
Multi-Thresholded Approach to Demonstration Selection
for Interactive Robot Learning

Sonia Chernova and Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA

{soniac, veloso}@cs.cmu.edu

ABSTRACT
Effective learning from demonstration techniques enable com-
plex robot behaviors to be taught from a small number of
demonstrations. A number of recent works have explored
interactive approaches to demonstration, in which both the
robot and the teacher are able to select training examples.
In this paper, we focus on a demonstration selection algo-
rithm used by the robot to identify informative states for
demonstration. Existing automated approaches for demon-
stration selection typically rely on a single threshold value,
which is applied to a measure of action confidence. We
highlight the limitations of using a single fixed threshold
for a specific subset of algorithms, and contribute a method
for automatically setting multiple confidence thresholds de-
signed to target domain states with the greatest uncertainty.
We present a comparison of our multi-threshold selection
method to confidence-based selection using a single fixed
threshold, and to manual data selection by a human teacher.
Our results indicate that the automated multi-threshold ap-
proach significantly reduces the number of demonstrations
required to learn the task.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Performance, Human Factors

Keywords
human-robot interaction, learning from demonstration

1. INTRODUCTION
Teaching by demonstration is a collaborative learning ap-

proach based on human-robot interaction that provides an
intuitive interface for robot programming. In this paradigm,
a robot learns to imitate the behavior of a teacher based on
observations of the teacher’s actions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HRI’08, March 12–15, 2008, Amsterdam, The Netherlands.
Copyright 2008 ACM 978-1-60558-017-3/08/03 ...$5.00.

A key component of all demonstration-based learning al-
gorithms is the method for selecting the states in which the
demonstration is to be performed. One commonly used ap-
proach is to allow the teacher to guide the learning and select
all demonstration examples [2, 4]. Using this technique, the
teacher alternates between demonstrating the task and ob-
serving the learned behavior, iteratively correcting mistakes
made by the robot. This approach is based on the assump-
tion that the teacher’s expertise in the task is sufficient to
recognize errors upon observation and to know what demon-
strations would be useful for correcting the behavior.

Alternatively, several recent works have explored interac-
tive approaches to demonstration, in which both the robot
and the teacher are able to select training examples [5, 8,
9, 10, 11]. Using a demonstration selection algorithm, the
robot identifies key states and queries the teacher for the
correct action to perform. During the training process, the
teacher alternates between observing task execution, select-
ing demonstrations, and answering robot queries. Demon-
stration selection is related to the areas of adjustable or
adaptive autonomy [3, 7] and mixed initiative control [6].
However, while these approaches provide a mechanism for
controlling the autonomy of the robot, they do not aim to
improve the robot’s long-term performance by acquiring ad-
ditional training data.

In this paper, we examine demonstration selection tech-
niques used by the robot. Since a teacher’s time and patience
are limited, an important objective of these algorithms is
to learn the task from as few demonstrations as possible.
However, all but the most simple tasks require repeated
demonstrations to allow the learned model to generalize over
variable conditions, such as sensor noise. Frequently, sim-
pler elements of the task are learned before more difficult or
noisier ones. In these cases, a good demonstration selection
strategy will focus on the remaining problem areas instead
of redemonstrating the entire task.

Existing selection algorithms typically select between au-
tonomy and demonstration based on a measure of action
confidence [5, 8, 10]. Given the current state of the robot,
these algorithms calculate the certainty in selecting an ac-
tion for that state and select between demonstration and
autonomy based on this value. The underlying idea behind
this approach is for the robot to seek help from the teacher
when it is uncertain about which action to take. Providing
an additional demonstration in a low confidence situation
improves the robot’s policy, leading to increased confidence,
and therefore autonomy, in future similar states.

Given the action confidence, selection between autonomous

execution and demonstration is frequently dependent upon
a fixed threshold value. For example, using a Bayesian
likelihood method, Lockerd and Breazeal [10] apply a fixed
threshold of 0.5 to identify low confidence behaviors, during
which the robot uses emotive cues to solicit feedback from
the teacher. Grollman and Jenkins [8] use a threshold of
0.25 in the Dogged Learning algorithm to identify low confi-
dence states and indicate uncertainty to the human teacher.
While a fixed threshold may capture the uncertainty of some
algorithms, its use has negative implications in others, as we
show in this paper.

