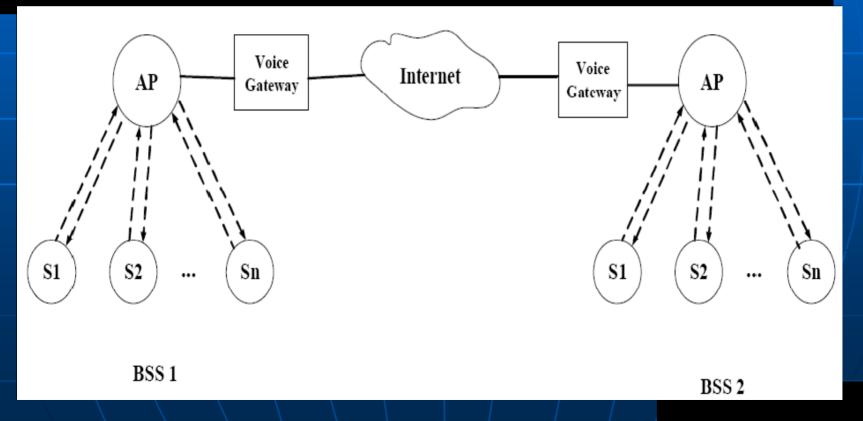
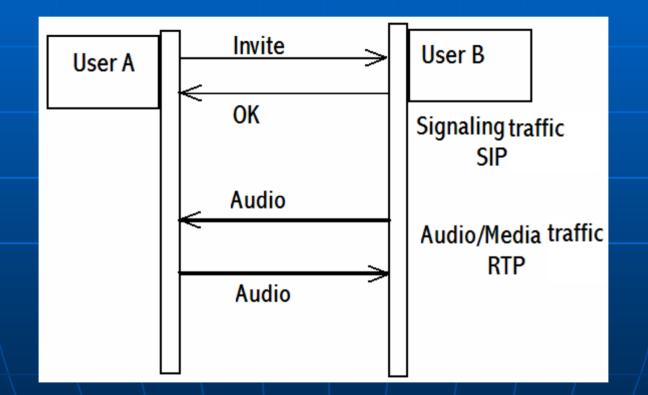
## Solutions to Performance Problems in VOIP over 802.11 Wireless LAN

Wei Wang, Soung C. Liew


Presented By Syed Zaidi

### Outline

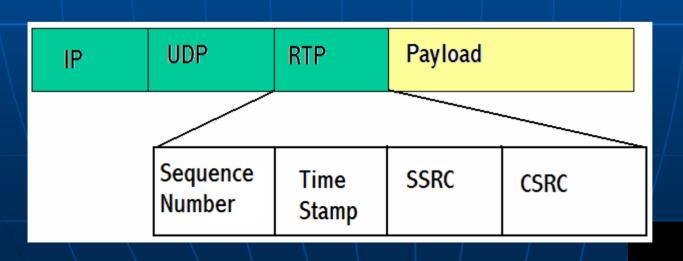
- Introduction
- VOIP background
- Problems faced in 802.11
  - Low VOIP capacity in 802.11
  - Interference between VOIP and TCP
- Solutions
- Simulations
- Conclusion
- Observations


