
Redoop: Supporting Recurring Queries in Hadoop∗

Chuan Lei, Elke A. Rundensteiner, and Mohamed Y. Eltabakh
Worcester Polytechnic Institute, Worcester, MA 01609, USA

{chuanlei|rundenst|meltabakh}@cs.wpi.edu

ABSTRACT
The growing demand for large-scale data analytics ranging from
online advertisement placement, log processing, to fraud detection,
has led to the design of highly scalable data-intensive computing
infrastructures such as the Hadoop platform. Recurring queries, re-
peatedly being executed for long periods of time on rapidly evolv-
ing high-volume data, have become a bedrock component in most
of these analytic applications. Despite their importance, the plain
Hadoop along with its state-of-art extensions lack built-in support
for recurring queries. In particular, they lack efficient and scal-
able analytics over evolving datasets. In this work, we present the
Redoop system, an extension of the Hadoop framework, designed
to fill in this void. Redoop supports recurring queries as first-
class citizen in Hadoop without sacrificing any of its core features.
More importantly, Redoop deploys innovative window-aware opti-
mization techniques for recurring query execution including adap-
tive window-aware data partitioning, window-aware task schedul-
ing, and inter-window caching mechanisms. Redoop retains the
fault-tolerance of MapReduce via automatic cache recovery and
task re-execution support. Our extensive experimental study with
real datasets demonstrates that Redoop achieves significant run-
time performance gains of up to 9x speedup compared to the plain
Hadoop.

1. INTRODUCTION
Motivation. The proliferation of data and the availability of

large-scale data processing systems, e.g., the MapReduce [14] and
Hadoop platforms [28], have enabled most applications to explore
their data using data-intensive analytical tasks that were not pos-
sible before. Hadoop is a widely-used platform for such data-
intensive applications because of its scalability, flexibility, and fault
tolerance. However, as proven by a flurry of research work on
Hadoop [20, 23, 16], the scalability and distributed processing are
not enough to achieve high performance. Instead, the system needs
to be highly optimized for various query types. In this paper, we
identify a type of queries, called recurring queries, very common
∗This project is supported by NSF grants CNS-305258, IIS-
1018443 and IIS-0917017

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

in most Hadoop-based large-scale applications, yet not supported
effectively by the state-of-the-art systems.

Recurring queries appear in numerous applications that period-
ically generate and collect huge volumes of fresh data that must
be continuously integrated into the complex analysis, such as log
processing [22], news feed updates [27], and social network ser-
vices [27]. Thus, the same analytical queries are periodically exe-
cuted on data subsets identified by a sliding window on the evolv-
ing data, e.g., processing the last n hours, days, weeks, or even
months worth of data depending on the granularity of interest. As
we will highlight in the following motivating examples, recurring
queries are challenging to support because the combined charac-
teristics from both real-time continuous queries and offline ad-hoc
queries create new optimization opportunities to explore.

Example 1. Log Processing. Scalable log processing is critical
for running large-scale web sites and services. With the current log
generation rates in the order of 1-10 MB/s per machine, a single
data center may collect 10s of TBs of log data per day [22]. For
example, Facebook analyzes several TBs of log data per day by
pulling continuously generated data from hundreds to thousands of
machines, loading them into HDFS, and then running a variety of
data-intensive jobs on a large Hadoop cluster. An example recur-
ring query that would run periodically, e.g., every 12 hours or once
a day, is to aggregate the log data from the recent past, e.g., last
few days, over different dimensions, e.g., age, gender, or country
to detect emerging patterns. Such query involves expensive join
and grouping operations over high-volume evolving data.

Example 2. News Feed Updates. On modern consumer web-
sites, news feed generation is nowadays driven by online systems.
Online news services may be generated on a per-member basis
based on the member’s interactions with other components in the
system. For example, a LinkedIn member may receive periodic up-
dates on their profile changes. Computing these updates involves
deep analytical processing of large-scale data sets across multiple
sources. For example, to generate an update highlighting the com-
pany in which most of a member’s connections have worked in the
past month requires joining the company’s data of various profiles.
The update is often delivered to the members by the end of each day
or each week. Such updates could clearly be expressed by recurring
queries running over evolving data sources.

Example 3. Clickstream Analysis. One of the core applica-
tions of Internet-based companies is clickstream analysis, where
companies (acting as brokers) build models, e.g., statistical linear
regression or decision trees, that capture the relationship between
companies hosting websites (called publishers), companies adver-
tising and selling products on the publishers’ websites (called ad-
vertisers), and the end-users visiting the websites and buying prod-
ucts. These predictive models are used for deciding, within a few

1

milliseconds, which advertisement to display on a website upon
observing a user’s browsing history. The up-to-date maintenance
of these models is typically achieved by recurring queries, e.g., a
query executes every day to process the last week or two of data (in
order of 100s of TBs) to update the predictive model.

