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Abstract— Legged robots, such as the Sony AIBO, create
opportunity to design rich motions to be executed in specific
situations. In particular, teams involved in robot soccer RoboCup
competitions have developed many different motions for kicking
the ball. Designing effective motions and determining their effects
is a challenging problem that is traditionally approached through
a generate and test methodology. In this paper, we present a
method we developed for learning the effects of kicking motions.
Our procedure acquires models of the kicks in terms of key
values that describe their effects on the ball’s trajectory, namely
the angle and the distance reached. The successful automated
acquisition of the models of different kicks is then followed by
the incorporation of these models into the behaviors to select
the most promising kick in a given state of the world. Using
the robot soccer domain, we demonstrate that a robot that takes
into account the learned predicted effects of its actions performs
significantly better than its counterpart.

I. INTRODUCTION

Many different kicking motions for quadruped robots have
been developed in recent years by the teams involved in the
RoboCup competitions. These motions are designed to propel
the ball in various directions with different speeds. As the
number of available motions grows, the process of selecting
which kick to use has become more complex.

Learning the effects of deterministic actions has been stud-
ied in classical planning (e.g. [1], [2]) where the learning
algorithms extract the preconditions and effects of actions
through experimentation under different world conditions.
Reinforcement learning assumes that the environment is a
Markov Decision Process and learns the model of the world,
i.e., it learns the nondeterministic effects of the actions through
experimentation [3], [4]. In this work, we learn the effects of
the actions of our robot decoupled from complete task perfor-
mance, as it is not feasible to assign reward directly to specific
state and action pairs in a continuous execution sequence of
the robot performing its usual robot soccer behavior.

We present a method for modeling the effects of the kicks
in terms of several key values describing the ball’s trajectory.
Specifically we analyze the angle of the ball’s trajectory, the
distance traveled by the ball when actuated by the kick, and
the success rate of the kick. We then incorporate these models
into the behaviors to select the most promising kick in a given
state of the world. Our results show that using this model the
robot achieves its goals more effectively than a robot that does
not take into account the predicted effects of its actions.

For data gathering we chose to use only the local sensors
on the robot, mainly the color camera located in the head of
the robot. As a result, these experiments can be run in any
environment where the robot is able to localize itself without
the need to setup any additional equipment. This method can
be adapted to a variety of robot platforms where the task
is to learn the effects of defined motions on objects in the
environment.

We begin by providing background information and our
motivation for pursuing this topic in Section II. The algorithms
for modeling the angle of the ball’s trajectory and the strength
of the kicks are discussed in Sections III and IV respectively.
In Section V we discuss how these models can be incor-
porated into the behaviors to select the most effective kick.
Experimental results comparing scoring performance with and
without kick modeling are presented in Section VI, and our
conclusions are presented in Section VII.

II. MOTIVATION

The robots used in this research are the Sony AIBO four-
legged robots. Through several years working with these
robots, we have developed a fully autonomous software system
for soccer-playing robots. The work described in this paper
focuses on how the robot can autonomously model the effects
of its own motions, and use the derived model to select
appropriate motions in the future.

The motions that we would like to model are the kicking
motions that the robot uses to propel the ball while playing
soccer. Our goal is to study the effects that each kick has on the
location of the ball. In particular, we would like to represent
the effect of the kick in terms of the expected displacement
of the ball, and the angle of the ball’s trajectory.

Each of the robot’s kicks is encoded using frame-based
motion, which describes the transitions of the body frame by
frame by specifying a series of body, leg, and head positions
and a time period for interpolating between one position and
the next. Generally lasting only a few seconds, these motions
are designed to be executed the same way every time. The
Forward Arm and Hard Left Head Kick are shown in Figures
1 and 2 respectively.

Each robot is equipped with a color camera that is mounted
into the head of the robot. The three degrees of freedom of
the head, combined with an approximate 55

◦ field of view of



Fig. 1.