## Introduction

#### VOIP in an 802.11 Network



## **VOIP Background**

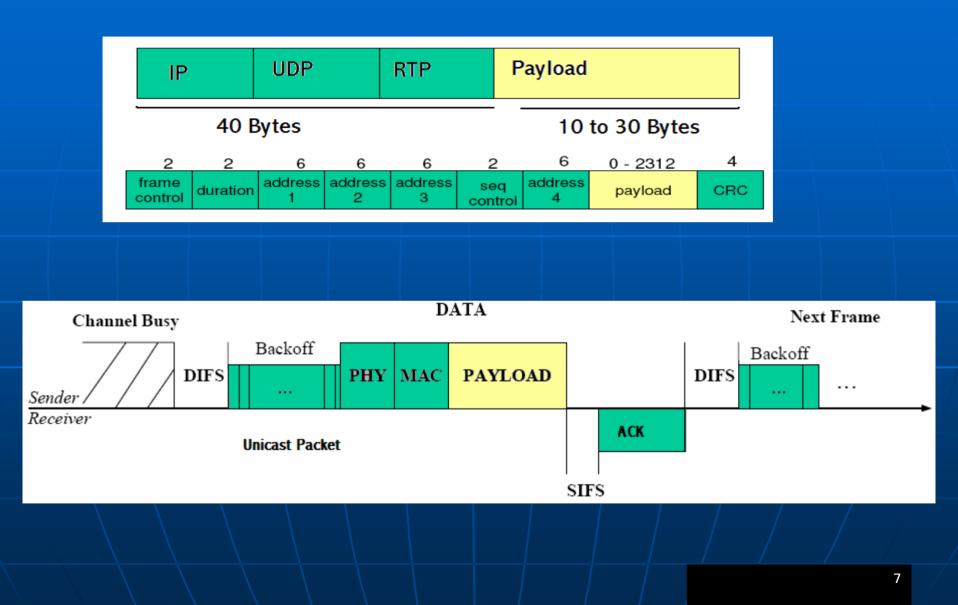

### **VOIP Call**



# VOIP Background

### RTP

- Real-time transport protocol.
- Built on UDP.
- Sequence Numbering.
- Time Stamping.
- Sent at a continues rate every 20ms.




## Problems

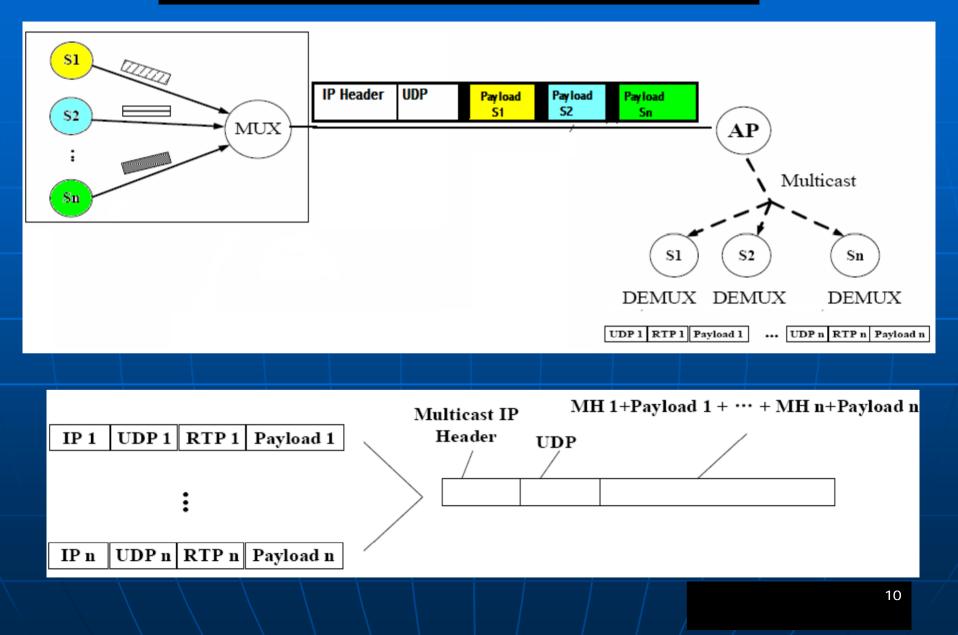
Low system capacity in WLAN network for VOIP calls.

Interference between VOIP traffic and data traffic.