Many other data analytics applications share similar characteris-
tics with the above mentioned examples: they need to periodically
run recurring queries over large volumes of data. Even with a rel-
atively small processing window, the amount of overlapping data
between consecutive executions can be huge. Therefore, without
proper system-level support, e.g., understanding the recurring na-
ture of queries, critical optimization opportunities will be missed.

Spectrum of Recurring Queries. Recurring queries present
unique challenges to existing systems because they inherit prop-
erties from both continuous queries (in stream processing systems)
and ad-hoc queries (in batch processing systems).

Figure 1: Large-Scale Data Processing Spectrum

As shown in Figure 1, recurring queries are similar to continu-
ous queries in that both are long-lived, re-execute periodically over
the incoming data, have the notion of sliding windows, and process
(possibly) large segments of overlapping data. However, they fun-
damentally differ in that recurring queries do not mandate real-time
millisecond processing. Instead, they tend to have a large granular-
ity of execution, e.g., they may execute once every hour or every
day, and may return the results within a certain period of time, e.g.,
a few minutes to a couple of hours. Hence the systems may re-
main idle for long periods of time. Lastly, recurring queries are
inherently data-intensive disk-based queries that may process TBs
of disk-resident data in each execution. In contrast, stream process-
ing systems [4, 3, 8, 19] target main-memory real-time processing
in contrast to disk-based processing. Hence, they will not scale
to the huge volume of data being processed by recurring queries.
They will waste significant system resources by maintaining the
intermediate data in memory at all times even when the queries are
intermittently inactive.

On the other side of the spectrum, batch-processing systems,
e.g., Hadoop [28], are well-designed for scalability and disk-based
processing, which are common properties for both recurring and
ad-hoc batch queries. However, these systems [28, 5] lack the no-
tion of sliding windows. Hence they fall short in providing effi-
cient support for incremental processing over overlapping data sets.
That is, most applications using Hadoop tend to run their recurring
queries by issuing a separate query (job) for each re-execution.
Thus the system cannot leverage possible optimization opportu-
nities. This is clearly an inefficient solution especially under the
evolving infrastructure-as-a-service (IaaS) models [9], where end-
users are eager to optimize their jobs to process their data while
consuming less resources, yet finish faster.

Insufficiency of State-of-the-Art. Recently, few extensions to
Hadoop, e.g., Nova [24] and Apache Oozie [7], have been pro-
posed to address the requirements of the above applications. How-
ever, they remain far from providing an end-to-end optimized sys-
tem for supporting recurring workloads. Apache Oozie [7] is a
workflow scheduler that provides partial support by enabling de-
velopers to write scripts for automatic scheduling of jobs. Hence,
end-users would not need to re-issue the recurring query over and
over. However, Apache Oozie does not provide any system op-

timizations since it lacks the notions of sliding windows and in-
cremental processing. The Nova [24] system is one step closer to
our objective as it offers incremental processing over new batches
of data. However, Nova uses the Hadoop platform as a black box
system. It thus falls short in providing any critical system-level op-
timizations, e.g., offering neither caching of intermediate data for
reuse, cache-aware task scheduling, nor adaptive processing based
on input data rates.

Contributions. We propose a new system called Redoop that is
designed to support recurring queries. Redoop extends the Hadoop
platform to be amenable to optimization opportunities from recur-
ring queries. This paper makes the following contributions:

1. The Recurring Query Model: A recurring query model is
established to cover a wide spectrum of execution granularities. In
particular, it is specified by a window size and execution frequency.
Redoop is designed to efficiently handle recurring queries through a
best-effort proactive execution mechanism, where it adaptively de-
tects fluctuations in the data rate between different executions and
proactively starts performing partial processing to deliver results.

2. Adaptive Window-Aware Input Data Packing: We design
adaptive window-aware partitioning techniques for splitting the in-
put data into fine-grained data units (called panes) customized for
effective window-centric data consumption. The adaptive partition-
ing reduces or even eliminates costs of the repeated reading and
loading of partially overlapping panes across windows.

3. Window-Aware Caching and Maintenance: We provide
techniques to cache the intermediate data at different stages of a
MapReduce job and to create re-use opportunities across the sub-
sequent execution of recurring queries. The caching mechanism
significantly reduces I/O costs by avoiding unnecessary re-loading,
re-shuffling, and re-computation of the overlapping data.

