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From Deliberative to Routine Behaviors: 

A Cognitively Inspired Action-Selection 

Mechanism for Routine Behavior Capture

Sonia Chernova1, Ronald C. Arkin2

1Computer Science Department, Carnegie Mellon University
2College of Computing, Georgia Institute of Technology

Long-term human–robot interaction, especially in the case of humanoid robots, requires an adaptable

and varied behavior base. In this paper, we present a method for capturing, or learning, sequential

tasks by transferring serial behavior execution from deliberative to routine control. The incorporation of
this approach leads to the natural development of complex and varied behaviors, with lower demands

for planning, coordination and resources. We demonstrate how this process can be performed auton-

omously as part of the normal function of the robot, without the need for an explicit learning stage or
user guidance. The complete implementation of this algorithm on the Sony QRIO humanoid robot is

described.

Keywords action selection · developmental robotics · routine behavior · humanoid robot · 
robot architecture

1 Introduction

It is well known that there are high expectations of
anthropomorphic robots with regard to natural behavior
in their interactions with humans. Furthermore, inter-
action over extended periods of time requires that the
robot acquire new skills, adapt to its surroundings, and
change its behavior in response to different situations
in order to appear natural and interesting. In this article,
we address the issue of compelling long-term interac-
tion by enabling the robot to adapt through the capture
and execution of routine behaviors.

Routine behavior is defined as the habitual per-
formance of an established procedure or task. Routine
behavior occurs in a reactive manner, sometimes with-

out awareness, and requires far less focused attention
than conscious and highly supervised task execution,
or deliberative behavior.

In humans, the classification of a task into one of
these two categories is dependent on the familiarity of
the task, as well as other psychological aspects such as
perceived dangers or complex decision-making (Nor-
man & Shallice, 1986). Over time, most behaviors are
typically transferred from deliberative to routine exe-
cution. This type of adaptation is believed to be funda-
mental to our development because of the limited
nature of human attention.

In this article, we demonstrate a similar adapta-
tional mechanism for robotic systems. We present a
method for capturing, or learning, robotic tasks and
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transferring their execution from deliberative to rou-
tine control. Specifically, we focus on sequential tasks,
those that involve series of consecutive actions. We
present a method based on the repeated execution of a
task, which allows the robotic system to learn habitual
execution, so as to require less planning, coordination
and resources. We demonstrate how this process can be
performed autonomously as part of the normal func-
tion of the robot, without the need for a specific learning
stage or user guidance. The incorporation of this method
results in the more varied and adaptable behavior that
is so important for successful long-term interaction.

This research was conducted on a fully autonomous
robotic humanoid system, the Sony QRIO entertain-
ment robot (Figure 1), designed for long-term human–
robot interaction. All experiments were performed on
the physical platform without simulation.

1.1 Psychological and Neuroscientific 
Motivations

Action selection, the problem of selecting what to do
next, has been studied extensively in humans in the
areas of psychology, physiology, neurology and other

related fields (Cleeremans, 1993; Keele, Ivry, Mayr,
Hazeltine, & Heuer, 2004; Sun & Giles, 2001). Our
approach is motivated by the contention scheduling
(CS) model for action selection, originally proposed
by Norman and Shallice (1986); see also Cooper,
Shallice, and Farringdon (1995) and Cooper and Shal-
lice (1997, 2000). CS combines elements of automatic
and deliberative action execution, encompassing both
action selection for routine actions as well as delibera-
tive planning and execution.

The original inspiration for CS, and other serial
behavior models, can be traced back to early work by
Lashley (1951). Lashley stated, consistent with the CS
model, that a parallel set of chunk actions is activated
even before action is produced. More recently, Houghton
and Hartley (1995) revisited Lashley’s early work on
parallel models of serial behavior, and employed the
concept of schemas as the basis for producing sequen-
tial behavior, providing new evidence to support his
claim. This inspired the concept of activation levels
(ALs) that is currently used in one form for its action-
selection mechanism in the QRIO architecture.

In other work, Cisek (2001) contends that animals
have two pragmatic concerns: action specification and
action selection. Specification allows multiple proc-
esses to be primed for action, which are based on spa-
tial information of the agent and its relationship to
world objects, while selection reduces this set to a
unique behavior for enactment based upon the nature
and identity of the environmental objects. To the best
of our knowledge, however, this model has yet to be
exported to a robotic system in its native form.

One recent neuroscientific study (Badgalyan, 2000)
gives strong support to the Norman–Shallice model of
central deliberative control by identifying regions in
the brain where such activity occurs: specifically, the
cingulate and pre-frontal cortical regions. The statement
that the deliberative system (DS) is recruited only when
the action is conscious helps us to understand the non-
dominant relationship between the supervisory atten-
tional system (SAS) and the contention scheduler, and
helps to ground us in designing a suitable interface
between planning and control for QRIO.

Other neuroscientific studies implicate the basal
ganglia in action selection as well as action gating via
disinhibition (Prescott, Gurney, & Redgrave, 2003).
Their notion is that sensory requests arrive at the basal
ganglia in the form of requests for access to the motor
control system, which utilizes multiple selection mech-

Figure 1 The Sony entertainment robot QRIO.
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anisms to service those requests. A model of this sys-
tem was embedded in a mobile robot and tested, but
more for the ability to evaluate it as an explanatory
model of the human action-selection mechanism as
opposed to an efficient robot controller.

