
A Comparison of Two Algorithms for
Robot Learning from Demonstration

Halit Bener Suay and Sonia Chernova
Robotics Engineering Program
Worcester Polytechnic Institute,

Worcester, MA 01609, USA.
benersuay@wpi.edu, soniac@wpi.edu

Abstract—Robot learning from demonstration focuses on al-
gorithms that enable a robot to learn a policy from demonstra-
tions performed by a teacher, typically a human expert. This
paper presents an experimental evaluation of two learning from
demonstration algorithms, Interactive Reinforcement Learning
and Behavior Networks. We evaluate the performance of these
algorithms using a humanoid robot and discuss the relative
advantages and drawbacks of these methods with respect to
learning time, number of demonstrations, ease of implementation
and other metrics. Our results show that Behavior Networks
rely on a greater degree of domain knowledge and programmer
expertise, requiring very precise definitions for behavior pre- and
post-conditions. By contrast Interactive RL requires a relatively
simple implementation based only on the robot’s sensor data
and actions. However, Behavior Networks leverage the pre-coded
knowledge to effectively reduce learning time and the required
number of human interactions to learn the task.

Index Terms—Learning and Adaptive Systems, Personal
Robots.

I. INTRODUCTION

Robot learning from demonstration (LfD) is an established
area of robotics research focusing on algorithms that enable a
robot to learn a policy from demonstrations performed by a
teacher, typically a human expert. LfD algorithms address two
fundamental goals: 1) leveraging teacher input to improve pol-
icy learning, in terms of time and/or performance, over purely
non-interactive, data-driven techniques, and 2) providing an
intuitive interface for robot behavior customization for users
who are not expert programmers.

Two recent survey papers [1], [2], cover the breadth of
approaches in this research area. In [1], the authors present
a categorization of existing algorithms, segmenting works
by demonstration technique (i.e. how demonstrations are
recorded) and policy derivation method (i.e. how the policy is
learned from the demonstrations). Specifically, demonstration
techniques are categorized as teleoperation, shadowing, sensors
on the teacher or external observation based on who performs
the task during demonstration (the human or robot) and what
information about the demonstrators actions is available. Policy
derivation methods are divided among mapping functions (e.g.,
classification [3] and regression [4] techniques), system model
(e.g., reinforcement learning [5]) and planning [6] approaches.

Despite the existence of this diverse body of work in learn-
ing from demonstration, research in this area lacks comparative
study. In fact, we are not aware of any two distinct LfD
algorithms mentioned in the surveys whose performance has

been compared side by side in the same domain. This fact
is not due to any lack of academic rigor in these works, but
instead highlights some of the challenges of this research area.
The use of different robotic platforms, sensors, interfaces and
demonstration techniques leads to different representations and
characteristics of demonstration data and make comparison
difficult across applications. The use of standard datasets,
which is common in other research fields, is not possible
due to the human interaction component and the diversity of
interaction techniques. As a result, comparison requires full
re-implementation of algorithms, a highly time consuming and
challenging effort due to the absence of existing open source
solutions.

This paper presents an experimental evaluation of two
learning from demonstration algorithms. We selected these
approaches for the comparison because they are representatives
of distinct classes of approaches for both teacher demonstration
(reward/guidance versus teleoperation) and policy learning
(system model versus planning). We evaluate these algorithms
using a humanoid robot, then we discuss the advantages and
drawbacks of each algorithm.

In the following section we present an overview of the
Interactive Reinforcement Learning algorithm, followed by
a summary of the Behavior Networks algorithm in Section
III. In Section IV we describe the experimental domain and
setup used in the comparison. In Section V we compare the
algorithms and discuss their tradeoffs. We conclude the paper
in Section VI.

II. INTERACTIVE REINFORCEMENT LEARNING WITH
HUMAN GUIDANCE

The Interactive Reinforcement Learning algorithm with
human guidance, as described in [7], extends traditional Q-
learning [8], a variant of Reinforcement Learning [9].