4. Window-Aware Task Scheduling: We propose an advanced
window-aware task scheduler that exploits cache locality and re-
source usage in the system. This scheduler is tuned to maximize
the utilization of the available caches and to balance the workload
on each node to boost the system’s performance.

5. Experimental Evaluation: We evaluated Redoop using real-
world data sets on a variety of recurring workloads. Redoop out-
performs Hadoop in all cases by a factor of up to 9 on average.

The paper is organized as follows: Section 2 introduces the Re-
doop architecture. Sections 3 and 4 describe our proposed strate-
gies for adaptive input data handling and window-aware caching,
respectively. Section 5 provides system design details for the Re-
doop system. Sections 6 and 7 discuss experimental results and
related work. Section 8 concludes the paper.

2. PRELIMINARIES AND SYSTEM
OVERVIEW

2.1 Recurring Query Model
Parameters. Recurring queries execute periodically over evolv-

ing disk-resident datasets, i.e., datasets stored in HDFS. In each
execution, a query bounds its computations to a time-based win-
dow over the datasets. Therefore, a recurring query is specified by
two configuration parameters, win and slide. The window win
specifies the scope of data to process while the slide slide specifies
the frequency of execution. For example, a recurring query with
win = 12 hours and slide = 1 hour specifies a query that executes
each hour and processes the available data within the last 12 hours.

Timestamps. Between two consecutive executions Ei and Ej

at times Ti and Tj , the system may receive multiple batches of
data in the form of HDFS files, say f1, f2, ..., fn at times Tf1,
Tf2, ..., Tfn, where Ti < Tf1 < Tf2 < ... < Tfn < Tj . The

2

data records within each file will have their own timestamps. We
assume that time ranges covered by the batch files do not overlap
and are in order. That is, the time ranges covered by the tuples in
files f1, f2, ..., fn, are in the range of [Ti, Tf1), [Tf1, Tf2), ... ,
[Tfn−1, Tfn). Thus, there is an order among the files, but there is
no order constraint among the tuples within each file. The above
model is common in data analytics applications. For example, in
log processing, the system may collect the log files every other hour
from multiple machines, merge them without sorting, and upload
the file into HDFS as a new batch.

Execution. Redoop optimizes the consecutive executions of re-
curring queries through disk-based caching and incremental pro-
cessing. Even ad-hoc queries can benefit from the caching of the
intermediate data to avoid re-processing and re-shuffling of over-
lapping data segments across adjacent windows. Redoop aims to
finish the execution of a recurring query before the next execu-
tion. Therefore, if Redoop observes a peak in data arrival rates,
then it automatically applies a proactive best effort mechanism for
early processing the batch files received so far. Our Redoop sys-
tem leverages the statistics collected from the previous executions
to decide when to switch to this proactive mode. The partial results
generated from the proactive execution are merged together before
reporting to end-users. Redoop is designed as a general-purpose
system for recurring queries. It will provide the system-level opti-
mizations based on the window semantics independent of the logic
of the queries, which are defined by the end-users in the map and
reduce functions. In Section 5, we introduce several extensions to
the map-reduce model to enable users to provide their own window
specifications and finalization function that merge multiple partial
outputs and generates a final output from each execution.

2.2 Background on MapReduce Paradigm
MapReduce is a distributed programming paradigm proposed

by Google for large-scale data processing in distributed environ-
ments [14]. Given a list of <key, value> pairs as the input for a
map-reduce job, each map function produces zero or more interme-
diate <key, value> pairs by consuming one input tuple at a time.
Then, the run-time system groups the intermediate <key, value>
pairs based on their keys into buckets to be processed by the re-
duce tasks. Each reduce task consumes one group of <key, list-of-
values> at a time and produces zero or more output tuples. Next,
we briefly highlight several important components of Hadoop as
context for the architectural design changes propose in Redoop.

Input and Output Data. Hadoop utilizes the distributed fault
tolerant file system HDFS spread across the local disks of the com-
putation nodes. Hadoop reads input data from and stores output
results to HDFS. HDFS has built-in data replication strategies to
recover from failures and balance its workload.

Handling Intermediate Data. The intermediate data is shuffled
and sorted after the map stage. The intermediate data is then stored
in the local disks of the mapper nodes where they are produced. All
output tuples sharing the same key are assigned to the same reducer.
Reducers will then retrieve their inputs from multiple mappers and
start executing on their assigned groups.