Fig. 2.

the camera, allow the robot to track objects over a wide area
in front of and next to the robot. The onboard camera will be
the only sensor used in our analysis. It will be used to report
the distance and angle of the ball relative to the robot, as well
as locations of several known landmarks which will be used
to triangulate the robot’s position.

The accuracy of location estimates for various objects
reported by the vision system varies with respect to distance
and the movement rate of the camera. Since the camera is
the only sensor used, we briefly discuss the accuracy of
its measurements. Figure 3 compares the levels of noise in
the sensor readings to five ball positions at two different
camera movement rates. In Figure 3(a), the robot estimates
the position of the ball while it is standing and the camera is
still. In Figure 3(b) the robot reports estimates for the same
ball locations while it is pacing in place causing the camera to
move up and down. The results show that while the robot is
stationary, the angle estimates to the ball are very reliable, with
higher uncertainty in the distance estimate. Both distance and
angle estimates become less reliable when the camera moves
while the robot is pacing. The most accurate location estimates
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Fig. 3. Ball location estimates. Reported ball locations for five stationary
balls at various distances and angles while the robot is standing or pacing in
place. The location of the robot is marked by the black triangle.

are achieved when the robot is standing still a small distance
away from the ball. A similar experiment using localization
landmarks produced similar results.

III. TRAJECTORY ANGLE

The angle of the ball’s trajectory relative to the direction
the robot is facing is an important characteristic of all kicking
motions. In this section we will describe an algorithm for
estimating the angle of the trajectory for a variety of kicking
motions using only the robot’s camera.

In order to calculate the angle of the ball’s trajectory we
record the path of the ball over the period of 1 second (25
fames) immediately after the kick. There are two main benefits
for analyzing this short segment of the trajectory. First, the
ball has not yet moved far away from the the robot and
our estimates of the ball’s position will be most accurate in
this range. Second, the ball has the greatest velocity at this
point and will travel the true path in which is was kicked.
As the ball’s velocity decreases, the ball tends to follow an
unpredictable curve resulting from small imperfections in the
ball’s shape and irregularities of the surface. By studying the
initial trajectory we avoid introducing this additional noise into
the model.

By tracking the ball immediately after the kick, the robot
is able to fit a regression line to the data and approximate the
angle of the trajectory. Table-I shows the algorithm developed
that allows the robot to perform this task autonomously.

The proposed algorithm can be executed in two modes, with
and without human assistance for ball placement. As shown,
the algorithm requires a human assistant to place the ball in
front of the robot for each trial. This improves the consistency
of the experiment by guaranteeing similar conditions for each
trial. The same procedure can also be executed with the
robot searching for and approaching the ball after each kick.
Although completely autonomous, this method may not be as
accurate if the robot is not able to approach the ball well in
case of obstacles.



Algorithm III.1: TRACKANGLE()

timeOfKick ← 0
while 1

do
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TRACKBALLWITHHEAD()
if BallWithinKickingRange = true

then
{

KICK()
timeOfKick ← currentT ime

if currentT ime− timeOfKick > tdelay

then
{

angle← CALCANGFROMBALLLOCHIST()
output (angle)

TABLE I

COMPUTATION OF THE ANGLE OF BALL’S TRAJECTORY FROM AN INPUT

OF THE ESTIMATED BALL DISTANCE AND ANGLE VALUES FROM VISION.
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(a) Side Head Kick
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(b) Forward Arm Kick

Fig. 4. Single trial analysis of two kicks. Each point represents the position
of the ball relative to the robot in a single vision frame. A regression line is
fitted to the points to estimate the angle of the ball’s trajectory.

To assure that the robot was able to track the ball suc-
cessfully, we require that at least 20 of the 25 polled frames
contain information about the location of the ball. Figure
4 shows the angle analysis results of a single trial for the
Forward Arm and side Head Kicks. Note that the regression
line is much more sensitive to variations in the estimated angle
measurement to the ball than to the estimated relative distance.
Using the results from our analysis of reported ball locations
while standing and pacing, we can conclude that the trajectory
of the ball at such close range while the robot is not moving
is approximated with very high accuracy.