In this work, we study thresholded demonstration selec-
tion in the context of measurement level classifiers [14]. In
addition to returning a label, measurement level classifiers
also provide a vector of confidence scores (measurement lev-
els) representing the belief that the input belongs to each
possible class. Many algorithms use measurement level in
their calculations and are able to provide these values as
output. Examples of such algorithms include Gaussian mix-
ture models (GMMs), k-Nearest Neighbors (k-NNs), and
multi-class Support Vector Machines (SVMs). In this paper,
we highlight the limitations of using a single fixed thresh-
old value with these approaches, and contribute an algo-
rithm for automatically setting individual threshold values
for each decision boundary of the classifier. Our approach
is algorithm-independent and allows multiple thresholds to
be set automatically.

In our evaluation, we compare the presented multi-threshold
selection method to fixed-threshold and teacher-guided tech-
niques. Demonstration selection is performed in the con-
text of our Confident Execution learning algorithm, first
presented in [5] and summarized in Section 2. Our results
indicate that all three demonstration selection techniques
result in policies comparable in performance. However, our
multi-threshold approach requires significantly fewer demon-
strations than the other methods.

In the next section, we present an overview of the Con-
fident Execution algorithm. Section 3 discusses the draw-
backs of the fixed threshold approach and Section 4 presents
our algorithm for calculating multiple, adjustable thresh-
olds. Section 5 presents a performance comparison of the
three demonstration selection techniques in a complex sim-
ulated driving domain.

2. CONFIDENT EXECUTION
In this section, we describe our demonstration approach,

the Confident Execution learning algorithm, and the effects
of the autonomy threshold.

2.1 Demonstration Approach
Each demonstration results in a training point consisting

of the robot’s state and the action that must be performed.
The robot’s state is represented using an n-dimensional fea-
ture vector that can be composed of continuous or discrete
values. The robot’s actions are bound to a finite set A of
action primitives, which are the basic actions that can be
combined together to perform the overall task. Each la-
beled training point consists of the pair (s, a), with state s
and teacher-selected action a ∈ A. The goal is for each robot
to learn to imitate the demonstrated behavior by learning a
policy mapping states si to actions in A.

2.2 Learning Algorithm
Confident Execution is an interactive learning algorithm

in which the robot must select demonstration examples, in
real time, as it interacts with the environment. At each
timestep, the algorithm determines whether a demonstra-
tion of the correct action in the robot’s current state will
improve the robot’s policy. If demonstration is required,
the robot requests help from the teacher and updates its
policy based on the resulting action label. Otherwise, the
robot continues to perform its task autonomously based on
its policy. This incremental learning approach, in which each
datapoint is either trained on or discarded, is similar to the
active learning method used in the Query by Committee
algorithm [13].

The robot’s policy is represented and learned using su-
pervised learning based on training data acquired from the
demonstrations. Confident Execution can be combined with
any supervised learning algorithm that provides a measure of
confidence in its classification. The policy is represented by
classifier C : s→ (a, c), which is trained using states si as in-
puts, and training actions ai as labels. For each classification
query, the model returns the model-selected action a ∈ A
and action confidence c. Given a new state, the algorithm
selects between demonstration and autonomy by comparing
the action confidence c to the autonomy threshold τ . Confi-
dence above the threshold allows the robot to autonomously
execute the model-selected action, while confidence below
the threshold leads the robot to request a demonstration.

Algorithm 1 presents the details of the Confident Execu-
tion algorithm with a fixed threshold value. We assume no
preexisting knowledge about the task and initialize the al-
gorithm with an empty set of data points D. The autonomy
threshold τ is initialized to a constant value selected by the
teacher.

The main learning algorithm consists of a loop (lines 3-
12), each iteration of which represents a single timestep. At
the beginning of each timestep, the robot records the state
of its environment (line 4). The state vector s is then used
to query the learned policy model C and obtain the model
selected action a and confidence c (line 5). The returned con-
fidence value, which represents the robot’s certainty in se-
lecting an action in its current state, determines the robot’s
behavior. If the confidence is above the autonomy threshold
τ , the robot finishes the timestep by executing the model
selected action a (line 7). Confidence below the threshold
initializes a request for teacher demonstration (lines 9-12).