Task Scheduling. A centralized component in Hadoop called
Job Tracker is responsible for dividing a job into small tasks and
assigning each task to a compute node. The Job Tracker is commu-
nicating with a local Task Tracker on each compute node to mon-
itor the overall execution of a job. Hadoop comes with different
scheduling policies, with the FIFO scheduler as the default.

Fault Tolerance. Handling failures is one of the key consider-
ations in the MapReduce architecture. In Hadoop, the distributed
file system handles the failure of disks or nodes using data replica-

tion. A failure of a map task requires the failed task re-execution
while a failure of a reduce task entails retrieving the corresponding
map outputs again and re-executing the reduce task.

2.3 The Proposed Redoop System
Figure 2 illustrates the proposed architecture of Redoop as an

extension of Hadoop. The sliding window semantics embedded
in recurring queries can result in a significant overlap of data be-
tween consecutive windows. Thus, we have designed an advanced
task execution manager for Redoop to cache input data on local
file systems of task nodes. The cached data is efficiently utilized
to reduce redundant disk I/O operations at run-time. Redoop in-
troduces an incremental processing model to allow task nodes to
asynchronously execute any map or reduce task with incremen-
tally evolving data between two query recurrences. Beyond the
map/reduce task structure of Hadoop, Redoop adds four new com-
ponents (depicted by the white boxes) along with adopting and ex-
tending several existing components from Hadoop (the light-gray
boxes) in Figure 2.

Figure 2: Redoop System Architecture
1. Window Semantic Analyzer is the optimizer that, given

the window constraints embedded in recurring queries, produces
a data partition plan. That is, it produces a plan of subdividing
input data sources into panes (i.e., separate HDFS files) with op-
timized granularity that can be most efficiently processed by map
and reduce tasks. Such plan can also eliminate any unnecessary
data re-processing caused by recurring queries (Section 3.1).

2. Dynamic Data Packer is the partition executor that imple-
ments the instructions encoded in the partition plan produced by
the above optimizer. That is, it dynamically splits very large input
data partitions into smaller panes (Section 3.2). The data packer
piggybacks the pane creation step with the loading step, i.e., while
a given input file is being loaded into HDFS, the data packer parti-
tions the records to the corresponding panes.

3. Execution Profiler collects the statistics after the completion
of each query recurrence, i.e., execution times of previous query
recurrences. The profiler then transmits the statistics to the Win-
dow Semantic Analyzer such that the pane size can be adjusted
in a timely manner during the subsequent input partitioning. The
Window Semantic Analyzer, Dynamic Data Packer, and Execution
Profiler together also determine the Redoop’s execution modes to
tackle data fluctuations (Section 3.3).

4. Local Cache Manager installed on each task node in Re-
doop maintains the Redoop caches on the node’s respective local
file system. The Local Cache Manager sends its cache meta-data to
the Window-Aware Cache Controller described below along with
its heartbeat for global synchronization. The cache manager allows
users to provide a purge policy and is responsible for purging the

3

expired caches according to the prescribed policy and the purge
notification received from the master node (Section 4.1).

5. Window-Aware Cache Controller is a new module housed
on the Redoop master node that maintains window-aware meta-
data of reduce input and output data cached on any of the task
nodes’ local file systems. This controller helps optimize query exe-
cution by providing information of window-dependent cache usage
for run-time task scheduling decisions (Section 4.2).

6. Window-Aware Task Scheduler, an extension of the default
Hadoop TaskScheduler, fully exploits the intermediate caches that
reside on the local file system for incremental window-centric pro-
cessing of input data. It also balances the workloads on each node
based on the locality of prior caches. Exploiting existing caches
and keeping the load balanced further improve the query process-
ing performance (Section 4.3).

3. REDOOP INPUT PARTITIONING
Supporting recurring queries requires Redoop to understand the

general notion of window semantics in recurring queries. This
section first introduces the Window Semantic Analyzer for recur-
ring queries used in Redoop, and then illustrates Redoop’s dynamic
data packer for input data pre-processing. Furthermore, load vari-
ances in evolving data over time require Redoop to adapt to these
changes. Variance of the input data sources (in rate and/or in val-
ues) can at times result in temporary load spikes, with the data pro-
cessing time significantly affected by the duration of the spikes.
Worse yet, the cluster resources may not be efficiently utilized and
the delayed query results may further slowdown other data analyt-
ics jobs that depend on the current query execution. To tackle such
temporary load variances, an adaptive strategy is devised during the
input partitioning.