Interactive Reinforcement Learning extends traditional Q-
learning with the addition of human reward input (replacing
rewards received from the environment) and human guidance
input to restrict action selection. When learning begins, the
robot has a set of pre-programmed actions and no knowledge
of the task. Programmer provides state variables, actions
and guidance mapping (i.e. how each guidance message will
restrict robot’s choice of actions). As the robot explores the
state-space and receives positive or negative reward from the
human teacher, the Q-values are updated.The teacher is given



(a) (b)

Fig. 1: (a) Screenshot of our interface. Yellow rectangles
highlight the interactable areas for guidance. The teacher can
guide the robot with a right click on the object or area. (b)
Screenshot of Sophie’s Kitchen. A positive reward is given
with a left click and drag upwards in both interfaces.

a short period of time following each action to provide positive
or negative feedback. Additionally, during this period of time,
the teacher can provide guidance input. Guidance is given with
respect to an object or location (e.g., center of the table), with
the effect of restricting the choice of immediately available
actions to those related to the target object (e.g., look at table,
put down object on table). This technique can be thought of as
a means of directing the robot’s attention to the target object
or area.

We made our implementation of Interactive RL based on
description provided in [7]; we set the learning rate α = 0.3
and the discount factor γ = 0.75. Initial Q-values were set to
0.5 for all actions.
ε-greedy action selection method is used to select the next

action both when a guidance signal is present and when it is
absent.

A key contribution of the original Interactive RL paper [7] is
the interactive reward interface (Fig. 1) that enables an online
user to train a virtual robot to bake a cake in a domain called
Sophie’s Kitchen1. The teacher uses the left mouse button to
bring up a reward bar (Fig. 1a) to provide a reward signal r =
[−1, 1] for the agent’s previous action and the desirability of
the current state. Right clicking anywhere in the image results
in guidance input to that region; if the selected region has no
associated guidance effects, no guidance is given.

As with the algorithm, we implemented the interface de-
scribed in [7] in order to evaluate its use in real-world systems
(Fig. 1b). Our interface shows a fixed view of the environment
via a web-cam (Fig. 2a). Table I shows how guidance input
restricts action selection. Each row refers to a yellow rectangle
shown in Fig. 1a. Fig. 2b shows zone 1, 2 and 3.

III. BEHAVIOR NETWORKS

A Behavior Network (BN) is a way of representing a
high-level robot task as sequence of behaviors [10], [11].
The concept of Behavior Networks is very different than the
Interactive Reinforcement Learning described in the previous
section. In Behavior Networks, the robot is pre-programmed
with a set of task specific high level behaviors (e.g. pick up

1The original Sophie’s Kitchen web application is available at
http://www.cc.gatech.edu/∼athomaz/sophie

the object) which are mapped to low level actuator commands
(e.g. rotate motor i, 5 degrees). For instance, for a humanoid
robot the behavior for picking up the object with the left hand
could control all the actuators of the left arm, wrist and fingers
of the robot. If the robot has a simple gripper, then pick up the
object could simply control the low level actuator command
that closes the gripper. In Behavior Networks, these high level
behaviors are called Abstract Behaviors, and the low level
actuator commands are called Primitive Behaviors.

The tasks that humans want robots to accomplish may be
(and usually are) broken into several simpler steps. In the
context of Behavior Networks, we can think of each simple
step of a task as an Abstract Behavior, and the task itself as a
network consisting of those behaviors. Typically, each simple
step has at least one sub-goal. In Behavior Networks, these
sub-goals must be defined by the programmer in the form of
post-conditions of a behavior. The post-conditions define the
state in which the robot is expected to be after performing the
associated Abstract Behavior.

In summary, Behavior Networks are made up of the follow-
ing three components:

• Primitive Behaviors (PB) - a low level command that
activates the actuators or queries the sensors of the robot
(e.g. Rotate motor 2, 15 degrees).

• Abstract Behaviors (AB) - a high level behavior that
wraps a Primitive Behavior (e.g. Turn right). Unlike
Primitive Behaviors, Abstract Behaviors have hard coded
pre-conditions and post-conditions. Pre-conditions of an
AB are satisfied by the post-conditions of other ABs in
the network. An AB has the ability to activate a PB when
its pre-conditions are met.