Several implementations of the CS model have also
been developed, including one by Cooper and Shallice
themselves (Cooper & Shallice, 2000). However, most
work so far has focused on the independent implemen-
tation and study of the two behavior mechanisms for
the control of routine and non-routine behaviors. The
problem of transference of behaviors and skills from
deliberative to routine control is much less studied as
it requires a functional model of both systems.

We are aware of only two projects involved in the
study of routine behavior capture for robotic systems
relating to the CS model. One is the work of Garforth,
Meehan, and McHale (2000), where the CS model is
implemented as a large-scale neural network. Garforth
et al. demonstrate the transfer of skills from delibera-
tive to routine control using a simulated robot under
the task of avoiding distracting stimuli in order to fully
complete a primary task. This study differs signifi-
cantly from the work presented here, not only in the
implementation of the system, but also in its function-
ality and target behavior. Specifically, the related
work is concerned with only single behaviors instead
of sequential tasks, and does not include an emotional
model.

The second related work, published by Cooper
and Glasspool (2001), focuses on acquiring environ-
ment–action associations through unguided explora-
tion in the environment and reinforcement learning.
This work differs significantly in that learning is per-
formed only at the lowest levels, pairing environmen-
tal features with basic actions. It is independent of any
DS and the algorithm does not represent any higher-
order behavior sequences.

Our work is complementary to the Cooper and
Glasspool approach, consisting of a mechanism for
capturing higher-order behavior sequences that com-
prise more complex tasks. Over time, sequential tasks
executed through deliberation can become routine,
such that the mechanism of their execution is shifted
to the reactive behavior level and deliberative plan-
ning is no longer involved in the execution of the
sequence. This separation of routine and non-routine
behaviors allows different methods to be applied to
each, while reducing the load on the planner and free-

ing system resources. Our approach is the first com-
plete implementation of the routine behavior capture
mechanism at this level, and we demonstrate its effec-
tiveness using the fully functional behavior model of
the QRIO robot.

In the rest of the article we present an overview of
QRIO’s behavior system, the emotionally grounded
(EGO) architecture, followed by a detailed description
of the behavior selection algorithm. We then present the
routine behavior serialization method, which allows
the transference of routine behavior control from the
deliberative to the reactive layer of the behavior sys-
tem. Finally, we describe the results of a series of exper-
iments.

2 Behavior System Overview

The autonomous behavior control architecture of the
QRIO robot, called the EGO architecture, is designed
for long-term human–robot interaction based on an
ethological behavior model (Arkin, Fujita, Takagi, &
Hasegawa, 2003). Detailed descriptions of its various
components appear in a series of previous publications
(Fujita, Kurolki, Ishida, & Doi, 2003; Hoshino, Takagi,
Profio, & Fujita, 2004; Sawada, Takagi, & Fujita,
2004a; Sawada, Takagi, Hoshino, & Fujita, 2004b; Tan-
aka, Noda, Sawada, & Fujita, 2004), and in this section
we provide only a brief description of the individual
software components related to this work. Figure 2
presents an overview of the system.

Figure 2 Overview of the EGO architecture compo-
nents.
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2.1 The EGO Architecture

The perception component of the system processes
data on three different sensor channels: visual, audi-
tory and tactile. Information about the environment
perceived through the robot’s sensors is integrated into
the short-term memory (STM) segment of the memory
component, computing information such as object loca-
tion and sound source, while assigning IDs to these
perceptual events. Using the robot’s kinematic data,
the STM also tracks and maintains the position of
objects located outside the current field of view of the
robot.

The long-term memory (LTM) component associ-
ates perceived information with the internal state of
the robot. This allows the robot to identify people
through face and voice recognition, as well as to recall
previously made associations and emotions felt about
the person.

Variables related to the internal state of the robot
are maintained by the internal state model (ISM). Exam-
ple state variables include nourishment, sleep, fatigue
and vitality. Changes in the robot’s internal state occur
with the passage of time, and as a result of external
stimuli or the robot’s actions. While some variables
can be grounded on a physical sensor, such as battery
charge level, others represent more abstract values.

Three different behavior control modules are respon-
sible for behavior selection. The reflexive behavior

layer (RBL) regulates behaviors that require a quick
response time, such as being startled. The situated behav-
ior layer (SBL) controls reactive and homeostatic
behaviors. The DS performs deliberative planning and
control of sequential behaviors. Within the SBL, which
is the focal point for this research, behaviors are organ-
ized in a tree-structured network of schemas (Figure 3).
Action selection is conducted when schemas in the
network compete for activation based on their rele-
vance and resource requirements. The specific details
of this behavior selection mechanism are described in
the following section.

2.2 Behavior Selection

The behavior cycle is executed at a rate of 2 Hz. Dur-
ing each cycle, every behavior calculates a fitness
value called the AL, which indicates the relevance
of that behavior in the current situation. The AL is
calculated based on the external stimuli and internal
state of the robot, as well as intentional values pro-
vided by the DS. Details of the DS are discussed in
Section 4.1.

Behavior selection occurs using a greedy policy:
the behavior with the highest AL is selected first. Other
behaviors, from highest to lowest AL value, can then
be selected for concurrent execution as long as their
resource demands do not conflict with those already
chosen. A behavior’s resource demands are the physi-

Figure 3 An example of the SBL behavior tree.
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cal robot parts (torso, head, etc.) and virtual resources
(speech, etc.) needed for the execution of the behav-
ior. A more detailed discussion concerning parallel
activation and the propagation of AL values through
the behavior tree can be found in Hoshino et al.
(2004).