### **Too Much Overhead**



### **Too Much Overhead**


| DIFS        | 50 µsec            |                                 |                                    |  |
|-------------|--------------------|---------------------------------|------------------------------------|--|
| SIFS        | 10 μsec            |                                 | 22 $\mu$ s to transmit the payload |  |
| Slot Time   | 20 µsec            | 29 µs to transmit the header    |                                    |  |
| CWmin       | 32                 | 802.11 MAC\PHY layer additional |                                    |  |
| CWmax       | 1023               |                                 | 800 μs                             |  |
| Data Rate   | 1, 2, 5.5, 11 Mbps |                                 |                                    |  |
| Basic Rate  | 2 Mbps             |                                 |                                    |  |
| PHY header* | 192 µsec           |                                 |                                    |  |
| MAC header  | 34 bytes           |                                 |                                    |  |
| ACK*        | 248 µsec           |                                 |                                    |  |
|             |                    |                                 |                                    |  |

Solution is to use Voice Multiplex-Multicast

## Voice Multiplex-Multicast (M-M)

- Multiplex packets from various streams into one stream to reduce overhead.
- Replace RTP, UDP and IP header with a miniheader.
- Each payload is preceded with this mini-header representing an ID.
- The AP broadcasts this packet and ID is translated into RTP,UDP IP header at the receiver.

### Voice Multiplex-Multicast (M-M)



### Issues

- Broadcast issue.
- Security.
- Power Saving Mode of AP.

## Voice Capacity Analysis

### > Original VOIP

 $1/T_{ava}$  = number of streams \* number of packets sent by one stream in one second.  $OH_{hdr} = H_{RTP} + H_{IIDP} + H_{IP} + H_{MAC}$  $OH_{sourder} = DIFS + averageCW + PHY$  $OH_{receiver} = SIFS + ACK$  $T_{down} = T_{up} = (Payload + OH_{hdr}) * 8 / dataRate + OH_{sender} + OH_{receiver}$  $T_{avg} = (T_{down} + T_{up})/2$ n = 11.2

## Voice Capacity Analysis

### > M-M VOIP

Mini-header is used to compress the IP/UDP/RTP header into 2 bytes.

$$\begin{split} T_{down} = & [(Payload + 2)*n + H_{UDP} + H_{IP} + H_{MAC}]*8 / dataRate + OH_{sender} \\ & T_{avg} = & (T_{down} + n*T_{up}) / (n+1) \\ & 1 / T_{avg} = & (n+1)*N_p \\ & n = 21.2 \end{split}$$

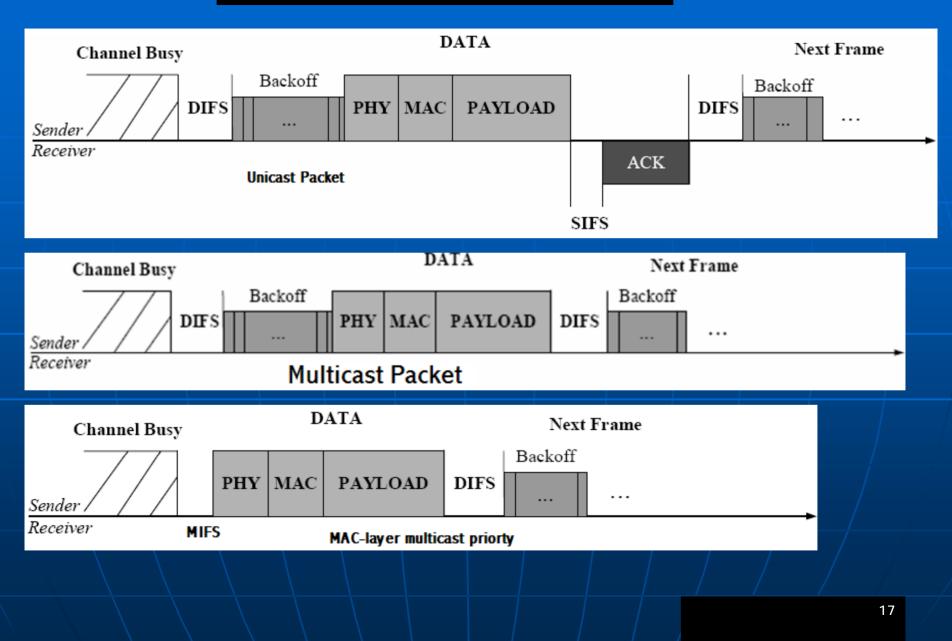
## Voice Capacity Analysis

#### Two type of sources

- Constant-bit-rate (CBR)
- Variable-bit-rate (VBR)

In VBR average traffic is **45%** of CBR. Original VOIP with VBR source can have **26** sessions. M-M VOIP with VBR source can have **50** sessions.