3.1 Window Semantic Analyzer
The Window Semantic Analyzer takes as input a sequence of

recurring queries with different window constraints. Its goal is to
find an efficient strategy for partitioning the input data in a window-
aware fashion to enhance the overall system’s performance and to
minimize any redundant processing or I/O operations. The parti-
tioning strategy created by the Window Semantic Analyzer will be
executed by the Dynamic Data Packer component. The advantage
of partitioning the data into smaller panes is that it gives the sys-
tem the flexibility to create optimization opportunities between the
overlapping data across consecutive windows, e.g., Redoop pro-
cesses and shuffles each pane only once, caches the results on the
local disks of the data nodes, and re-uses them repeatedly as needed
based on the window semantics.

Next, we highlight the key challenges related to data partitioning.
1. Overlapping Data Re-computation. For consecutive exe-

cutions of a recurring query, the plain Hadoop would re-load the
overlapping data partitions from HDFS multiple times. And it is
not only about re-loading, but the processing, shuffling, and sorting
phases will be all repeated. These operations are very expensive
and would consume significant system’s resources.

2. Redundant Data Loading. Although smart caching would
solve the problem highlighted above, it may not be sufficient if the
cached data are large and not well-aligned with the window bound-
aries. In this case, unnecessary I/O operations may be inevitable.
For example, assume a recurring query with win = 4 hours and
slide = 3 hours, and the partitioning of data is performed based on
its slide size, i.e., 3 hours chunks, and these partitions are cached
on the local file system for future use. Then, in order to produce a
correct output, the system has to retrieve the cached partition and
then combine it with the newly arrived batch (which is 6-hour data

in total). This is inefficient because only 1/3 of the cached partition
is necessary in the second window. Therefore, partitioning based
on the slide size is not always the best choice, and more dynamic
partitioning is needed based on the available queries in the system.

Next, we discuss the Window Semantics Analyzer that tackles
the second challenge, while Section 4 discusses our solution to the
first challenge. The Window Analyzer takes the queries, the exe-
cution statistics from the Execution Profiler, and the HDFS block
size (default 64MB) in the Hadoop configuration as input, and pro-
duces a partition strategy as its output, also called the partition
plan. Algorithm 1 illustrates the strategy that we use to generate
the partition plan. The key idea of the algorithm is to slice the
window states into fine-grained disjoint panes based on the win-
dow constraints of individual data sources. This way the Redoop
system executes window-centric operations over those panes in a
finer-grained fashion.

In the algorithm, we use the greatest common divider (GCD)
function to determine the logical data unit, which is henceforth re-
ferred to as pane (Line 1). Given the logical pane, fileSize is the
expected size of the physical file that is to store the pane, incorpo-
rating the actual arrival rate of the corresponding data source (Line
2). Lines 3-8 choose the more effective method of representing the
pane, considering the following two cases.

1. Oversize Case: One pane corresponds to exactly one physi-
cal file (Line 4). And this file may have one or more splits (i.e., 64
MB chunks) on HDFS.

2. Undersized Case: Multiple panes together correspond to one
file (Line 7). Namely, one file contains multiple logical panes when
the input data rate is not intensive.

Algorithm 1 Input Data Source Partitioning Algorithm
Input: Query Q, Data Source Statistics S, blockSize
Output: Partition Plan PP
1: pane← GCD(Q.win,Q.slide)
2: fileSize← S.rate× pane
3: if fileSize ≥ blockSize then
4: PP ← (pane, 1, 1) // one file for one pane
5: else
6: paneNum← bblockSize/fileSizec
7: PP ← (pane, 1, paneNum) // one file for multiple panes
8: end if
9: return PP

Having such optimization on mapping logical data units to phys-
ical files, the Dynamic Data Packer can avoid creating many small
files in Hadoop. The logical pane size is 2 minutes as a result of
GCD (6, 2), namely win = 6 minutes and slide = 2 minutes. Now
consider the input rate of data source News is 16MB/minute and
the HDFS block size is default 64MB. In this case, the partition
plan for News is depicted in Figure 3, with each file denoted by
the same color.

News

t t+2 t+4Time
(s)

t+6 t+8 t+10 t+12

......

... ...