In the current implementation, AL values are strictly
positive and can have arbitrarily high values. Alterna-
tive approaches could include normalizing or bound-
ing all values to some range. Because the values are
compared on a relative scale instead of an absolute
scale, all of these approaches will result in the same
outcome.

The AL function, used to calculate the AL value,
plays a crucial role in determining which behaviors
are selected. In effect, different values in the AL func-
tion control the overt personality and behavioral man-
ifestation of the robot, making it of critical importance
in the development of an entertainment robot system.
In the following section we describe the full details of
this implementation.

3 Activation Level Evaluation

Our new formulation of the AL function builds upon
the previously existing AL function of the EGO architec-
ture (Hoshino et al., 2004; Sawada et al., 2004b), while
adding fundamental components inspired by the CS
model (Cooper & Shallice, 2000; Cooper et al., 1995).
The pre-existing AL function was based upon an etho-
logically inspired model (Arkin et al., 2003) and con-
tained elements balancing internal motivations and
external stimuli.

We have extended this function to now include a
resting level and random noise, both of which are key
features governing the CS model (Cooper & Shallice,
2000; Cooper et al., 1995). Most importantly, we have
added a new mechanism, which we call self-excitation
(SE). Although inspired by the concepts of self-
activation and lateral inhibition present in the CS
model, in a way this replaces both while providing
new abilities and flexibility to the system.

The new AL value is calculated as a weighted sum
of the following five components.

Previously existing components:

• motivation value (Mot);
• releasing value (Rel).

Contributed components:

• resting level (RL);
• random noise (Noise);
• self-excitation value (SE).

Each of these contributing factors are described
below.

3.1 Motivation Value

The motivation value is derived from the internal state
of the robot, and embodies its instinctual drive. It is
calculated as a weighted sum of individual instincts,
Ins[i]. Each instinct value corresponds to an internal
state i, and expresses the robot’s current desire with
respect to that state (Hoshino et al., 2004; Sawada et
al., 2004a).

Example values for the nourishment internal state
are shown in Figure 4. The instinct associated with
nourishment is high when the internal value of nour-
ishment is low, signifying that the robot has a desire to
satisfy this need and raise the nourishment level. The
less nourishment there is, the greater the desire to
obtain it. In the case when the nourishment level is
high, the instinct value is low to signify satisfaction.
It is also possible to have a negative instinct value, sig-
nifying that the robot has exceeded the desired level
for that internal state. In our example, this phenome-
non symbolizes overeating; if the nourishment level is
too great, the instinct or desire to eat becomes nega-
tive.

The function relating each instinct to its corre-
sponding internal state is designed on an individual
basis, as described in Sawada et al. (2004a). The moti-
vation value for each behavior is calculated as a
weighted sum of the robot’s current instincts

Figure 4 Curve expressing the relationship between in-
tention and instinct for the internal state nourishment.
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MotBeh = WMBeh[i] · Ins[i], (1)

where WMBeh[i] is the motivation weight associated
with instinct Ins[i] for that behavior. The weights are
used to control which instincts motivate each behav-
ior. For example, an instinct based on nourishment
would motivate an eating behavior, but may not affect
the desire for sleep or exercise.

3.2 Releasing Value

The releasing value denotes the expected satisfaction
associated with an internal state that the robot would
achieve from executing a behavior. It is composed of
the current satisfaction value, Sat[i], which is based on
the internal state of the robot at this time, and an
expected satisfaction, ESat[i], which is calculated based
on the internal state and the properties of external
stimuli (Sawada et al., 2004b).

Expected satisfaction is calculated by predicting
the change in internal state as a result of performing a
behavior. Consider the nourishment example, as shown
in Figure 5. From the figure, we see that if the nourish-
ment level is low, raising it leads to increased satisfac-
tion. However, if the nourishment level is currently
high, eating further can lead to overeating and a decrease
in the satisfaction value. The lowest levels of satisfac-
tion result from extreme hunger and extreme satiety.

Satisfaction values can also depend on the charac-
teristics of external stimuli, such as object type, size or
distance. For example, it is possible to expect more
satisfaction from interacting with a friend than a
stranger. In the current implementation of our system,
satisfaction functions are designed on an individual
basis for each behavior.

The releasing value is calculated based on the sat-
isfaction values using

dSat[i] = ESat[i] – Sat[i] (2)

RelBeh =  WRBeh[i] 

 × (WdSatdSat[i] + (1 – WdSatESat[i])). (3)

Here, dSat[i] denotes the expected change in satisfac-
tion, WRBeh[i] is the releasing weight associated with
internal state i, and WdSat is the weight of the expected
change in satisfaction against the final expected satis-
faction value. For further details on motivation and
releasing values, and their involvement in behavior
selection, see Sawada et al. (2004a).

3.3 Rest Level

The rest level value establishes a baseline activation
for behaviors having no additional input. In the absence
of any internal or external influences, the AL value tends
toward the rest level. Its function is to permit low-level
differentiation of behaviors based on priority due to
the assignment of different resting levels.

In the case when a behavior is active and there are
no internal or external stimuli, the drop of the AL to
rest level is controlled by a decay function called the
persistence function (Figure 6). This feature mimics
the mechanism by the same name proposed by Nor-
man and Shallice (1986). Its purpose is to promote the
continuity of the AL of active behaviors.

In the case that a behavior is already active, it is
natural that the desire to perform the activity should
persist for some time after all stimuli disappear. For
example, if the robot is playing soccer and loses sight
of the ball, the desire to play soccer should persist for
some time, allowing the robot to search for the ball.
However, the probability that another behavior is
selected should increase over time.