• Network Abstract Behaviors (NAB) - a network of
Abstract Behaviors. This is the highest level component
that can be used to group ABs under one name to
represent complex behaviors (e.g. Visit Targets).

NABs and ABs are connected to each other with three types
of “links”, depending on the relationship between the behav-
iors. A behavior that starts before and continues happening
during the execution of second behavior becomes a Permanent
Precondition to its follower; A behavior that starts before and
ends right before or during the execution of another behavior
becomes an Enabling Precondition of its follower; And a
behavior that runs and ends before the execution of another
behavior becomes an Ordering Precondition to its follower.
These connections between behaviors are automatically iden-
tified by the algorithm based on the observed demonstrations,
and are used to form the Behavior Network of a given task.
Once the network is learned, the robot can use it to execute the
learned task. The execution can be sequential, as in the case
where the task segments contain temporal ordering constraints,
or opportunistic, as in the case where order of execution does
not matter. For complete details of the Behavior Network
algorithm, please see [10], [11], [12].



(a) (b)

Fig. 2: Experiment Setup. (a) Web camera captures the table
and the robot for the user interface. (b) The table is divided in
three zones. Orange, cyan blue and purple show z1, z2, and z3
respectively. The robot has an object at the tip of its right hand
and is about to drop it in the right cup.

IV. EVALUATION AND EXPERIMENTAL DOMAIN

Comparison of two algorithms with distinctly different
properties is an inherently difficult task. Selecting a task that
is suitable for both approaches is important in order to avoid
introducing bias into the results. For our experiments we
designed an object sorting domain using an Aldebaran Nao hu-
manoid robot. We believe that a full comparison would require
a comprehensive user study, however this type of evaluation
is outside the scope of this paper and we leave it for future
work. Instead we focus our evaluation on learning performance
metrics, and discuss the advantages and disadvantages of each
method in the light of our findings.

Our experimental setup consists of a stationary work table
where the Nao is seated on a chair. Magnetic objects are placed
in front of the robot one at a time. The robot must learn to
use its on-board camera at the appropriate time to identify
the characteristics of the object and then to pick up and place
the object in one of two cups located on the table. In case
of Interactive RL, the teacher is able to observe the robot
directly and through a live camera feed from the web-cam
mounted in front of the robot (see Fig. 2a). The web-cam
feed is displayed on a computer monitor and is integrated into
the interaction interface, reward and guidance input. In case
of Behavior Networks the teacher observes the robot directly,
and the interaction interface is a simple window with buttons
displayed on the computer screen. The teacher clicks on the
buttons to select the robot’s actions.

The experimental domain D = (Z, S,A, T ) is defined by
a finite set of zones Z, a finite number of world states S, a
finite set of possible robot actions A and the transition function
T : S × A → S that determines transitions between states
by way of actions. Zones Z represent the regions where the
robot’s arms or an object can be located. In our domain, Z =
{z1, z2, z3} corresponds to the left, front and right side of the
robot respectively (Fig. 2b).

The state of the world S = {Sr ∪ So} consists of
the union of the state of the robot Sr and state of the
object being classified So. The robot state is defined by
Sr = (zlh, zrh, hando), where zlh, zrh ∈ Z correspond to
the current zone of the left and right hands, respectively, and

Guidance ActionSet

Zone 1 LLeft, LDrop

Zone 2 LPutDown, LPickUp, RPutDown,
RPickUp, TakeP icture

Zone 3 RRight, RDrop

Left Shoulder LPickUp, LRight, LLeft, LPutDown,
LDrop

Right Shoulder RPickUp, RRight, RLeft, RPutDown,
RDrop

TABLE I: Guidance messages restrict action selection to the set
of available actions as shown. The first letter L and R denotes
either Left or Right hand depending on the hand with which
the action is executed.

hando ∈ {left, right, none} represents whether an object is
located in either of the robot’s hands, or not. For example, in
Fig. 2b the robot’s state is represented by Sr = (z1, z3, right).