Algorithm 1 Confident Execution Algorithm with Single
Fixed Threshold
1: D ← {}
2: τ ← constant

3: while true do
4: s← GetSensorData()
5: (a, c)← C(s)
6: if c > τ then
7: ExecuteAction(a)
8: else
9: teacherAction← GetTeacherAction()

10: D ← D ∪ {(s, teacherAction)}
11: C ← UpdateClassifier(D)
12: ExecuteAction(teacherAction)

The robot requests a demonstration by pausing the exe-
cution of the task and indicating to the teacher (through
sound, LEDs or other available interface) that a demon-
stration is required. Once the teacher indicates the correct
action to perform, a new training datapoint consisting of
the current state and the corresponding demonstrated ac-
tion is added to the training set (line 10). The demonstra-
tion timestep is then completed by retraining the classifier
(line 11) and executing the teacher-selected action (line 12).

Using this approach, the robot incrementally acquires dat-
apoints representing the desired behavior. As more data-
points are acquired, the performance and classification con-
fidence of classifier C improves, increasing the autonomy of
the robot. Task learning is complete once the robot performs
the desired behavior without requesting further demonstra-
tions.

2.3 Autonomy Threshold
The autonomy threshold defines the domain region within

which C classifies queries with high confidence. Equivalently,
from the robot’s perspective, the purpose of the autonomy
threshold is to prevent unwanted behavior by limiting ac-
tions in regions of uncertainty, instead triggering a demon-
stration request to acquire more data.

Consider, for example, the dataset presented in Figure 1(a).
Each datapoint in the figure represents a demonstration of
one of two actions, A or B. Our goal is to use the autonomy
threshold to divide the state space into regions of high confi-
dence (autonomous execution) and low confidence (demon-
stration). Low confidence areas represent uncertainty, and
should include points that are unlike anything previously
encountered by the robot, such as the point X in the figure.

Additionally, low confidence regions should include areas
in which multiple classes overlap, such as region Y. From the
robot’s perspective, points in region Y represent demonstra-
tions of two distinct actions from states that appear similar,
and are difficult to distinguish based on the sensory data.
This problem frequently arises in demonstration learning
for a number of reasons, such as the teacher’s inability to
demonstrate the task consistently, noise in the sensor read-
ings, or an inconsistency between the robot’s and teacher’s
sensing abilities. We would like to set the autonomy thresh-
old to a value that prevents either model from classifying
the overlapping region with high confidence.

Previous implementations of the Confident Execution ap-
proach utilized a fixed threshold value that was manually
selected through an extensive trial-and-error process [5]. For
example, Figure 1(b) presents the classification of the sam-
ple dataset after a threshold of 0.01 has been applied to two
Gaussian mixture models trained on the dataset. Shaded
areas in the figure represent high confidence regions with
confidence above this threshold. The resulting classification
successfully avoids classifying points in the central overlap-
ping region, while correctly classifying over 80% of the dat-
apoints with high confidence. The remaining 20% of the
points are considered outliers, and future observations sim-
ilar to these points would trigger a demonstration request.

3. FIXED THRESHOLD APPROACH
A single, fixed autonomy threshold value provides a sim-

ple mechanism to approximate the high confidence regions
of the state space. However, choosing an appropriate value
can be difficult for a constantly changing dataset and model.

(a)

(b)

Figure 1: (a) Example dataset, each point represents
a single demonstration of one of two actions. Point
X presents an example of a low confidence outlier.
Rectangle Y highlights a region in which points from
multiple action classes overlap. (b) Highlighted ar-
eas mark the high confidence regions for each action
class, as defined by a fixed autonomy threshold value
of 0.01 applied to a Gaussian mixture model.

Figure 2 presents examples of three frequently encountered
problems. Each diagram in the figure shows points from
two action classes. A Gaussian is used to model the distri-
bution of each data set, and the same fixed threshold value
is applied to both Gaussian distributions in each example.
Shaded areas represent the high confidence regions with con-
fidence above this threshold.

Figure 2(a) presents a case in which two action classes are
distinct and fully separable. A model trained on this dataset
is able to classify the points with complete accuracy, with-
out misclassifications. However, the current threshold value
classifies only 72% of the points with high confidence, mark-

(a)

(b)

(c)

Figure 2: Examples of fixed threshold failure cases:
(a) Fully separable data classes with an overly
conservative threshold value (b) Overlapping data
classes with an overly general threshold value (c)
Data classes with different distributions and com-
mon threshold value.

ing the remaining 28% of the points as uncertain. In this
case, a lower threshold value would be preferred that would
allow the model to generalize more freely. The resulting
larger high confidence region would reduce the number of
redundant demonstrations without increasing the classifica-
tion error rate of either data class.

