Performance of New Variants of TCP

Presenter - Bob Kinicki

Fairness in TCP Variants

ns-2 dumbbell simulations

- C = 1 Gbps
- Min RTT = 104 ms.
- Drop tail routers
- 1500 byte packets
- Buffer size = BDP
- 20 flows of each TCP variant
- 1200 sec. simulated

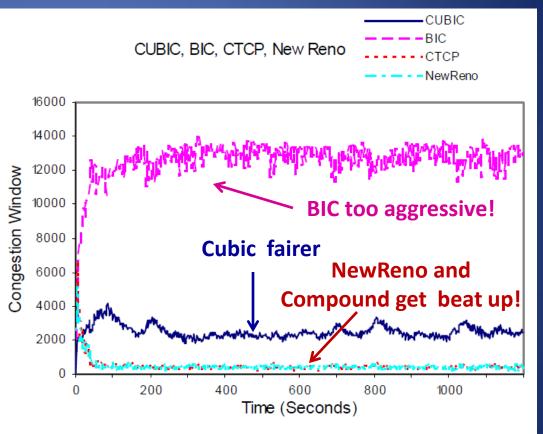


Fig. 2. Congestion window curves for CUBIC, BIC, CTCPand NewReno flows. A congestion window curve representsthe sum of 20 flows of a type[Munif 2007]

Fairness in TCP Variants

Table 1: Average transfer rates and average link utilization

<u> </u>			
Mechanism	Average Transfer	Average Link	
	Rate (Mbs)	Utilization (%)	
CUBIC	151.11	15.11	
BIC	764.42	76.42	
CTCP	27.80	2.78	
NewReno	26.59	2.66	
Too Aggressive		[Munif	2007]

High Speed Simulations

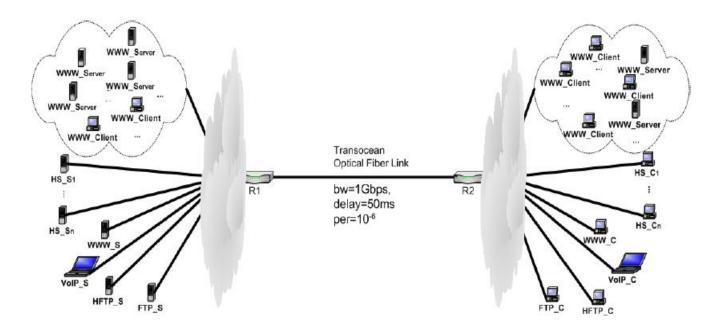
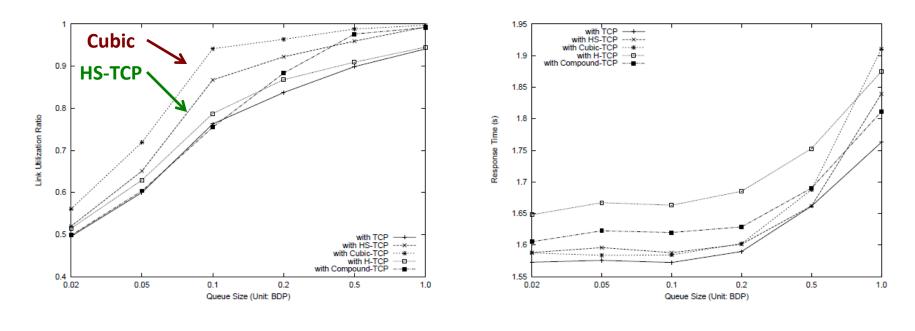



Figure 1: Wide Area Network Scenario: High Speed Congestion Control Algorithms on a Transocean Optical Fiber Link [Wu 2008a]

Advanced Computer Networks : TCP Variants Performance

Utilization and Response Time

(a) Link Utilization Ratio

(b) WWW (Response Data Size=64KB)

Figure 7: Twenty High Speed Flows on the Simulated Transocean Optical Fibre Link

Advanced Computer Networks : TCP Variants Performance

[Wu 2008a]