The object state is defined by So = (I, oz, op), where
I specifies either the type of the object, or a finite set of
image features used to characterize the object, as described
below. oz ∈ Z is the current zone of the object, and
op ∈ P is the placement of the object such that P =
{z1, z2, z3, right cup, left cup}. For example, in Fig. 2b the
object state is represented by So = (pattern, z3, z3).

The robot has eleven possible actions, TakeP icture,
nPickUp, nPutDown, nDrop, nLeft, and nRight where
n ∈ {L,R} determines the arm with which the action is
performed. The TakeP icture action makes the robot take a
snapshot of the table in front of it and extract features from the
image to determine the characteristics of the object currently
placed there (if any). nRight and nLeft actions move the
hands between zones (e.g. LLeft moves left hand left, that is,
to Zone 1 and RLeft moves right hand left, that is, to Zone
2. Note that the robot’s left hand can operate only in z1,2,
and the right hand can operate only in z2,3, which enables the
robot to pick up an object with either hand but allows only
one hand to reach each cup and Drop the object into it. If the
robot initially picks up the object with the wrong hand, it can
switch hands by performing a nPutDown action followed by
a nPickUp.

To compare the Interactive RL and Behavior Networks
algorithms we studied their application to two variants of the
above domain, a small and a large state space representation.
This comparison was performed in order to evaluate how each
algorithm’s behavior changed with respect to state space size.
To vary the state space size we changed the number of features
in So used to describe the object being sorted. Specifically we
used the following two experimental conditions:

• Small deterministic state space: In the small state space
condition, the object descriptor I of So = (I, oz, op) consists
of a single variable with two possible values, plain or pattern,
representing the class of object. This mapping is determined
based on the number of Speeded Up Robust Features (SURF)
[13] detected in the image of the object and identifies the



object as either a solid colored ball or a character magnet,
respectively. Specifically, objects for which over 50 SURF
features were identified were characterized as patterned, and
plain otherwise. This threshold value was determined empiri-
cally. In our tests we found that the number of SURF features
deterministically separate these two object types. Combining
this binary object representation with other state information,
such as object location and robot state, results in 360 possible
states.

• Large, non-deterministic state space: In the large state
space condition, the object descriptor I consists of four el-
ements with the following possible values: the number of
SURF features F ∈ [50; 100; 150], smoothness R ∈ [0.05; 0.1],
entropy e ∈ [5.0; 10.0] and area of the bounding box of
the object B ∈ [15, 000; 20, 000; 25, 000] (in pixel2). We
calculate smoothness and entropy as described in [14]. After
image processing, the value for each descriptive feature is
thresholded into the categories listed above. This representation
was purposefully designed to reduce the size of the state space
by providing a small set of possible values for each variable,
while at the same time making sure that none of the descriptive
elements alone is sufficient for distinguishing between the plain
and patterned object types. For example, although they are the
same type of object, the plain green and plain yellow magnets
have different smoothness, perceived area and entropy states.
To the robot, these objects therefore appear distinct and it
must learn that they belong to the same group. Furthermore,
this representation is non-deterministic and variations in object
placement will result in slightly different state representations,
allowing us to evaluate how each algorithm performs under
these conditions. We believe this domain is closer to the com-
mon characteristics of many experimental robotics domains. In
total, the large state space representation results in 6480 states.
During the experiments all processing was performed on a
PC connected to the robot over the network. For image
processing we used OpenCV [15]. We ran three trials for each
experimental condition and all reported results are averaged
over the three trials. All experiments were performed by the
same teacher who is an expert roboticist, who followed a
standard optimal teaching policy. We terminated learning once
the robot was able to correctly sort three objects into each
cup without guidance or reward. Objects were presented to
the robot in random order.

V. COMPARISON OF THE RESULTS AND DISCUSSION

In this section we first walk the reader through our experi-
ment results, then draw attention to some important differences
both in theory and implementation of these methods.