Persistence is implemented through a decay func-
tion which decreases the status SE value over time.
The decay continues until either the rest level value is
reached or another behavior is activated.

3.4 Noise

The random noise parameter adds normally distrib-
uted random noise to the AL in order to break ties
between equally competing behaviors and add varia-
bility to the behavioral display. The magnitude of the
noise is a controllable parameter, usually proportional

i
∑

Figure 5 Curve expressing the relationship between in-
tention and satisfaction for the internal state nourishment.

i
∑
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to the strength of the AL value. Figure 7 shows noisy
ALs of three competing behaviors. The noise compo-
nent is omitted in other example figures in this section
in order to demonstrate the underlying concepts more
clearly.

3.5 Self-Excitation

The SE concept, and the underlying function used for
setting this value, comprise one of the main contribu-
tions of this work. SE is composed of two factors, status
self-excitation (SSE) and routine self-excitation (RSE),
which play two different and important roles in AL
regulation.

SE = SSE + RSE. (4)

SSE serves as a mechanism for minimizing the
risk of rapid oscillation between behaviors. Its value is
dependent upon the current operational status of the
behavior, which represents whether the behavior is
currently active, not active, or transitioning in or out
of the active state. Different levels of excitement are
associated with each status.

A behavior that is not active experiences very lit-
tle or no excitement. When the behavior becomes
active, its excitement level rises until the completion
of the behavior, increasing the overall AL value. This
ensures that the AL of an active behavior has an addi-
tional margin of separation from the other behaviors.
The AL of other behaviors must overcome this margin
in order to become active. Figure 8 shows the ALs of
three competing behaviors and demonstrates the effect
of SSE.

This mechanism is designed to increase the likeli-
hood that each behavior runs to completion without

Figure 6 An idealized graph of the ALs of two behav-
iors, demonstrating the effect of the persistence function.
In the absence of any internal or external stimuli, the AL
of the active behavior decays until another behavior is ac-
tivated as a result of a higher AL value. Activation of be-
havior A drops to the rest level.

Figure 7 Graph of actual AL values including the noise
parameter.

Figure 8 An idealized graph of the ALs of three compet-
ing behaviors, demonstrating the role of SSE in AL regu-
lation.
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interruption. This is a desirable characteristic as it pre-
vents behavioral dithering, the phenomenon of behav-
iors thrashing back and forth between themselves as
they compete for execution. Note that the currently
active behavior can still be interrupted if the AL of a
competitor surpasses the excitation margin.

RSE controls the activation of routine behavior
sequences. Its behavior is based on sequences of
behaviors that were captured as a result of repeated
execution of some task.

Figure 9 demonstrates the effect of RSE on a cap-
tured routine sequence of behaviors A → B → C. In
the captured sequence, each behavior knows its prede-
cessor in the chain. RSE works by increasing the
AL of each behavior when its predecessor becomes
active, a process called priming. In our example we
see that the AL value for B rises as its predecessor A
becomes active. A similar relationship exists between
C and B.

Intuitively, this can be interpreted as a behavior
anticipating or predicting being next in the sequence.
The resulting higher AL increases the likelihood,
although does not guarantee, that all the behaviors in

the sequence will be executed in the captured order.
Note that the RSE value is usually set so as not to over-
come the SSE margin, otherwise the primed behavior
will activate early, interrupting the execution of its
predecessor. Overall, the excitation components work
together to achieve continuous and complete behavior
sequence execution. Further details of the RSE imple-
mentation are discussed in Section 4.

3.6 Activation Level Computation 
Summary

The complete AL function is summarized in Equa-
tions 5 and 6. The motivational and releasing compo-
nents are combined in MR, where WM sets the weight
or importance between the two. WSE provides a simi-
lar balance between SE and MR.

MR = WMMot + (1 – WM)Rel (5)

AL = WSESE + (1 – WSE)MR + RL + Noise. (6)

The two weight parameters of the AL function,
WM and WSE, control the emergent behavioral pattern
and apparent personality of the robot. A high WM

results in the robot exhibiting self-centered behavior
aimed at satisfying its own internal state. This type
of behavior would likely be perceived as selfish or
unfriendly by humans as the robot may ignore their
presence or attempts at interaction. A low WM value
would result in the opposite effect where the robot
would be overly responsive to external stimuli and
interaction. WSE controls how likely the robot is to
complete a task it has begun. It affects both short inde-
pendent behaviors and the completion of longer chains
of sequential tasks. Algorithms for dynamically adjust-
ing these values still need to be explored; the current
implementation relies on fixed values.

4 Routine Behavior Capture and 
Execution

Routine behavior is defined here as the repeated exe-
cution of the same task or sequence of tasks over a
prolonged period of time. Over its lifetime, QRIO will
complete many repeated tasks. In this research, we are
specifically interested in higher-order routine tasks
composed of a number of sub-behaviors executed in a

Figure 9 An idealized graph showing the AL of a cap-
tured routine sequence consisting of three behaviors exe-
cuted via RSE.
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specified order. For example, the task of playing soc-
cer requires the robot to find the ball, approach and
kick it. These sub-behaviors must be executed in a
specific sequence in order for the overall task to be
successfully completed.

In this section, we first describe the mechanism
by which normal sequential behavior is executed
through deliberative intention. We then present a novel
approach for capturing, or learning, these repeated
behavioral sequences and executing them subsequently
as routine behaviors.