Figure 2(b) presents an example of the opposite case, in
which a stricter threshold value would be preferred. In this
example the data classes overlap, resulting in a middle region
in which points can not be classified with high accuracy. A

higher threshold value would prevent the classification of
points in this region into either data class, initiating instead
a request for demonstration that would allow the teacher to
disambiguate the situation.

Figure 2(c) presents a case in which the datapoints of the
two data classes have very different distributions. While the
fixed threshold value is appropriate for the left class, 42%
of the points in the right class fall outside the threshold
boundary.

Finally, the classification of complex multi-class data re-
quires multiple decision boundaries (e.g., multiple Gaussian
components for GMMs). Using the same value for all de-
cision boundaries can exacerbate the problems highlighted
above, as a single value often can not be found that con-
strains model classification in some areas while allowing gen-
eralization in others. The resulting effect is that the robot
requests too many demonstrations about states it already
knows, and too few demonstrations about unlearned behav-
ior.

4. MULTIPLE ADJUSTABLE THRESHOLDS
In this section, we contribute an algorithm for calculating

multiple thresholds automatically, allowing a unique value to
be set for each classifier decision boundary. This approach
enables us to customize each threshold to its respective dis-
tribution. In our analysis, we assume that we are able to
query the classifier and obtain three values: the most likely
action class for the queried state, a confidence score repre-
senting the likelihood that the query belongs to this action
class, and the decision boundary with the highest confidence
for the query (e.g., Gaussian component for GMMs).

Algorithm 2 presents the details of the Confident Exe-
cution algorithm with multiple adjustable thresholds. The
algorithm is initialized with an empty set of data points D.
The array of autonomy thresholds T , with one value for each
decision boundary, is also initially empty.

The main loop of the algorithm (lines 4-15) again begins
with the robot sensing its environment. The robot’s current
state is then used to query the classifier and obtain the rec-
ommended action a, classification confidence c, and decision
boundary db. The threshold value of db, the most likely de-
cision boundary to represent the current state, is used to
decide between demonstration and autonomy (line 6). Con-

Algorithm 2 Confident Execution Algorithm with Multiple
Adjustable Thresholds

1: D ← {}
2: T ← []
3: while true do
4: s← GetSensorData()
5: (a, c, db)← C(s)
6: if c > T [db] then
7: ExecuteAction(a)
8: else
9: teacherAction← GetTeacherAction()

10: D ← D ∪ {(s, teacherAction)}
11: C ← UpdateClassifier(D)
12: for each decision boundary db do
13: Mdb ← CalcMisclassifications(D, db)
14: T [db]← CalcAverageConf(Mdb)
15: ExecuteAction(teacherAction)

(a) (b) (c)

Figure 3: Autonomy threshold calculation: (a) Example dataset, with highlighted overlapping region (b)
Learned decision boundary, misclassified points marked with confidence values (c) Learned threshold values
for each data class, a low confidence region containing most of the overlapping points remains in the center.

fidence above threshold T [db] leads the robot to complete the
timestep by executing the classifier selected action a (line 7).
Otherwise, the robot requests a demonstration and updates
the classifier with the additional training data (lines 9-11).

Each time the classifier is relearned, autonomy threshold
values are updated to reflect the new decision boundaries.
Given the confidence scores of a set of points mistakenly clas-
sified by a decision boundary, we assume that future classi-
fications with confidences at or below these values are likely
to be misclassifications as well. The value of an autonomy
threshold is therefore calculated as a function of the misclas-
sification confidence scores.

Specifically, we define a classified point as the four-tuple
(s, a, am, c), where s is the original state, a is the demon-
strated action, am is the model-selected action, and c is the
classification confidence. Let Mi = {(o, ai, am, c)|am 6= ai}
be the set of all points mistakenly classified by decision
boundary i. Given this data, the autonomy threshold value
for each decision boundary is calculated as the average clas-
sification confidence of the misclassified points (lines 13-14):

τdb =

PMdb c

|Mdb| (1)

We take the average to avoid overfitting to noisy data. Other
values, based on the maximum or standard deviation, can be
used if a more conservative estimate is required. A threshold
value of 0 indicates that no misclassifications occurred and
the decision boundary can be applied freely for any state
where it is most likely. The timestep of the learning algo-
rithm is completed by executing the action demonstrated by
the teacher (line 15).