Fig. 3 presents a summary of learning results for the
Interactive RL algorithm. Graphs plot the level of teacher
involvement over time in terms of the percentage of actions for
which the teacher provided reward and/or guidance. A value
of 100% indicates that the teacher provided input to the robot
following all of the actions executed in that minute.

Note that the degree to which guidance reduces the set of
actions has a significant effect on the learning rate. If guidance

SMCPaperGraph

Page 1

0 5 10 15 20 25 30 35

0

20

40

60

80

100

min.

%
 p

e
r 

m
in

.

Guidance (S) Reward (S)
Guidance (L) Reward (L)

Fig. 3: Learning results for the small state space (S) with δε =
0.002 and large state space (L) with δε = 0.001.

  

START

Magnet with Pattern → Right Cup

Plain Color Magnet → Left Cup

START

Find a magnet 
with pattern

Pick the magnet
up with your right hand

Carry the magnet with
pattern to your right

Drop the magnet with
pattern in the right cup

RESTART

Permanent precond.      Enabling precond.     Ordering precond.

Fig. 4: Behavior Networks of the sorting task in Small State
Space. Network Abstract Behaviors are shown with double
lines.

does not significantly reduce the choice of available actions
(see Table I), then the effect of this input method is reduced
since the robot will have to choose randomly among them. In
contrast, if the guidance message limits the robot to a single
action, then all choice is taken away from the robot; which is
not the purpose of this algorithm.

In our implementation we designed guidance as an effective
teaching method that always restricts the list of available
actions but never reduces action selection to a single choice.

Fig. 4 shows the NABs that the robot learns in the small
state space condition as a result of teacher demonstrations.
Since the object description is characterized by a binary con-
dition (patterned or plain), just two demonstration sequences
were enough demonstrate the entire task, one for each type of
object.

In large state space, the teacher had to make one demon-
stration per object to sort. This is because each object puts the



  

START

Elmo → Right Cup

Zoe → Right Cup

Red Sphere → Left Cup

Green Sphere → Left Cup
Yellow Sphere → Left Cup

Cookie Monster → Right Cup

Fig. 5: One of the Network Abstract Behaviors: Magnet with
Pattern → Right Cup

Abstract Behavior PB Post Condition of the AB

Find plain magnet TakeP ic So = (plain, 2, 2)
Find pattern TakeP ic So = (pattern, 2, 2)
Pick up plain left LPup Sr = (2, (2or3), 1)
Pick up pattern right RPup Sr = ((1or2), 2, 2)
Carry plain left LLeft Sr = (1, (2or3), 1)
Carry pattern right RRight Sr = ((1or2), 3, 2)
Drop plain left cup LDrop Sr = (1, (2or3), 0)
Drop pattern right cup RDrop Sr = ((1or2), 3, 0)

TABLE II: This table describes the Abstract Behaviors that
our robot used for accomplishing the task. The second column
shows the Primitive Behaviors (or actions) that the ABs acti-
vate and the third column shows the necessary post-conditions
of the ABs.

robot in a different state. 6 demonstrations are made, followed
by the execution of the task. Obtained network for the large
state space is given in Fig. 5.

We find it necessary to list our choice of post-conditions of
the Abstract Behaviors. Our selection is shown in Table II.

Table III summarizes the results of our empirical compari-
son. A comparison of learning time across approaches shows
that Behavior Networks take approximately half the time to
learn the small task and roughly a third of the time to learn
the large task compared to Interactive RL. Comparison within
approaches shows that the increase in state space size from
small to large leads to a 115% increase in learning time for
Interactive RL but only a 53% for Behavior Networks.

This result is worth mentioning because it suggests that
learning using Behavior Networks will scale more efficiently
to larger domains.

There are many differences in the ways the algorithms
obtain information about the task. When using Interactive RL,
the robot drives the action selection process, selecting actions
that either exploit its current policy or explore the environment.
The teacher’s role is to respond to the robot’s actions through
reward, and to influence, but not fully control, the selection of
future actions. In the case of Behavior Networks, the teacher
guides the action selection process during learning and the
robot executes only the actions it is told to perform, without
exploration or reward.