4.1 Deliberative System

In this architecture, deliberative control of the robot
is performed by the DS via the intentional bus (Fig-
ure 10; Ulam & Arkin, 2006). The intentional bus
forms a gateway between the reactive and deliberative
layers in the architecture. Its purpose is to convert the
high-level, goal-oriented tasks generated by the DS
into intentional bias that serves to influence behavio-
ral activation in the reactive layer. These biases can be
combined with the existing AL computations (Equa-
tion 7) in order to guide the robot towards accomplish-
ing the goals of the DS:

ALtotal = AL + intentional bias. (7)

The intentional bus provides three major func-
tions for the DS:

• it serves as a repository of information about the
underlying behavior level, maintaining informa-
tion about the current status of each behavior as
well as their AL;

• it biases the ALs of designated reactive behaviors
in response to requests emanating from the DS;

• it maintains appropriate levels of intentional bias
despite changes in ALs of the behaviors.

When the DS generates and then executes a plan
for the robot, the intentional bus responds by sending
intention, or bias, to the first behavior in the planned
sequence. The strength of the bias is encoded in the
plan representation itself, and conveys the importance
of that behavior in the sequence. A weak intentional
bias implies that the behavior has a low priority, which
may result in its execution being interrupted, deferred,
or perhaps even skipped should higher priority activi-
ties be in play.

While the behavior is performed by the robot, the
intentional bus monitors its progress and maintains
appropriate intentional bias levels. When the behavior
completes, the focus is shifted to the next behavior in
the sequence and the process is repeated. In this way,
the intentional bus activates each of the behaviors in
the plan in the specified order. Figure 11 shows the
ALs of a sequence of four behaviors executed by the
DS.

4.2 Routine Behavior

While the execution of deliberative plans is controlled
by a centralized, higher-level system, the capture and
execution of routine behaviors occur entirely at the
reactive layer. Information between schemas is shared
via a structure called LogMemory, which records the
status and intention value of each schema. The capture
of routine sequences occurs independently for each
behavior; each schema only records and learns behav-
ior sequences in which it plays a part. Figure 12 pro-
vides an overview of the serialization process.

Using information from LogMemory, each behav-
ior creates an intentioned schema history (ISH), which
maintains information about any currently active delib-
erative plans. Statistics maintained by the ISH include
the order of the behaviors in the sequence and the
value of the intentional signal sent via the intentional
bus. If no plans are being executed by the DS, the his-
tory remains empty.

Figure 10 Overview of the interaction between the DS,
the intentional bus and the SBL behavior schema tree.
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When a specific behavior is deliberately activated
by the intentional bus, it queries the ISH to determine
the behavioral sequence prior to its activation. When
the active behavior is the first in a planned sequence,
the ISH is empty. If the behavior is not the first of a
planned sequence, then the ISH contains a summary
of the entire plan executed up to this point. The behav-
ior listed as the most recent in the ISH, the previous
step in the plan, is called the trigger schema, and this
occurrence is called a triggered sequence.

When a triggered sequence occurs, the trigger
schema is compared with a list of previously encoun-
tered trigger schemas. If this trigger schema has never
been previously encountered, the schema is entered
into the candidate captured routine list (CCRL). This
list maintains a record of behaviors that have preceded
the currently active behavior in previously executed
plans. The schemas listed here have no effect on the
AL, but instead serve as a local memory bank of pre-
vious experiences for the behavior.

When a triggered sequence occurs that involves a
previously encountered trigger schema, information
relating to that schema is updated. Statistics main-
tained about each schema include the average inten-
tional bias value used to trigger the schema and the
total number of times the schema has been active.

As stated above, trigger schemas on the candidate
list do not yet have an effect on the RSE and AL, and
do not comprise captured behaviors. A trigger schema
must pass certain requirements before being captured
and considered a part of a routine activity. Once cap-
tured, the schema is upgraded from the CCRL to the
captured routine list (CRL).

Each behavior maintains its own CRL and monitors
the status of the associated trigger schemas through
LogMemory. When a trigger schema becomes active,
the behavior primes itself for activation in anticipation
of being next to execute, as seen in Figure 9. When
priming occurs, the RSE value increases, raising the
overall AL of the behavior. The amount by which the
RSE increases is proportional to the average inten-
tional bias (IBavg) received from the intentional bus.

The process by which a trigger schema, symbolizing
part of a sequence, achieves routine behavior status is
important for the success of the system. Capturing

Figure 11 An idealized graph showing the ALs of a se-
quence consisting of four behaviors executed under the
control of the DS.

Figure 12 Overview of the behavior serialization process.
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sequences too quickly may result in undesired behav-
ior by the robot, while capturing too slowly will make
the whole process ineffective, as relatively few routine
behaviors will be learned. We have tested three differ-
ent approaches to this problem, although other meth-
ods clearly exist.

1. Simple thresholding. The sequence pairing must
occur some minimum number of times before it is
considered routine.

2. Pair frequency thresholding. In addition to the
simple thresholding criteria, the behavior must
follow the trigger schema in a significant propor-
tion of seen plans. More specifically, the ratio of
the number of times the behavior is activated fol-
lowing the trigger schema relative to the total
number of times the trigger schema is active must
pass some threshold. If the pairing occurs only
sporadically, and the majority of the time the trig-
ger schema is followed by some other behavior,
then this pairing does not have a strong routine
bond and is not captured.

3. Convergence thresholding. In addition to the
simple thresholding criteria, the recorded average
intention value must stabilize or converge. This
ensures that the RSE, which is calculated based
on the average intention value, accurately simu-
lates the intentional bias signal.