Pane i Pane i + 1 Pane i + 2 Pane i + 3 Pane i + 4 Pane i + 5

File j File j + 1 File j + 2

Figure 3: A Partition Example

3.2 Dynamic Data Packer
Given the above partition strategy, we describe how to encode

the output panes to assure subsequent effective window-centric file
access and processing. The Dynamic Data Packer takes as input:

4

1) the pane-based partitioning plan generated by the Window Se-
mantic Analyzer, and 2) the external input data sources to be con-
sumed. The main task of the dynamic data packer is to exploit the
partitioning plan at run-time to pack the input data into panes and
store them as physical files in HDFS. Note that the complexity of
the pre-processing of the input files to create the panes would de-
pend on the properties of the input files, e.g., sorted or unsorted,
and the granularity of the pane sizes to create. For example, if the
pane sizes are larger than the input files or the input files are sorted
based on the records’ timestamps, then the pre-processing involves
only scanning the files to create the panes. Otherwise, it will in-
volve a time-based partitioning to divide the records into the ap-
propriate panes. The dynamic packing uses the following naming
convention to distinguish between the two cases in Algorithm 1:

1. In the oversize case, one pane corresponds to exactly one
file. The file name follows the format S#P#, where S stands for
the data source and P for the pane identifier. For example, S1P1
corresponds to the first pane in data source 1.

2. In the undersized case, multiple panes correspond to one file.
Here the name follows the format S#P#_#, where #_# denotes the
range of logical panes contained in a file. For example, S1P1_4
indicates that this file contains the first 4 panes (i.e., panes 1, 2, 3,
and 4) from data source 1.

We also introduce a special file header to boost performance for
locating selected panes in case 2. Specifically, when a single file
contains multiple logical panes, the entire file is not always required
by an operation. Thus, a special header to such a file is designed
to reduce the latency of finding the required logical panes. This is
particularly effective when a file contains a large number of panes
caused by a relatively low input rate over a given time period.

3.3 Adaptivity in Input Data Partitioning
As described above, the Window Semantic Analyzer and Dy-

namic Data Packer together increase cache utilization and mini-
mize the query processing time for a recurring query. However,
the fluctuation in the data rate may cause a query execution to take
much longer than expected and may not finish before the next exe-
cution (if started on the scheduled next slice). In this case, Redoop
switches to a proactive processing mode, in which it will start pro-
cessing the available data and creating partial results as soon as
sufficient input data is available. This proactive approach does not
guarantee the completion before the next execution, but it is a best-
effort approach that can be very effective especially for fine-grained
recurring queries with small slide parameters.

We propose an adaptive pane-based partitioning technique to
adaptively partition a pane into sub-panes when faced with work-
load spikes. Clearly, a larger amount of input data will tend to
increase the execution time. The core idea is to exploit the statis-
tics collected from the Execution Profiler, i.e., the execution times
and the amount of data processed in the previous executions, to
adjust the pane size during the subsequent input data partitioning
process. It has been shown that the input data size is one of the
dominant factors determining the execution time of a MapReduce
job [20]. Thus, the pane size in Redoop is determined by a series of
observations of the job execution over time and the corresponding
pane sizes. Our solution is to estimate the future behavior of in-
put data sources based on these observations and then produce the
pane-based partitioning plan accordingly.

We now describe the estimation model. The Execution Profiler,
running as a separate thread, collects the statistics from previous
executions and transmits them to the Window Semantic Analyzer.
These statistics are a series of observations of the job execution
time, denoted by Xi for the i-th query recurrence. We utilize dou-

ble exponential smoothing of previous recurrences to estimate the
execution time of i+ k-th query recurrence, denoted by X̂i+k. As
statistics are collected, the value for the local mean level Li and
trend Ti of the execution time is periodically updated as follows:

Li = α ·Xi + (1− α)(Li−1 + Ti−1) (1)

Ti = γ · (Li − Li−1) + (1− γ) · Ti−1 (2)

The smoothing parameters α and γ can be selected by fitting his-
torical data (for details please refer to [12]).

Using the updated values of level Li and trend Ti, the execution
time of i+ k-th query recurrence is computed as:

X̂t+k = Lt + k · Tt (3)
If the Window Semantic Analyzer detects a potential execution

time change by using the above equations, then the current pane
size will need to change. Therefore, the Window Semantic Ana-
lyzer applies the scale factor (i.e., the ratio between the expected
execution time and the previous one) to generate a new pane size
for the input data partitioning. The new plan accommodating the
data variation is then dynamically adopted by the data packer. If the
new plan encodes a finer-granular data unit compared to the origi-
nal partition plan, then Redoop system will automatically switch to
the proactive processing mode for that query, i.e., the Window Se-
mantic Analyzer will trigger the query execution as soon as the first
data partition with the new pane size becomes available rather than
waiting for the data of a complete window to become available.

Note that this proactive approach offers several advantages com-
pared to using a fixed partitioning plan: 1) the granularity of job
executions is decreased as sub-panes will be populated faster than
entire panes or windows, 2) multiple sub-panes can be processed
concurrently at arbitrary computing nodes to further distribute and
parallelize the reduce computations, and 3) the overhead, namely,
in maintaining statistics for average pane sizes over the recent data
source history, is relatively small. As will be illustrated in the ex-
perimental section, the adaptivity mechanism can achieve up to 3x
speedup compared to the base Redoop system without adaptivity.