Complementary Tradeoffs: Behavior Networks rely
solely on the teacher’s demonstrations for knowledge and aim
to exactly reproduce the teacher’s behavior. This means that
any errors or suboptimalities in the human’s actions are also
captured and reproduced by the algorithm. Interactive RL, on
the other hand, aims to optimize the reward function defined

Small Large

Int. RL Beh. Net. Int. RL Beh. Net.

Time (min.) 13.0 5.7 28.0 8.7
# Actions 82.0 40.0 201.0 60.0
# Interactions 88.0 13.0 229.7 73.0
# Incorrect Actions 15.3 0.0 29.0 0.0
# Guidance Input 44.0 N/A 144.0 N/A

TABLE III: Comparison of the experiment results obtained
in small and large state space. ε = 0.1 for all Interactive
Reinforcement Learning experiments. δε = 0.002 for small
state space and 0.001 for large state space.

by the person, but does not trust the teacher to perform action
selection. Even in the presence of guidance, the importance
of exploratory actions is maintained, allowing the algorithm
to potentially improve upon the performance of the teacher by
discovering action sequences that more effectively achieve the
teacher-specified rewards. However, exploration can potentially
lead the robot into unsafe situations, whereas direct teleopera-
tion of the robot, as in the case of Behavior Networks, enables
the teacher to fully control the states encountered by the robot.

How much background task knowledge is required
of a programmer to develop the underlying learning
framework? In the case of Interactive RL, all that must be
defined by the programmer is the state and action sets of the
robot, and the transitions between states via actions are learned
implicitly during the learning process. In Behavior Networks,
the programmer needs to know not only the state and actions,
but also the state values that will result from the execution of
different actions in order to form the pre- and post-conditions
of behaviors. We found that coding the Behavior Networks
required a significantly higher degree of knowledge of the
domain, as well as a precise measurement of the sensor values
that would be observed. Without this pre-coded information,
the robot’s state would not match the post-conditions of any
behaviors and no behaviors would be activated and learned.

How much background task knowledge is required of
a non-expert teacher to teach the robot? We found that in
the case of Behavior Networks, the teacher had to know more
about the domain. Specifically, the teacher had to know the
effects of each of the robots actions in order to correctly select
which one to perform next. This is in contrast to Interactive
RL, in which the teacher only had to convey the desirability
of the current state. In summary, we found that the Behavior
Network algorithm requires a more in-depth understanding of
the domain both from the programmer and from the user.

Potential Failure Cases: The two algorithms have very
different potential failure cases with respect to their design.
The post-conditions of the behaviors play a significant role
in the construction of the Behavior Network. The need to
accurately define the post-conditions of a behavior is crucial
because without appropriately matching conditions the robot
will be unable to construct the correct network and learn the
task. In the case of Interactive RL, the critical decision lies in
the choice of the limitation of guidance messages. If a given



Behavior Networks Interactive Reinforcement Learning

+ Robot doesn’t make any mistake during learning. + Simpler to implement and to teach.
+ Teaching is much faster. + Automatic action selection.
+ Modification and correction after teaching the task is easier. + Robot may perform better than what it learned (Exploration).
− Limited with what the teacher teaches (No exploration). − Teaching time increases remarkably as the state space gets bigger.
− Requires lots of domain knowledge. − Markovian; No state aliasing.

TABLE IV: A summary of the advantages (+) and disadvantages (−) of the two approaches compared .

guidance message does not restrict the available actions in a
given state, then it will not have any effect on learning. On
the other hand, a too restrictive guidance design would have
the same effect as telling robot exactly what to do, which
contradicts with the exploratory nature of the Reinforcement
Learning. The aspects mentioned above are summarized in
Table IV.