In Figure III we summarize the results of angle analysis for
the Forward Arm, Normal Left Head Kick and Normal Right
Head Kick over 480 trials. The means of the the three kicks
are 2.1

◦, 72.6
◦, and 55

◦ respectively, with variances of 82.81
◦,

20.25
◦, and 31.36

◦.

IV. DISTANCE

The second attribute important in understanding the effects
of the different kicking motions is the distance the ball travels,
or the strength of the kick. In this section we will describe an
algorithm for estimating the distance the ball travels, as well
as calculating the average success rate of the kicking motion.

The robot is unable to track the entire trajectory of the ball
because the ball travels beyond the robot’s visual range for
most of the kicks. Instead, our algorithm uses the final resting
location of the ball relative to the original position of the robot
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Fig. 5. Trajectory angle analysis results for 410 trials of the Left Head Kick,
Forward Kick and Right Head Kick.

before the kick to estimate the strength of the kick. Table II
shows the algorithm used to calculate the displacement of the
ball after a kick.

The robot performs this analysis without any human assis-
tance. Each trial takes approximately 1-2 minutes. Calculations
of both the ball position relative to the robot, and the robot’s
own location relative to known landmarks are taken while
the robot is standing in order to increase the accuracy of the
measurements. When estimating the location of the ball the
robot remains at a small distance in order to avoid accidentally
bumping into and moving the ball.

In addition to estimating the strength of a particular kick,
this algorithm can also be used to determine the success rate
of the kicking motion. A kick is considered to have failed if
proper contact is not made and the ball is moved only a few
centimeters, if at all. Failed kicks can be detected easily using
a simple distance threshold to distinguish between successful
and unsuccessful trials. Detecting failed trials allows us to
establish a reliability measure for each kick, as well as exclude
these results from the analysis.

Figure 6 summarizes the results of distance analysis of the
Normal and Hard Left Head Kicks. The hard head kick propels
the ball much further, with some distances nearing 3.5 meters

Algorithm IV.1: TRACKDISTANCE()

while 1
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APPROACHBALL()
KICKBALL()
STANDANDLOCALIZE()
initBallLoc← currentRobotLoc
FINDBALL()
APPROACHBALL()
if ballDistance < 50cm

then







STANDANDLOCALIZE()
finBallLoc← currentBallLoc
ballDispV ec← finBallLoc− initBallLoc
output (ballDispV ec)

TABLE II

COMPUTATION OF A VECTOR REPRESENTING THE BALL’S DISPLACEMENT

RELATIVE TO THE LOCATION OF THE KICK, GIVEN THE ESTIMATES OF THE

BALL AND ROBOT LOCATIONS FROM VISION.



Kick Angle Mean(deg) Angle Variance(deg) Dist Mean(m) Dist Variance(m) Success Rate
Forward 2.1 82.81 2.2 2.07 85%

Normal Head L. 72.6 20.25 1.48 0.33 98%
Normal Head R. -70.4 31.36 1.48 0.33 98%

Hard Head L. 72.6 20.25 2.57 0.62 90%
Hard Head R. -70.4 31.36 2.57 0.62 90%

TABLE III

THE LOOKUP TABLE.

with an average distance of 2.57 meters. The normal head
kick has a range of at most 2 meters with an average of 1.48
meters.

The wide range of final locations for the ball shows the
difficulty of modeling the effects of the kicks. In some trials
the kick fails completely and the ball does not move at all,
as can be seen for one of the trials of the Hard Head Kick
where the ball’s final position coincides with the location of
the robot. In other trials the robot makes a strong contact with
the ball but possibly with the wrong part of the body, or at the
wrong angle, which results in an unpredicted trajectory for the
ball. This can cause the ball to roll in the opposite direction
than expected, or even to curve around behind the robot.