The RSE value replaces the role of the intentional
bias in its control over generating the behavior sequence
after the routine has been captured. It is therefore nat-
ural that the RSE is calculated based on the average
intentional bias value. The intentional bias average
(IBavg) is maintained for each behavior pair individu-
ally, because the strength of the bias signal conveys
the strength or importance of the sequence pairing.
The following methods have been tested for calculat-
ing the RSE value.

1. Static RSE. The RSE is equal to IBavg.
2. Likelihood RSE. The RSE is equal to IBavg scaled

by the likelihood of the routine pairing occurring.
This results in a higher SE value for more likely
pairings, increasing the probability of their occur-
rence.

3. Stochastic RSE. The RSE value is calculated
using a stochastic method based on the likelihood
of the pairing occurring. Note that, in the current

implementation, the individual behavior schemas
share only a limited amount of information; spe-
cifically, the ALs and RSE values are not shared.
Therefore, the RSE value is probabilistically cho-
sen between the full IBavg value and the value of
IBavg scaled by the likelihood of the routine pair-
ing occurring. Other stochastic approaches could
also be applied.

The final issue that must be addressed is at what
point a behavior sequence becomes truly routine. Despite
learning the appropriate sequencing, anticipating acti-
vation and setting RSE, this goal is not achieved until
deliberative planning is no longer directly involved in
the execution of the sequence. To accomplish this, the
DS must be notified when a routine is captured.

Once notified, the DS can choose to stop control-
ling the plan through intention and shift to an atten-
tional method that merely triggers the sequence rather
than constantly overseeing it (Ulam & Arkin, 2006).
This process can be compared to a parent who, when
teaching their child to ride a bicycle, has to decide when
to let go of the seat. We can imagine certain cases,
plans involving dangerous activities for example,
where the planner may never decide to rely completely
on the routine behavior. However, in the majority of
cases, the learned routine activity can be released
from deliberation.

The DS is notified of a routine’s capture by moni-
toring the RSE values of the behaviors. RSE values
are set to zero unless the behavior is being primed for
activation as part of a sequence. Note that if inten-
tional bias is present, signaling that the sequence is
still under deliberative control, the RSE is also set to
zero to avoid increasing the AL by double the desired
amount. In this case, however, the RSE value that
would have been present is still sent to the DS, signal-
ing that the sequence is a captured one.

The intentional bus provides a mechanism for the
DS to monitor the status of all schemas. This enables it
to observe whether the intended plan sequence did indeed
proceed in the required order, ensuring that the out-
come is still correct even in the absence of additional
intentional bias. It is desirable that the system monitor
the progress of the plan for some interval in order to
make sure that the sequence has been learned properly
and continues to be executed correctly. If it has not, the
DS resumes executing the plan through intention. If
the routine sequence performs well, however, monitor-
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ing can be reduced or eliminated entirely. Details
about the DS and the implementation of the intentional
bias mechanism appear in Ulam and Arkin (2006).

4.3 External Stimuli During Routine 
Behavior Execution

Because the AL is dependent upon external stimuli, it
is possible that an external stimulus will increase the
AL of an unrelated behavior during the execution of a
routine sequence. For example, if the robot recognizes
a human face while executing a soccer sequence, the
AL of a dialogue behavior may rise. Whether routine
task execution ought to be interrupted by this occur-
rence should be determined by such factors as the
importance of the routine behavior sequence, the rela-
tive desire for interaction, and personality preferences
of the robot. In our system, the intentional bias mech-
anism is used to control this process. A series of
experiments by Ulam and Arkin (2006) demonstrate
the robot’s ability to ignore or attend to such distrac-
tions based on the strength of the intentional bias sig-
nal.

5 Experiments and Results

Several experiments were designed to test the ability
of the proposed method to capture and execute routine

behaviors. In each experiment, the same behavior
sequence was used, which required QRIO to emulate
attending a music class. In the music class activity, the
robot must go to the class location, locate and play a
musical instrument, and sing. All experiments and
tasks were performed by the real robot.

The behavior tree used in each experiment can be
seen in Figure 13. In addition to the four behaviors
that make up the behavior sequence which we wish
the robot to learn (GoToClass, FindBell, RingBell and
Sing), it contains two additional behaviors, Sleep and
Soccer, which compete for activation.

In all experiments, the pair frequency threshold-
ing method was used. The behavior sequence had to
be experienced five times, and each pairing had to
occur at least 75% of the time for the behavior to be
captured. Comparable experimental results have been
achieved with the other thresholding approaches and
metrics. The likelihood RSE method was used in Exper-
iments 1–3 and the stochastic RSE method in Experi-
ment 4.

5.1 Experiment 1

The goal of the first experiment was to test the sys-
tem’s ability to learn a frequently repeated behavior
sequence and to execute it as a routine behavior. The
experiment consisted of QRIO executing behaviors
under the control of the normal action-selection mech-

Figure 13 Behavioral tree used for serialization experiments.
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anism. At some intervals, this was interrupted by the
DS, which executed the planned music class sequence.
For each behavior in the plan, the intentional bias was
set to 100, a value selected to be high enough to guar-
antee that the planned sequence was never interrupted.

Figure 14a provides an overview of the experi-
ment. The left side of the figure shows the plan that
was executed by the DS. The right side of the figure
lists the contents of the CRL of each behavior upon
the completion of the routine capture. Observe that the
GoToClass behavior, because it is first in the sequence,
does not have a trigger schema. Each of the other three
behaviors learns its connection to the previous behav-
ior in the plan.