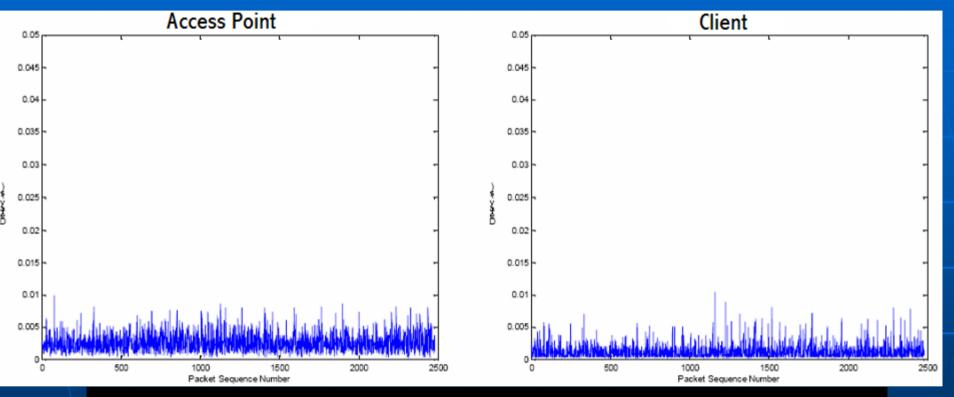
## Simulation


- ns-2 simulation
- Payload size GSM 6.10 codec
- Increase the number of streams until we reach 1% packet loss

| Different Schemes             | CBR      |            | VBR      |            |  |
|-------------------------------|----------|------------|----------|------------|--|
|                               | Analysis | Simulation | Analysis | Simulation |  |
| Original VoIP                 | 11.2     | 12         | 26.3     | 25         |  |
| Multiplex-Multicast<br>Scheme | 21.2     | 22         | 49.8     | 36*        |  |

## Simulation Observations

- Adding 13<sup>th</sup> session to CBR for original VOIP causes 6% Packet loss.
- VBR for M-M scheme number of sessions is lower then expected.
- VBR traffic is bursty causing packet collisions.
- Multicast frames will be dropped after first collision.


### 802.11 Packets



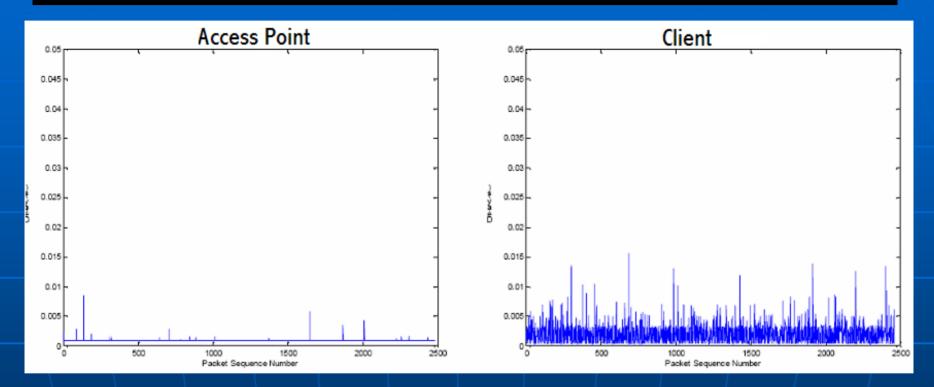
## **Delay Performance**

- To provide good quality minimizing the delay is important.
- Delay jitter is the variation in delay.
- Delay of simple VOIP is AP + Receiver Station.
- Delay of M-M is AP + MUX + Receiver.
- We want to keep less then 1% packets with delay of 30ms.