Figure 3 presents an example of the threshold calculation
process. Figure 3(a) shows a sample dataset, the rectangu-
lar box in the figure highlights a region of the state space in
which points from both classes overlap. Figure 3(b) shows
the learned decision boundary (in this case a SVM) sep-
arating the two data classes. Six misclassified points are
marked with the (mis-)classification confidences returned by
the model. Misclassified points on each side of the deci-
sion boundary are used to calculate the respective autonomy
thresholds. Figure 3(c) shows the autonomy threshold lines
and values based on the above calculations. The resulting
low confidence region in the middle of the image captures
most of the noisy datapoints.

Algorithm Correct-Misclas.-Unclass. Thresholds
GMM 98.6% – 0.4% – 1.0% (0, 0, 0.012)
RF 99.1% – 0.1% – 0.8% (0.14, -0.355)
SVM quad. 98.5% – 0.1% – 1.4% (335.33, -68.77)
SVM RBF 98.9% – 0.1% – 1.0% (0.825, -0.268)

Table 1: Classifier comparison.

The presented approach for calculating multiple auton-
omy thresholds is algorithm independent, and Figure 4 presents
classification results for four different classification meth-
ods: Gaussian mixture models, random forests (RF), Sup-
port Vector Machine with a quadratic kernel, and SVM with
a radial basis function (RBF) kernel. Table 1 summarizes
the classification performance of each algorithm and lists the
threshold values for each of the models.

5. EXPERIMENTAL RESULTS
In this section, we analyze the performance of the confidence-

based learning approach combined with the following demon-
stration selection techniques:

• Single fixed threshold – manually selected fixed thresh-
old value

• Multiple adjustable thresholds – multiple thresholds,
recalculated using above algorithm each time the clas-
sifier is relearned

• Teacher-guided – all demonstrations manually selected
by the teacher, without confidence feedback from the
algorithm

Although the Confident Execution algorithm assumes that
the teacher is always able to initiate demonstrations, in or-
der to allow a direct comparison between selection methods,
only the robot was allowed to initiate demonstrations for
both threshold-based approaches. The underlying policy of
the robot was learned using multiple Gaussian mixture mod-
els, one for each action class, as described in [5].

The experiments were performed in a challenging sim-
ulated car driving domain (Figure 5), first introduced by
Abbeel and Ng [1]. In this domain, the robot takes the shape

(a) Gaussian mixture model (b) Random Forest

(c) SVM (quadratic) (d) SVM (RBF)

Figure 4: Classification of dataset into high and low confidence regions using four different classification
algorithms.

of a car that must be driven by the teacher on a busy road.
The learner’s car travels at a fixed speed of 60 mph, while all
other vehicles move in their lanes at predetermined speeds
between 20-40 mph. The learner can not change its speed,
and must navigate between other cars to avoid collision. To
do this, the robot is limited to three actions: remaining in
the current lane, or shifting one lane to the left or right of
the current position. The road has three normal lanes and a
shoulder lane on both sides; the car is allowed to drive on the
shoulder but can not go off-road. The teacher demonstrates
the task through a keyboard interface, and the simulator is
paused during demonstration requests.

The environment is represented using four features: the
distance to the nearest car in each of the three lanes and
the current lane of the learner. The learner’s lane is repre-
sented using a discrete value symbolizing the lane number.
The distance features are continuously valued in the [-25,25]
range; note that the nearest car in a lane can be behind
the learner. Distance measurements are corrupted by noise
to create a more realistic testing environment. Learning is
completed once the car is able to drive autonomously for
1000 timesteps.

The driving domain presents a varied and challenging en-
vironment; if car distances were to be discretized by round-
ing to the nearest integer value, the domain would contain
over 600,000 possible states. Due to the complexity of the

domain, the learner requires a large number of demonstra-
tions to initialize the learned model, resulting in nearly con-
stant demonstration requests early in the training process.
To simplify the task of the teacher, we add a short (300 dat-
apoint, or approximately 30 second) non-interactive driv-
ing demonstration session to initialize the learning process.
While this learning stage is not required, it simplifies the
task of the teacher for whom continuous demonstration is
preferred over frequent pauses for demonstration requests.

Since the algorithm aims to imitate the behavior of the
expert, no ’true’ reward function exists to evaluate the per-
formance of a given policy. However, we present two domain-
specific evaluation metrics that capture the key characteris-
tics of the driving task.