Simulated Satellite Network

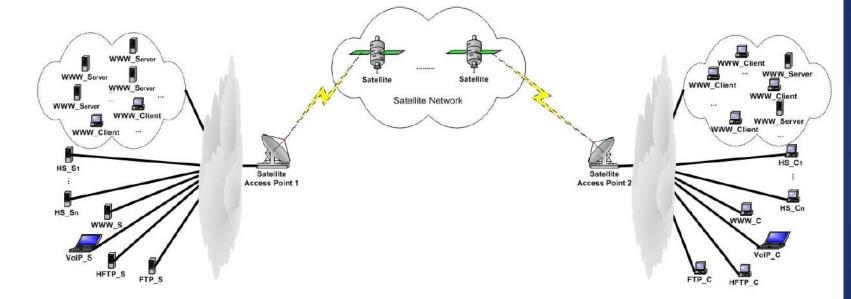
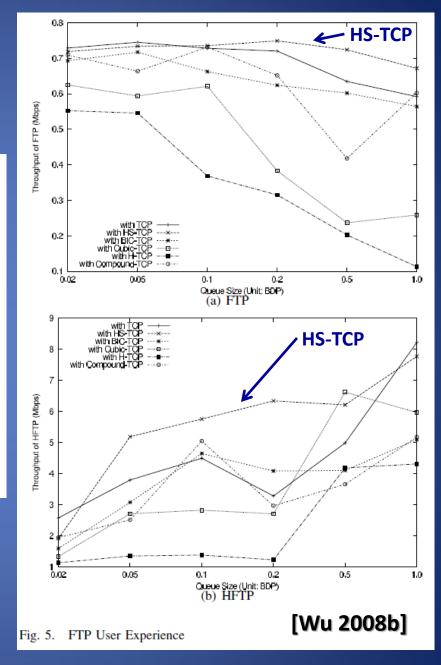


Fig. 1. Network Topology: Two High Speed Networks Connected Through Satellite Network

[Wu 2008b]



Satellite Simulations

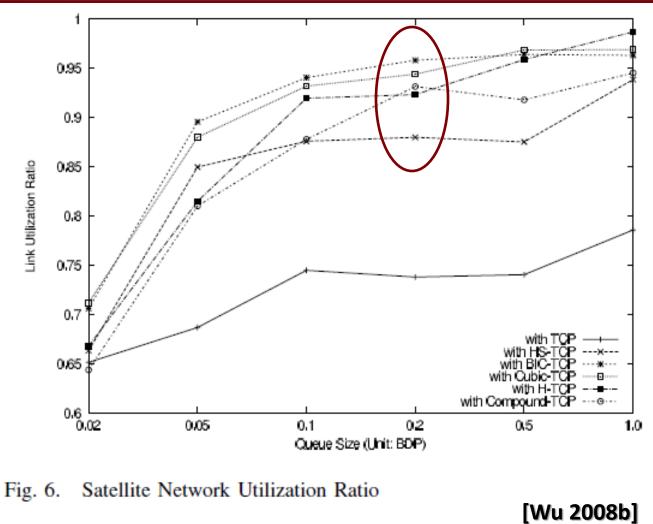

Nodes	Delay of	Traffic	Traffic
	Side Link	Туре	Load
WWW_Server	Random Number	Background	800 Sessions / s
and			(forward path)
WWW_Client	[5ms-15ms]	Web Traffic	200 Sessions / s
nodes			(backward path)
$HSCC_S_i$	Random Number	Long-Lived	4 Flows
$HSCC_C_i$	[5ms-15ms]	FTP Flows	(forward path)
WWW_S	10ms	HTTP	10 Sessions / s
WWW_C		Sessions	(forward path)
VoIP_S	10ms	ITU G.711	1 Connection
VoIP_C		PCM Traffic	(forward path)
HFTP_S	10ms	Long-Lived	1 Flow
HFTP_C		FTP Flow	(forward path)
FTP_S	10ms	FTP Flow	1 Flow
FTP_C		(small buffer)	(forward path)

TABLE I PARAMETERS OF GENERATED TRAFFIC

HFTP flows: 100000 packet window FTP flows: 64 packet window

TCP Variant Utilization

Advanced Computer Networks : TCP Variants Performance

[Munif 2007] K. Munir, M. Welzl, D. Damianovic, "Linux beats Windows! – or the Worrying Evolution of TCP in Common Operating Systems" Fifth International Workshop on Protocols for FAST Long-Distance Networks (PFLDnet-07), February 2007, pp. 43-48.

[Wu 2008a] X. Wu, "Effects of Applying High Speed Congestion Control Algorithms in the Internet", National University of Singapor Tech Report 2008.

[Wu 2008b] Xiuchao Wu, M. C. Chan and A. L. Ananda, "Effects of Applying High-Speed Congestion Control Algorithms in Satellite Network", IEEE International Conference on Communcations, Beijing, May 2008, pp. 1925-1929.