4. WINDOW-AWARE CACHING
To reduce the unnecessarily I/O costs resulting from the over-

lapping windows, Redoop’s task nodes cache the input data par-
titions on their local file systems for subsequent reuse. Our Re-
doop maintains caches at two stages of a MapReduce job, reduce
input and output. Both cached data need not to be loaded, pro-
cessed or shuffled again with the same mapper across windows.
Hence this reduces the processing time for recurring queries. To
facilitate caching on local nodes, Redoop maintains additional data
structures associated with these caches. Due to data sources being
updated periodically, the local file system on task nodes cannot ac-
commodate an unbounded number of historical caches. Thus, it is
imperative to purge the expired caches in a timely manner without
introducing additional overhead to the Redoop system.

4.1 Local Cache Registry
Given the above goals, we now present the meta-data structure

(meta-data) on task nodes, which allows Redoop to maintain and
use caches on each node. The cache data structure, called local
cache registry, consists of three parts, namely, a pane id (pid) in-
dicating which pane is cached on the node, a cache type (type)
indicating whether the cached pane is a reduce input cache or a
reduce output cache, and a flag (expiration) showing whether
that the cached pane is still going to be needed by any window
operations in the Redoop system. This data structure provides lo-
cation mapping so that a task node can extract a cache specific to a
certain window range from its local file system and process it with

5

respect to the corresponding reduce or finalize operation written by
the application programmer. Table 1 shows the local cache registry
containing two cache entries. S1P3 indicates that the pane is ex-
pired as a reduce output cache, and S2P4, on the other hand, is still
being used as a reduce input cache by a recurring query.

Next, we characterize how the local cache registry is maintained
under different operations during query processing.

pid type expiration
S1P3 1 1
S2P4 2 0

Table 1: Examples of a Local Cache Registry
Adding New Entry. When a new cache with pane id (pid)

is created on a node, its expiration flag is set to 0 (i.e., not
expired) and its type is set to 1 (2) if the cache is a reduce in-
put (output) cache. The new entry is simply appended to the lo-
cal cache registry on the node. The records for existing caches do
not need to be changed. After adding a new cache entry into the
registry, the node synchronizes and sends the local cache registry
to the window-aware cache controller where local cache registries
from all task nodes are consolidated. At this point, the TaskSched-
uler will consult the window-aware cache controller in order to use
the newly registered cache in future map or reduce tasks.

Updating Existing Entry. When a cache is currently being
used by a recurring query, the associated local cache entry needs
not to be updated immediately. This avoids communication costs
within the cluster. In contrast, the local cache registry is updated
only when the task node receives a notification from the window-
aware cache controller, which indicates the caches that have ex-
pired. Once received a notification, the local cache registry finds
the matching cache entries and sets their expiration flags to 1.

Updating existing entries in a local cache registry is designed to
handle cache purging. Due to the periodic updates on data sources,
the local file system on task nodes cannot accommodate an un-
bounded number of historical caches. Thus, it is imperative to
purge the expired caches in a timely manner. However, continu-
ously scanning the local cache registry would introduce additional
overhead to the Redoop system. Thus, we propose two light-weight
yet efficient mechanisms to purge expired caches on task nodes,
namely, periodic and on-demand purging. Periodic purging scans
the local cache registry periodically based on a adjustable period
threshold PurgeCycle controlled by the Redoop administrator.
During this scan, all caches with their expiration flag on will
be purged during this scan. On-demand purging instead is de-
signed for an emergency. If the local file system is at risk of running
out of space before the system begins the next periodic purging
scan, then a on-demand purging will be initiated, which deletes
any expired caches from the file system instantaneously.

4.2 Window-Aware Cache Controller
To reduce I/O costs, Redoop caches the panes on the task node’s

local file system for subsequent reuse. To further accelerate pro-
cessing, we introduce a dedicated component of the window-aware
cache controller on the master node that is responsible for main-
taining the cache information from all task nodes. Below we now
describe how Redoop maintains and exploits these caches.