Since the demonstrated behavior attempts to navigate the
domain without collisions, our first evaluation metric is the
number of collisions caused by the learner. Collisions are
measured as the percentage of the total timesteps that the
learner spends in contact with another car. Always driv-
ing straight and colliding with every car in the middle lane
results in a 30% collision rate.

Our second evaluation metric is the proportion of the time
the learner spends in each lane over the course of a trial.
This metric captures the driving preferences of the expert
and provides an estimate of the similarity in driving styles.
Each evaluation trial was performed for 1000 timesteps over

Figure 5: Screenshot of the driving simulator.

an identical road segment. Performance was evaluated at
100-datapoint intervals.

Figure 6 shows the agent’s performance with respect to
these metrics for each learning method. Each bar in the fig-
ure represents a composite graph showing the percentage of
time spent by the agent in each lane. Collision percentages
for each evaluated policy are reported above the bar graphs.
The rightmost bar in the figure shows the performance of
the expert over the evaluation road segment (not used for
training). We see that the expert successfully avoids colli-
sions, and prefers to drive most of the time in the center and
left lanes, followed in preference by the left shoulder, right
shoulder and right lane.

The top row in the figure summarizes the performance
of the teacher-guided demonstration method. This non-
interactive approach used the same learning algorithm as
the other two methods, but demonstrations were selected
manually by the teacher based on observations of the driving
behavior. The teacher attempted to select demonstrations
that would correct mistakes, without any feedback from the
agent about action confidence. During learning, the agent’s
policy fluctuates greatly with regard to lane preference and
collision performance. For example, after 500 demonstra-
tions, the agent’s preference is to drive on the empty left
shoulder, thereby incurring few collisions. One hundred
demonstrations later, the policy has shifted to prefer the
center lane. However, the agent has not yet learned to
avoid other cars, resulting in a 38.8% collision rate. The
policy stabilizes after approximately 1100 demonstrations.
Without confidence feedback from the robot, it is difficult
for the teacher to select an exact termination point for the

Figure 6: Comparison of the agent’s driving style
throughout the learning process using three demon-
stration selection techniques. Each bar in the fig-
ure indicates the percentage of the time the learner
spent in each road lane, with corresponding colli-
sion percentages above each bar. The teacher’s lane
preference over the same road segment is presented
on the right.

learning. Demonstrations persisted until the learner’s policy
showed little improvement, and learning was terminated by
the teacher after 1300 demonstrations, upon obtaining final
performance very similar to that of the expert with a low
2.7% collision rate.

The middle row presents results of the confidence-based,
interactive learning approach with a fixed threshold value
of 0.095. This threshold value was selected through mul-
tiple performance trials, and the best fixed threshold re-
sults are presented here. Using this approach, the agent’s
lane preference begins to resemble that of the expert after
700 demonstrations. Learning continued until, after 1000
demonstrations, the agent no longer requested demonstra-
tion examples, indicating high certainty in all encountered
states. The final policy was similar to that of the expert,
although with a slightly higher collision rate of 3.8%.

The bottom row presents learning results using multiple
adjustable thresholds. This approach required the fewest
datapoints to learn the task, completing learning after only
500 demonstrations. The resulting policy was again similar
to that of the expert, with a small collision rate of 1.9%.
Throughout the learning process, the number of Gaussian
components within the model varied between 9 and 41. This
large variation highlights the importance of automating the
threshold calculation process, since hand-selecting individ-
ual thresholds for each component would be impractical.

In summary, all three selection techniques resulted in poli-
cies similar to that of the teacher and comparable to each
other in performance. Most importantly, however, the pre-
sented multi-thresholded approach required significantly fewer

demonstrations to achieve this performance compared to the
other two methods.

As presented in this paper, the learning algorithm does not
flawlessly reproduce the teacher’s behavior, as characterized
by a small number of collisions in the driving domain. The
cause of this problem is that an unwanted behavior, such as
a collision, is expressed through lack of its demonstration in
this training approach. As a result, the negative behavior is
not explicitly represented by the algorithm. While this does
not hinder our comparison, this challenge will be addressed
in future work.

6. CONCLUSION
In this paper, we introduced a novel technique for select-

ing demonstration examples in the context of an interactive,
human-robot learning algorithm. Using our approach, the
robot selects between autonomous execution and demon-
stration requests based on multiple confidence thresholds
designed to target domain states with the greatest uncer-
tainty. Unique threshold values are automatically calculated
for each decision boundary of the learned classifier based on
misclassifications of the training data.