### **Delay Performance (CBR)**



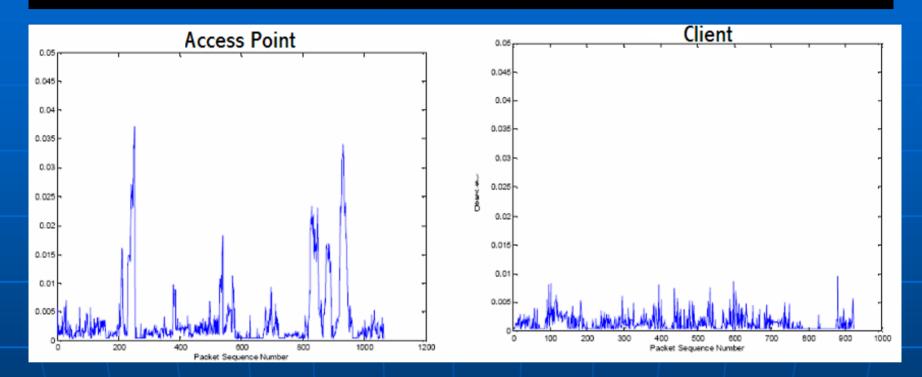
### **Original VOIP with 12 sessions**


Average delay 2.5ms

Jitter delay 1.4ms

Average delay 1.2ms

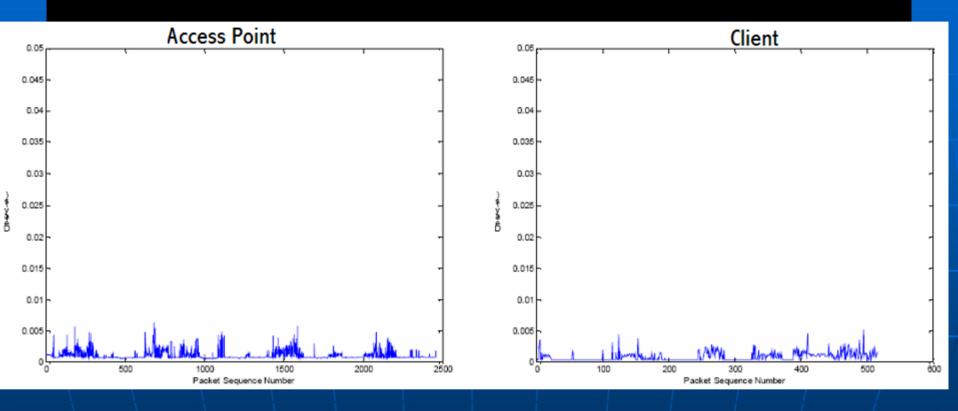
Delay jitter 1ms


### **Delay Performance** (CBR)



#### **M-M VOIP with 22 sessions**

Average delay 0.9ms Jitter delay 0.2ms Average delay 2ms Delay jitter 1.5ms


### Delay Analysis (VBR)



#### **Original VOIP with 25 sessions**

Average delay 3.6ms Jitter delay 5.9ms Average delay 1.4ms Delay jitter 1.3ms

### Delay Analysis (VBR)

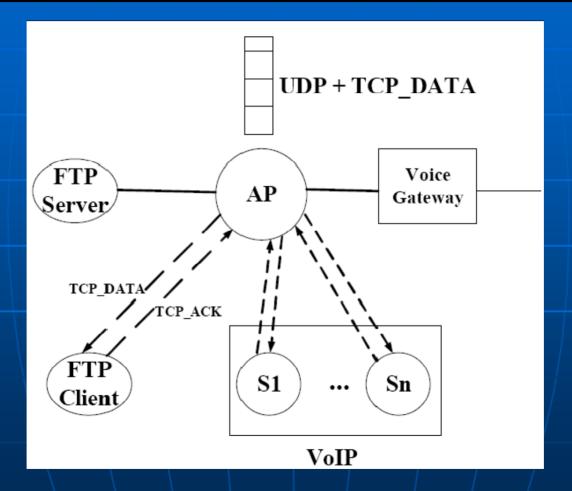


#### **M-M VOIP with 36 sessions**

Average delay 1.1ms Jitter delay 0.7ms Average delay 0.9ms Delay jitter 0.7ms

## **Delay Analysis**

#### Access Delay Distribution for Ordinary VoIP


|                    | Access delay for the AP<br>(Local delay for downlink<br>VoIP packets)CBR(12)VBR(25) |       | Access delay for the station<br>(Local delay for uplink<br>VoIP packets) |         |
|--------------------|-------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------|---------|
|                    |                                                                                     |       | CBR(12)                                                                  | VBR(25) |
| $\Pr[A \leq 10ms]$ | 1                                                                                   | 0.900 | 0.999                                                                    | 1       |
| $\Pr[A \le 30ms]$  | 1                                                                                   | 0.990 | 1                                                                        | 1       |
| $\Pr[A \le 50ms]$  | 1                                                                                   | 1     | 1                                                                        | 1       |

## **Delay Analysis**

•Delay at the MUX is upper bound limited by 20ms.

•We are going to consider MUX delay to be distributed from 0 to 20 ms

| Access delay for the AP plus MUX delay in the MUX (Local delay for the downlink VoIP packet) |         |         | Access dela<br>(Local delay for tl | ty for the station<br>the uplink VoIP |         |
|----------------------------------------------------------------------------------------------|---------|---------|------------------------------------|---------------------------------------|---------|
|                                                                                              | CBR(22) | VBR(36) |                                    | CBR(22)                               | VBR(36) |
| $\Pr[M + A \le 0.01s]$                                                                       | 0.455   | 0.447   | $\Pr[A \le 0.01s]$                 | 0.996                                 | 1       |
