit in opposite directions.
- · Normally, second ring is idle and used for redundancy for automatic repair (self-healing).

IEEE 802.5 versus FDDI

802.5 Token Ring

- Shielded twisted pair
- . 4, 16 Mbps
- No reliability specified
- Differential Manchester
- Centralized clock
- Priority and Reservation bits
- Three distinct token operations are possible.

- Optical Fiber
- 100 Mbps
- Reliability specified (dual ring)
- 4B/5B encoding
- Distributed clocking
- Timed Token Rotation
 Time (TTRT)
- Multi-token operation

FDDI Summary

- . FDDI
 - 100 Mbps Dual Ring
 - Multiple-Token
 - Self-Healing Ring
- . Target Token Rotation Time
 - Two classes of traffic
- 4B/5B Encoder