Because the sequence was always executed to
completion in a consistent manner, and with no other
plans present, each sequence pair was captured at approx-
imately the same time. Upon the completion of the cap-
ture, the DS shifted to using an attentional signal instead
of deliberative intentional bias. During the next sched-
uled execution of the music class sequence, the DS ini-
tiated the behavior using attention by sending a short
burst of intentional bias to the GoToClass schema, and
then entered a monitoring state for the duration of the
sequence’s execution. The remainder of the music class
sequence was successfully executed entirely through
RSE.

Figure 15 compares the AL values of the behavior
sequence when executed by the planner and as a learned
routine behavior. As the plot lines can be difficult to
distinguish, symbols on two bars below each figure are
used to indicate the active and primed behaviors for
each time segment.

Figure 15a shows the activation values of the sys-
tem as the planner executes the music class sequence.
The robot is initially executing a Sleep behavior, which
is interrupted by the DS. The planned behaviors are
then executed one by one. The overall shape of the AL
curves of the sequence closely resembles the ideal-
ized curves seen earlier in Figure 11. Upon the com-
pletion of the sequence, the robot resumes the Sleep
behavior.

Figure 15b displays the internal state of the sys-
tem as the robot executes the music class sequence as
a routine behavior. This sequence also begins with the
robot sleeping, which is again interrupted by the DS,
this time through an attentional instead of an inten-
tional signal. This is characterized by the short spike
in the AL of the GoToClass behavior. As the GoTo-

Figure 14 Summary of three experimental setups. Each
figure displays the plans executed by the DS, the per-
centage of time each plan was used, and the internal
state of the CRL once the sequence was learned. The
CRL of each behavior lists the trigger schemas for that
behavior, the average intention value used to activate the
behavior, and the fraction of the time the trigger schema
is followed by the behavior.
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Class behavior becomes active, we see an immediate
response from the FindBell behavior, whose AL rises
as it is primed for activation. As the robot reaches the
class and the GoToClass behavior completes, FindBell

is activated and RingBell is primed. This results in the
step-like graph characteristic of ALs of routine behav-
ior sequences, similar to the idealized graph in Fig-
ure 9.

5.2 Experiment 2

The second experiment was performed to test the sys-
tem’s response to variable order plans. Specifically,
we are interested in plans that have a fixed number of
subtasks that must be achieved, but where the order of
some or all of the subtasks is not fixed. These types of
plans are fairly common and cover a wide range of
activities. In our experiment, we chose to leave the
order of QRIO’s class activities unspecified. Upon
arriving at class, QRIO could choose to sing or ring
the bell in either order, although both activities had to
be completed.

Figure 14b summarizes the experimental setup.
The left side of the figure displays the two plans exe-
cuted by the planner. In this experiment no preference
was given to either plan and they were executed an equal
proportion of the time. On the right of the figure, we
have another view of the CRL. GoToClass again has
no trigger schema, and RingBell remains unchanged
because this behavior always follows after the robot

Figure 15 Graphs of the ALs of a sequence of four be-
haviors executed (a) by the DS and (b) as a routine be-
havior. AL values of two other competing behaviors are
also present for demonstration purposes. Two bars below
each graph are used to indicate the active and primed be-
haviors.

Figure 16 Graph of the ALs of a routine sequence re-
sulting from equal preference variable order plans. Both
FindBell and Sing are primed during the active phase of
the GoToClass behavior. Both behaviors have equal ini-
tial motivation levels and random noise breaks the tie.
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finds the bell. The FindBell and Sing behaviors now
both have two trigger schemas. The FindBell behavior
will sometimes occur following GoToClass and at
other times following Sing, and the CRL expresses
both of these possibilities while also keeping track of
the likelihood of each pairing based on previous his-
tory.

Figure 16 tracks the AL values over the course of
the sequence. Plots of the behaviors not involved in the
music class sequence have been omitted for clarity.
Initially, the ALs of FindBell and Sing are very close,
separated only by the noise parameter. As GoToClass
is activated, both behaviors are primed through RSE.
Because both plans were equally likely and equal
intention levels were used for both behaviors, the RSE
values in this case are identical and both behaviors
remain close in activation. The noise parameter
remains the only separating factor between these two
behaviors, and upon the completion of GoToClass the
FindBell behavior is activated. As FindBell is always
followed by ringing, RingBell becomes primed at this
time while Sing returns to its rest level value. Sing is
primed again during the RingBell behavior and is
finally activated as the last behavior in the sequence.

The internal state of the robot, its internal desires
or moods, plays an important role in behavior selec-
tion and therefore also in sequence execution. Fig-
ure 17 presents another set of results from the same
experiment where the outcome was affected by the
internal state of the robot. In this case, the robot’s
desire to sing is much greater starting out than its
desire to ring the bell. This is apparent from the large
difference in ALs of the two behaviors before the
sequence begins. As GoToClass is activated, both Find-
Bell and Sing are again primed by the same amount,
but the gap between their AL values remains due to
the internal state of the robot at this time. This leads to
Sing being activated upon arriving in class, followed
by the bell ringing behavior. This example demon-
strates the ability of the system to express the internal
state and preferences of the robot.

5.3 Experiment 3

The third experiment was based on the same setup as
Experiment 2, but one of the plans was given prefer-
ence over the other. As can be seen in Figure 14c, exe-
cuting bell ringing before singing was preferred and
75% of the executed plans used this order. The CRL,

which tracks the likelihood of each pairing occurring,
reflects this preference in the FindBell and Sing
behaviors.