| $\Pr[M + A \le 0.02s]$                                                                       | 0.955   | 0.947   | $\Pr[A \le 0.02s]$                 | 1                                     | 1       |
| $\Pr[M + A \le 0.03s]$                                                                       | 1       | 1       | $\Pr[A \le 0.03s]$                 | 1                                     | 1       |



- TCP interferes with downlink FIFO queue.
- TCP ACK interferes with clients sending VOIP streams.

### **6 VOIP sessions with one TCP flow**

#### Orignal VOIP

| А | access delay / jitter<br>of the AP (ms) | Access delay /<br>jitter of the station<br>(ms) | VoIP downlink<br>packet loss rate | VoIP uplink<br>packet loss<br>rate | TCP throughput<br>(Mbps) |
|---|-----------------------------------------|-------------------------------------------------|-----------------------------------|------------------------------------|--------------------------|
|   | 83.9 / 15.6                             | 2.3 / 3.0                                       | 1.0 %                             | 0                                  | 2.55                     |

#### **Orignal VOIP with Priority Queuing**

| Access delay / jitter<br>of the AP (ms) | Access delay /<br>jitter of the station<br>(ms) | VoIP downlink<br>packet loss rate | VoIP uplink<br>packet loss<br>rate | TCP throughput<br>(Mbps) |
|-----------------------------------------|-------------------------------------------------|-----------------------------------|------------------------------------|--------------------------|
| 3.0 / 1.5                               | 2.6 / 2.2                                       | 0.01 %                            | 0                                  | 2.55                     |

### 6 M-M VOIP sessions with one TCP flow

|                 | Access delay / jitter<br>of the AP (ms) | Access delay / jitter<br>of the station (ms) | VoIP<br>downlink loss<br>rate | VoIP<br>uplink<br>loss rate | TCP<br>throughput<br>(Mbps) |
|-----------------|-----------------------------------------|----------------------------------------------|-------------------------------|-----------------------------|-----------------------------|
| M-M             | 42.7 / 19.2                             | 4.5 / 6.2                                    | 10.8 %                        | 0                           | 3.46                        |
| M-M + PQ        | 4.3 / 2.4                               | 4.7 / 6.2                                    | 12.2 %                        | 0                           | 3.49                        |
| M-M + MMP       | 17.2 / 14.5                             | 4.4 / 5.2                                    | 0                             | 0                           | 3.47                        |
| M-M +<br>PQ+MMP | 2.7 / 2.1                               | 4.6 / 5.8                                    | 0                             | 0                           | 3.47                        |