VI. CONCLUSIONS

In this paper we analyzed two different Learning from
Demonstration methods on a common real world task using a
humanoid robot. The methods we have chosen to analyze were
Interactive Reinforcement Learning and Behavior Networks
due to their distinct human-robot interaction, policy learning
and representation approaches. We compared the algorithms
in terms of learning time, number of demonstrations, ease of
implementation and other metrics. Additionally, we explored
how each technique scales by comparing two domain repre-
sentations with different state space sizes. Our findings show
that Behavior Networks rely on a greater degree of domain
knowledge and programmer expertise, requiring very precise
definitions for behavior pre- and post-conditions. By contrast
Interactive RL requires a relatively simple implementation
based only on the robot’s sensor data and actions. However,
Behavior Networks leverage the pre-coded knowledge to effec-
tively reduce learning time and the required number of human
interactions to learn the task. In summary, these approaches
represent a tradeoff between learning time and programming
effort. In future work, we aim to perform additional analysis
in user studies and expand our comparison to other LfD
algorithms.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A
survey of robot learning from demonstration,” Robot. Auton.
Syst., vol. 57, pp. 469–483, May 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1523530.1524008

[2] E. Billing and T. Hellstrm, “A formalism for learning from
demonstration,” Paladyn. Journal of Behavioral Robotics, vol. 1,
pp. 1–13, 2010, 10.2478/s13230-010-0001-5. [Online]. Available:
http://dx.doi.org/10.2478/s13230-010-0001-5

[3] S. Chernova and M. Veloso, “Interactive policy learning through
confidence-based autonomy,” J. Artificial Intelligence Research, pp. 1–
25, 2009.

[4] D. H. Grollman and O. C. Jenkins, “Dogged learning for robots,” in
International Conference on Robotics and Automation, Rome, Italy, Apr.
2007, pp. 2483 – 2488.

[5] S. S. Christopher. G. Atkeson, “Robot learning from demonstration,” in
Machine Learning: Proceedings of the Fourteenth International Confer-
ence (ICML ’97), J. Douglas H. Fisher, Ed. Morgan Kaufmann, San
Francisco, CA, 1997, pp. 12–20.

[6] M. van Lent and J. E. Laird, “Learning procedural knowledge
through observation,” in Proceedings of the 1st international
conference on Knowledge capture, ser. K-CAP ’01. New
York, NY, USA: ACM, 2001, pp. 179–186. [Online]. Available:
http://doi.acm.org/10.1145/500737.500765

[7] A. L. Thomaz and C. Breazeal, “Adding guidance to interactive rein-
forcement learning,” in In Proceedings of the Twentieth Conference on
Artificial Intelligence (AAAI), 2006.

[8] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3-4, pp. 279–292, 1992.

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, London, England: The MIT Press, 1998.

[10] M. Nicolescu and M. Mataric, “Learning and interacting in human-robot
domains,” Systems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, vol. 31, no. 5, pp. 419 –430, Sept. 2001.

[11] M. N. Nicolescu and M. J. Matarić, “A hierarchical architecture for
behavior-based robots,” in Proceedings of the first international joint
conference on Autonomous agents and multiagent systems: part 1,
ser. AAMAS ’02. New York, NY, USA: ACM, 2002, pp. 227–233.
[Online]. Available: http://doi.acm.org/10.1145/544741.544798

[12] M. N. Nicolescu and M. J. Mataric, “Natural methods for robot
task learning: instructive demonstrations, generalization and practice,”
in Proceedings of the second international joint conference on
Autonomous agents and multiagent systems, ser. AAMAS ’03. New
York, NY, USA: ACM, 2003, pp. 241–248. [Online]. Available:
http://doi.acm.org/10.1145/860575.860614

[13] T. T. Herbert Bay, Andreas Ess and L. V. Gool, “Surf: Speeded up robust
features,” Computer Vision and Image Understanding (CVIU), vol. 110,
no. 3, pp. 346–359, 2008.

[14] R. E. W. Rafael C. Gonzalez and S. L. Eddins, Digital Image Processing
using Matlab. Prentice Hall, 2003.

[15] G. Bradski and A. Kaehler, Learning OpenCV. O’Reilly Media, 2008.