Figure 18 shows the AL plot for this sequence. Ini-
tially, the AL values for FindBell and Sing are again
very close. Just as in the previous experiment, as the
GoToClass behavior becomes activated, both FindBell
and Sing are primed. However, under the pair fre-
quency thresholding method the RSE is scaled by the
expected probability of a pairing occurring, which
results in different levels of excitation for the two
behaviors. As FindBell is more likely to follow GoTo-
Class, its excitation level is greater. This results in the
bell ringing behavior being executed before singing.

It is important to note the amount of separation
between the primed AL values of FindBell and Sing,
and to compare this to the separation at the beginning
of Figure 17. In Figure 17 there is a strong internal
desire associated with the Sing behavior but not with
FindBell. This causes a large separation in the AL val-
ues of the two behaviors, which is greater than the
separation due to RSE in Figure 18. This leads to the
conclusion that a preference for one plan ordering
over another will indeed bias the behavior selection
towards preferring that order, but without eliminating

Figure 17 Graph of the ALs of a routine sequence re-
sulting from equal preference variable order plans. Both
FindBell and Sing are primed during the active phase of
the GoToClass behavior. The Sing behavior has a higher
initial motivation and is therefore selected.
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the occurrence of the less preferred sequence. If QRIO
again experiences a strong desire to Sing and little
or no desire for FindBell, then, as can be seen in Fig-
ure 19, the less preferred behavior sequence will indeed
occur.

5.4 Experiment 4

The final experiment utilizes the routine sequence
captured in Experiment 3, but the RSE is calculated
using the stochastic instead of the likelihood method.
The stochastic method aims to generate a distribution
of AL values that resembles the plan or pairing distri-
bution. Specifically, in the case where the initial AL
values of two behaviors are very close, the goal is to
ensure that each behavior has a probability of being
activated that is proportional to the likelihood of the
pairing.

The resulting AL graph can be seen in Figure 20.
The most notable difference occurs during the time
when the GoToClass behavior is active. In this case,
Sing is the less likely behavior, but its AL exceeds that
of FindBell approximately 28% of the time, roughly
proportional to the likelihood of the GoToClass–Sing
pairing. This ensures that all else being equal, all pair-

ings will have a probability of being selected that is
proportional to the likelihood of the pairing as
observed under the control of the DS. Of course, when

Figure 18 Graph of the ALs of a routine sequence re-
sulting from biased preference variable order plans. Both
FindBell and Sing are primed during the active phase of
the GoToClass behavior. The preferred behavior, Find-
Bell, has a higher RSE value, causing it to be selected.

Figure 19 Graph of the ALs of a routine sequence result-
ing from biased preference variable order plans. Both Find-
Bell and Sing are primed during the active phase of the
GoToClass behavior. The Sing behavior has a higher ini-
tial motivation, and although it is not the preferred behav-
ior, its overall AL exceeds that of the FindBell behavior.

Figure 20 Graph of the ALs of a routine sequence re-
sulting from biased preference variable order plans, dem-
onstrating the stochastic RSE calculation method.
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there is a preference for one activity over the other as
a result of the internal state, this will play a strong role
in behavior selection, as previously demonstrated.

6 Discussion and Conclusions

In this article, we have demonstrated a method by
which sequential tasks executed through deliberation
can become routine, such that the mechanism of their
execution is shifted to the reactive behavior level and
deliberative planning is no longer involved in the exe-
cution of the sequence. This allows the separation of
routine and non-routine activities, while reducing the
load on the planner and freeing system resources.

The experimental results presented above demon-
strate the flexibility of the routine capture system, as
well as many of its strengths. This method allows an
unlimited number of behavior pairings to be captured
into routines, enabling the robot to learn and perform
sequenced tasks in a natural and ordered manner.
Numerous behaviors can be linked to each trigger
schema, allowing the same behavior to be reused in
many plans. Which behavior is selected for activation
depends not only on the observed experiences, but
also on the current internal state of the robot and the
external stimuli. As a result, the routine behavior exe-
cution builds upon the robot’s ability to express its
desires instead of suppressing it. Over time, this leads
to more interesting behavior combinations that vary
depending on the robot’s environment, a key property
for long-term robot interaction.

Several interesting and important extensions to
this model are left to consider. One natural extension
to examine is using a richer and more flexible trigger
schema representation. Whereas the current algorithm
only looks one step back in the history, it could be
extended to trace further back along the sequence
of past behaviors. This would enable the system to
differentiate between the sequences A → B → C and
D → B → E, where just knowing that B is active does
not provide enough information to determine whether
E or C is more appropriate as the next behavior. In this
case, the ambiguity can be eliminated by checking fur-
ther back in the history. This extension would result in
more accurate and reliable execution of the routine
behavior sequences.

Another question of interest is whether the robot
should be allowed to unlearn, or forget, previously cap-

tured routines. Such an extension seems natural as the
environmental features or the robot’s tasks may per-
manently change, resulting in some learned sequences
becoming useless or inappropriate. The implementa-
tion and analysis of this mechanism has been left for
future work.

While many directions are left to be explored, the
system presented here is already the first of its kind to
autonomously perform the capture and execution of
higher-level behavior sequences. The implementation
and execution of this complete system on an autonomous
humanoid robot brings us a step closer to achieving
the goal of natural and varied long-term human–robot
interaction.
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