### 11 M-M VOIP sessions with one TCP flow

|                | Access delay / jitter<br>of the AP (ms) | Access delay / jitter<br>of the station (ms) | VoIP<br>downlink loss<br>rate | VoIP<br>uplink<br>loss rate | TCP<br>throughput<br>(Mbps) |
|----------------|-----------------------------------------|----------------------------------------------|-------------------------------|-----------------------------|-----------------------------|
| M-M            | 32.5 / 25.8                             | 6.6 / 10.2                                   | 15.6 %                        | 0                           | 2.55                        |
| M-M + PQ       | 4.5 / 3.2                               | 6.7 / 13.5                                   | 12.0 %                        | 0                           | 2.54                        |
| M-M + MMP      | 20.3 / 21.7                             | 8.9 / 20.8                                   | 0.2 %                         | 0                           | 2.54                        |
| M-M+<br>PQ+MMP | 2.9 / 2.7                               | 5.8 / 7.2                                    | 0                             | 0                           | 2.54                        |

## **Transmission Errors**

# In a real world there are transmission errors.

Multicast Packet Loss Rate for Different Distances and Data Rates

| Distance (m) | Multicast frames at 2 Mbps | Multicast frames at 11<br>Mbps |
|--------------|----------------------------|--------------------------------|
| 1            | 0                          | 0.17%                          |
| 5            | 0                          | 0.15%                          |
| 10           | 0                          | 0.17%                          |
| 20           | 0.02%                      | 0.23%                          |

## 802.11e

Implements QOS by having multiple queues for different types of packets.

- EDCA0: One queue for all the traffic, same parameter setting as in DCF
- EDCA1: CWmin[voice] = CWmin[data] = 31
- EDCA2: CWmin[voice] = 31, CWmin[data] = 63
- EDCA3: CWmin[voice] = 31, CWmin[data] = 127

## 802.11e

| Performance of Different Parameter Settings for One VoIP + One TCP |                                         |                                              |                       |  |  |
|--------------------------------------------------------------------|-----------------------------------------|----------------------------------------------|-----------------------|--|--|
|                                                                    | Access delay / jitter of<br>the AP (ms) | Access delay / jitter of<br>the station (ms) | TCP throughput (Mbps) |  |  |
| EDCA0                                                              | 23.26 / 15.46                           | 1.98 / 1.47                                  | 3.45                  |  |  |
| EDCA1                                                              | 2.72 / 2.12                             | 2.84 / 2.06                                  | 3.45                  |  |  |
| EDCA2                                                              | 2.21 / 1.54                             | 2.23 / 1.41                                  | 3.07                  |  |  |
| EDCA3                                                              | 1.99 / 1.15                             | 1.94 / 1.16                                  | 2.43                  |  |  |

#### - Performance of Different Parameter Settings for Six VoIP + One TCP

|       | Access delay / jitter of<br>the AP (ms) | Access delay / jitter of<br>the station (ms) | TCP throughput (Mbps) |
|-------|-----------------------------------------|----------------------------------------------|-----------------------|
| EDCA0 | 56.15 / 26.62                           | 4.12 / 2.65                                  | 2.19                  |
| EDCA1 | 14.58 / 6.43                            | 4.89 / 4.17                                  | 2.44                  |
| EDCA2 | 10.82 / 3.02                            | 4.29 / 2.94                                  | 2.16                  |
| EDCA3 | 9.23 / 2.03                             | 3.86 / 2.56                                  | 1.71                  |

## Conclusion

- M-M improves the VOIP capacity.
- M-M requires no MAC change in the Client station.
- M-M doesn't increase delay above 30ms.
- With Both Original VOIP and M-M VOIP quality is unacceptable with TCP.
- Priority queue can solve TCP interference problem.

## Observations

- Didn't discuss the effect of mobility causing variable bandwidth.
- Need to look at scenario with majority of TCP and few VOIP users.
- Power utilization at the client stations.
- Only works between AP and AP.