Experimentally, we compared three different methods of
selecting demonstration training data: manual data selec-
tion by the teacher, confidence-based selection using a single
fixed threshold, and confidence-based selection using multi-
ple automatically calculated thresholds. The results indi-
cate that while the learning algorithm is able to imitate the
demonstrated behavior using all three data gathering tech-
niques, the most informative demonstration examples are
obtained using the multiple adjustable threshold approach
introduced in this paper. By focusing demonstrations onto
regions of uncertainty and reducing redundant demonstra-
tions, this technique significantly reduces the number of
demonstrations required to learn the task.

In this paper we have shown that an approach with a
simple query-based interface can be used to teach complex
tasks with relatively few demonstrations. This work lays a
foundation for many additional studies that will enable non-
technical users to program robot behaviors through inter-
action. The presented approach is algorithm-independent,
allowing many systems to build upon this work. To address
the problem of negative behavior, such as collisions, our fu-
ture work focuses on developing an extension to the algo-
rithm that will enable to teacher to correct mistakes made
by the robot. Developing other interaction capabilities may
also improve usability and performance. For example, en-
abling the robot to ask clarification questions or to catch
user mistakes may speed up the learning process. A user
study evaluating the usability of the system would also help
to evaluate additional modes of interaction, such as enabling
the teacher to provide high level guidance, rewards or pun-
ishments.

7. ACKNOWLEDGMENTS
This research was partially sponsored by BBNT Solutions

under subcontract no. 950008572, via prime Air Force con-
tract no. SA-8650-06-C-7606. The views and conclusions
contained in this document are those of the author and
should not be interpreted as representing the official poli-
cies, either expressed or implied, of any sponsoring institu-
tion, the U.S. government or any other entity.

8. REFERENCES
[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via

inverse reinforcement learning. In Proceedings of the
International Conference on Machine Learning, New
York, NY, USA, 2004. ACM Press.

[2] B. Argall, B. Browning, and M. Veloso. Learning by
demonstration with critique from a human teacher. In
Second Annual Conference on Human-Robot
Interaction, 2007.

[3] K. S. Barber, A. Goel, and C. Martin. Dynamic
adaptive autonomy in multi-agent systems. Journal of
Experimental & Theoretical Artificial Intelligence,
12:129–147, 2000.

[4] D. C. Bentivegna, A. Ude, C. G. Atkeson, and
G. Cheng. Learning to act from observation and
practice. International Journal of Humanoid Robotics,
1(4), 2004.

[5] S. Chernova and M. Veloso. Confidence-based policy
learning from demonstration using gaussian mixture
models. In Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems
(AAMAS’07), May 2007.

[6] T. W. Fong, C. Thorpe, and C. Baur. Collaboration,
dialogue, and human-robot interaction. In Proceedings
of the 10th International Symposium of Robotics
Research, Lorne, Victoria, Australia, London,
November 2001. Springer-Verlag.

[7] M. A. Goodrich, T. W. McLain, J. D. Anderson,
J. Sun, and J. W. Crandall. Managing autonomy in
robot teams: Observations from four experiments. In
Second Annual Conference on Human-Robot
Interaction, 2007.

[8] D. Grollman and O. Jenkins. Dogged learning for
robots. In IEEE International Conference on Robotics
and Automation, pages 2483–2488, 2007.

[9] D. H. Grollman and O. C. Jenkins. Learning robot
soccer from demonstration: Ball grasping. In Robotics:
Science and Systems - Robot Manipulation: Sensing
and Adapting to the Real World, 2007.

[10] A. Lockerd and C. Breazeal. Tutelage and socially
guided robot learning. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2004.

[11] M. N. Nicolescu and M. J. Mataric. Learning and
interacting in human-robot domains. In IEEE
Transaction on Systems, Man and Cybernetics, pages
419–430, 2001.

[12] M. N. Nicolescu and M. J. Mataric. Natural methods
for robot task learning: instructive demonstrations,
generalization and practice. In Second International
Joint Conference on Autonomous Agents and
Multiagent Systems, pages 241–248, New York, NY,
USA, 2003. ACM Press.

[13] H. S. Seung, M. Opper, and H. Sompolinsky. Query by
committee. In Computational Learning Theory, pages
287–294, 1992.

[14] L. Xu, A. Krzyzak, and C. Suen. Several methods for
combining multiple classifiers and their applications in
handwritten character recognition. IEEE Transactions
on System, Man and Cybernetics, pages 418–435, 1992.

