Robust Rate Adaptation in 802.11 Networks

Starsky H.Y, Hao Yang, Songwu Lu and Vaduvur Bharghavan Presented by Meganne Atkins

Rate Adaptation

Definition - The method used to dynamically select the transmission rate based on time-varying and locate independent channel quality

Goal: Optimize the transmission goodput at the receiver

The IEEE 802.11 Standard and Rate Adaptation

- Transmission Rates for 802.11 variations:
 - 802.11b 4 rate options
 - -802.11a 8 rate options
 - 802.11g 12 rate options
- Each Transmission Rate has different modulation and coding schemes

Rate Adaptation is critical to performance, but left undefined

Importance of Rate Adaptation

Transmission Rate than Loss Ratio

Throughput Decreases

Transmission Rate

than Capacity Utilization

Throughput Decreases

Assumption: Performance is defined as throughput

Related Work

Rate Adaptation Algorithms Metrics:

- Probe Packets
 - ARF
 - AARF
 - SampleRate
- Consecutive successes/losses
 - ARF
 - AARF
 - Hybrid Algorithm
- Physical Layer metrics
 - Hybrid Algorithm
 - RBAR
 - OAR
- Long-term statistics
 - ONOE

Commercially Deployed: ARF, SampleRate and ONOE

Issues with Current Algorithms

- Current Metrics are limited in scope
- Simulations do not show flaws in the algorithms
- Performance loss
- 802.11 non-compliant algorithms
 RBAR

Flawed design guidelines = Flawed algorithms

Current Design Guidelines

- 1. Decrease Transmission Rate upon severe packet loss
- 2. Use Probe Packets to assess new rate
- 3. Use consecutive transmission success/losses to decide rate increase/decrease
- 4. Use PHY metrics to infer new transmission rate
- 5. Long-term smothered operation produces best average performance

Experimental Methodology

Programmable AP Platform

- Supports 802.11 variations a/b/g
- Per-frame Control functionality
- Real-time tracing
- Transmission rate control functionality
- Low feedback delay

Experimental Methodology

Experimental Setup

- Static/Mobile Clients
- 802.11 a/b
- With/Without Hidden Stations

Guideline: Decrease Transmission Rate upon severe packet loss

Channel Conditions Worsen

Lower Transmission Rates

What if a hidden station exists?

	ARF	AARF	SampleRate	FixedRate
Goodput (Mbps)	0.65	0.56	0.58	1.46
Loss Ratio	61%	60%	59%	60%

Goodput decreases!

Many packet loss scenarios exists, algorithms cannot be limited to fading/path loss

Issues

- Successful probes can be misleading
- Unsuccessful probes can incur severe penalties

Small # probes \implies Inaccurate rate adaptation Probing is too sensitive

Guideline: Use consecutive transmission success/losses to decide rate increase/decrease

- Statistically the success rate for this method is sub par
 - After 10 consecutive success (28.5%)
 - After back-to-back failures (36.8%)

Statistics are not substantial enough to base an algorithm on

Guideline: Use consecutive transmission success/losses to decide rate increase/decrease (cont'd)

13

Guideline: Use PHY metrics to infer new transmission rate

(a) MSDU size : 2000 octets

Metrics can not be directly used to estimate transmission rates

Guideline: Long-term smothered operation produces best average performance

 Long-term rate estimation and rate change over time =! Best average performance

Sampling intervals (ms)	5000	1000	500	100
UDP Goodput (Mbps)	14.9	15.3	16.5	17.1

Guideline: Long-term smothered operation produces best average performance (Cont'd)

Large Sampling periods do not lead to more accurate rate estimations

Robust Rate Adaptation Algorithm Goals

- Improve performance
- Manage varying dynamics
- Easy to implement
- Fit the IEEE 802.11 Standard

RRAA Design

Short-term loss ratio

- Assess
- Adapt
- Adaptive RTS
 - Leverage
 - Filter

RRAA Design - Modules

RRAA-BASIC – Loss Estimation

$$P = \frac{\#_lost_frames}{\#_transmitted_frames}$$

RRAA-BASIC – Rate Change

$$P^*(R) = 1 - \frac{Throughput(R_-)}{Throughput(R)} = 1 - \frac{tx_time(R)}{tx_time(R_-)}$$

Estimation Window Size

Rate	Critical	P_{ORI}	P_{MTL}	ewnd
(Mbps)	Loss Ratio (%)			
6	N/A	50.00	N/A	6
9	31.45	14.34	39.32	10
12	22.94	18.61	28.68	20
18	29.78	13.25	37.22	20
24	21.20	16.81	26.50	40
36	26.90	11.50	33.63	40
48	18.40	4.70	23.00	40
54	7.52	N/A	9.40	40

```
1 R=highest_rate;
```

```
2 counter=ewnd(R);
```

```
3 while true do
```

```
4
      rcv_tx_status(last_frame);
      P = update_loss_ratio();
5
      if( counter == 0 )
6
7
                 (P > PMTL) then R = next_lower_rate();
         if
         elseif (P < PORI) then R = next_high_rate();</pre>
9
10
         counter = ewnd(R);
11
      send(next_frame,R);
12
      counter --;
```


Miscellaneous Issues

- Idle Stations
 - Refresh the window
- Multiple Active Stations
 - More stations, shorter estimation windows
- Variable Packet Size
 - Packet groupings

Adaptive RTS Filter - Design

- Suppressing hidden-station-induced loss options
 - Turn RTS on (every frame)
 - Large Overhead
 - RTS on frame loss / RTS off frame success
 - RTS oscillations

Adaptive RTS Filter - Scheme

1	RTSWnd = 0;
2	RTScounter = 0;
3	while ture do
4	<pre>rcv_tx_status(last_frame);</pre>
5	if(!RTSOn and !Success) then
6	RTSWnd++;
7	RTScounter = RTSWnd;
8	elseif(RTSOn xor Success) then
9	RTSWnd = RTSWnd/2;
10	RTScounter = RTSWnd;
11	if(RTScounter > 0) then
12	<pre>TurnOnRTS(next_frame);</pre>
13	RTScounter;

Integrating RRAA-BASIC & A-RTS

RRAA-BASIC Channel Fluctuations A-RTS Hidden terminals

1	while true do	
2	rcv_tx_status(last_f	frame);
З	A-RTS();	
4	if(!RTSFail) then	
5	RRAA_BASIC();	
6	if(RTSWnd > 3) th	nen
7	fix_re_tx_rate	e();

Performance Evaluation – Static Clients

Other Algorithms

- -ARF
- AARF
- SampleRate
- UDP and TCP
- 802.11 a/ b Channels

Performance Evaluation – Static Clients

Performance Evaluation–Mobile Clients

Conclusions

Rate Adaptation Algorithms

- Differentiate between loss behaviors
- Adapt to realistic scenarios
- Handle hidden stations

PROBLEMS

Number of Work Stations

RTS failure/ Data transmission Failure

Work Cited

- S. H.Y, H. Yang, S. Lu and V.Bharghavan. Robust Rate Adaptation in 802.11 Networks
- Chart (Slide 15) Figure 3.5 from J.Bicket. Bit-rate Selection in Wireless Networks. MIT Master's Thesis, 2005
- Chart (Slide 14) MSDU from D.Qiao, S.Choi and K.Shin.Goodput Analysis and Link Adaptation for 802.11a Wireless LANS.IEEE TMC, 1(4), October 2002