V. BEHAVIORS

We selected two specific attributes to model the effects of
the kicking motions, the angle of the ball’s trajectory and
the distance traveled by the ball after the kick. We used the
acquired data to build a model that represents each kick in
terms of its effects on the ball. To incorporate the model into
the behaviors we create a lookup table containing the attribute
values for each kick. Table III is an example of such a table
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Fig. 6. Distance analysis of the Normal and Hard Left Head Kicks. Each
point represents the final resting position of the ball after a kick, relative to
the initial position of the robot marked by the triangle.

containing five different kicks. Note that this table makes
two small assumptions. Since the head kicking motions are
symmetric in the left and right directions, we are making the
assumption that the Left and Right Head Kicks have the same
strength in both directions. The second assumption in the table,
made because no angle data was gathered on the Hard Head
Kick, is that the Hard and Normal Head Kicks have the same
trajectory angle. Ideally both distance and angle values would
be measured for every kick in the table.

The robot behaviors reference the lookup table to select
the appropriate kick to use. When selecting a kick, the robot
calculates the desired trajectory of the ball to the target goal,
and uses a selection strategy to select the most appropriate
kick. Different selection strategies can be developed for differ-
ent situations by weighting the importance of some attributes
over others. For example, if the robot is close to the goal, the
angle of the ball’s trajectory becomes more important than the
strength of the kick, while from far away a stronger kick would
be more desirable. Such preferences can easily be translated
into numerical selection strategies and sets of rules for which
strategy should be used.

Kicking motions can easily be added or removed from
behaviors simply by editing the lookup table. If none of the
kicks in the lookup table satisfy the current selection strategy,
several behaviors can be sequenced together to achieve the
desired effect. For example, the robot may chose to turn or
dribble the ball to achieve a better scoring position.

VI. EXPERIMENTAL RESULTS

The presented kick selection algorithm was tested by com-
paring the performance of two robots running the code from
CMPack’02, Carnegie Mellon’s robot soccer team. On one
robot the behavior system was modified to include the lookup
table and selection algorithms described. The robots were
tested on their ability to score a goal on an empty field without
any opponents present. Testing in this manner guarantees that
the data upon which the selection algorithm relies, mainly the
location of the robot, is most accurate. Multiple robots would
interfere with each other and push as they compete for the
ball, which would effect the localization system. This would
make it impossible to distinguish whether a poor kick was a
result of poor kick selection, or simply because the robot was
lost.

For each trial the robot begins at the goal line of its own
goal, and the ball is placed at one of the four predefined points



that are unknown to the robot, see Figure 7.

Fig. 7. Experiment setup.

The robot’s performance is evaluated by recording the time
it takes to score on the opponent goal. The four points chosen
for the experiment are designed to test a variety of distances
and angles to the target goal. For example Point1 is chosen
to be far away but at a very direct angle to the goal, while
Point4 is near the goal but at a very steep angle.

Each robot ran a total of 52 trials, 13 for each of the four
points. Table IV summarizes the results of the experiment. For
every point the robot using the presented selection algorithm
scored faster, with an overall average improvement of 13 sec-
onds. The statistical significance of the results was confirmed
using the Wilcoxon Signed Rank test with a 0.05 significance
level.

Point CMPack’02 Modeling
Point1 56.7 39.8
Point2 42.5 27.2
Point3 76.5 60.0
Point4 55.0 52.0
Total 57.8 44.8

TABLE IV

PERFORMANCE COMPARISON OF CMPACK’02 VS THE PRESENTED KICK

SELECTION ALGORITHM. VALUES REPRESENT MEAN TIME TO SCORE IN

SECONDS, AVERAGED OVER 13 TRIALS PER POINT.

VII. CONCLUSION

We have presented a method for autonomously modeling the
effects of kicking motions in terms of attributes describing
the behavior of the ball. We then incorporated this model
into the behaviors in the form of a lookup table or a motion
library. This information was then used to select appropriate
motions with various selection strategies. Using the robot
soccer domain we have demonstrated that a robot which
takes into account the predicted effects of its actions performs
significantly better than its counterpart.

This algorithm extends to a wide range of tasks in which
the robot must select the appropriate action to execute from
a set of possible actions. Through observation of changes in

the state of the world, a model predicting the effects of each
action can be learned, and used to make better informed action
decisions in the future.
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