Global Cache Management. The window-aware cache con-
troller maintains a summary of all local cache registries under its
control. We now design a data structure called cache signature
that consists of four parts, a cache id (pid), a node id (nid), a
type bit (type), a ready bit (ready), and a per-cache bit-mask
(doneQueryMask). Similar to the local cache registry, the type
has a domain of 3 possible values: 0 (not available), 1 (reduce in-
put cache), and 2 (reduce output cache). The ready column has a

domain of 3 possible values: 0 (not available), 1 (HDFS available),
and 2 (cache available). The doneQueryMask indicates which
queries have finished their utilization of this cache. These signa-
tures are very compact and easy to manipulate inside the cache
controller. Table 2 shows an example of the cache signature with
four cache entries.

Each bit in the doneQueryMask is associated with one dis-
tinct query. Whenever a cache being associated with a query but no
longer utilized at that time, the corresponding bit is updated to 1.
For ease of processing, the number of bits in the doneQueryMask
indicator for each cache is identical. If the cache is not used by a
given query at all, the corresponding bit is set to 1 automatically
at initialization time. Once all bits in the doneQueryMask have
been flipped to 1, this indicates that the cache will no longer be
needed by any of the queries. Consequently, the master node sends
a purge notification to the corresponding task nodes storing the
cache. This node can be easily identified by the nid field. Af-
ter receiving the notification, the local cache registry on the task
node updates the expiration field to value 1. Thereafter, the
task node purges the cache using either its periodic or on-demand
purging policy so as to free the space on its local file system.

pid nid type ready doneQueryMask
S1P3 1 1 2 10011
S1P3 1 2 2 10011

.
S1P7 1 1 2 10011

Table 2: Example of Window-aware Cache Controller

Next, we show how each bit of the doneQueryMask is updated
according to cache status matrix (Status), a dynamically updated
data structure. In addition, we also introduce the cache status ma-
trix associated with each query that models their respective window
constraints. Thus, there are up to n cache status matrices, one for
each of the n registered queries. The cache status matrix is a multi-
dimensional boolean array. Each dimension (column or row) refers
to a series of panes within one data source. Each entry in the array
is a boolean flag indicating whether the respective query operation
has or has not been completed with the corresponding panes of the
other dimensions. Querying and updating the matrix for a given
cache signature is a very efficient lookup operation. Table 3 de-
picts an example of a cache status matrix for a binary join query.
The extension to higher dimensions is straightforward.

S1P0 S1P1 S1P2 S1P3
S2P0 1 1 0 0
S2P1 1 1 0 0
S2P2 0 0 0 0
S2P3 0 0 0 0

Table 3: Example of Cache Status Matrix

Next we describe operations designed on this status matrix.
Initialization. The Status matrix is initialized when its asso-

ciated query is added to the Redoop system. The number of dimen-
sions of the Status matrix is determined by the number of data
sources involved in this query. The entries for each dimension are
directly derived from the window constraints on each source. For
example, if the window size of input data sources S1 and S2 are
both 4 hours and the pane size of these two data sources is 1 hour,
then the Status is initialized with a 4 by 4 matrix, as shown in
Table 3. All elements in status are initialized with zeros.

Update. Whenever a reduce task is completed, the element in
status is located by the indices of the panes involved in the task.
The value of the element is updated from 0 to 1, indicating this
particular task is done. For example, as shown in Table 3, assuming
that the reduce task joining S1P3 with S2P2 is completed, then

6

(a) Initial Status at 5 s (b) Update Status (c) Shift Status at 7 s

Figure 4: Operations on Cache Status Matrix

the JobTracker triggers the update of the status matrix. In the
matrix, the indices of S1 and S2 are 3 and 2 respectively. Then the
value of the element status[3][2] is updated to 1.

Expiration. As described in Section 4.1, the Redoop system
purges caches after their expiration. Checking whether or not a
pane can be safely purged is not straightforward, as the expiration
is determined by the panes in all other sources involved in the oper-
ation. For example, as shown in Figure 4, the query associated with
this matrix is a binary join of S1 and S2. The pane S1P1 expires
once it completes joining with its corresponding pane partners from
the matching data source S2. In this case, those range from S2P1
to S2P3.

To efficiently detect the expired panes that can be safely purged
from the system, Redoop computes a lifeSpan for each pane
that indicates the range of panes from the other data sources with
which each pane should be processed. Thus, a set of lifeSpan
values is associated with a given pane, namely, one per matching
join partner. Thus the cardinality of the lifeSpan set ism, where
m is the number of join partners in the operation.

Given the lifeSpan of a pane, we propose an optimized ap-
proach to determine whether or not the pane is expired. Specifi-
cally, whenever an entry in status is updated to 1, we check if
the corresponding pane of each data source is still being used by the
operation on the window that the pane belongs to. If the pane does
not belong to the current window of its data source, then we check
whether or not all elements within its lifeSpan correspond to the
value 1. Once all the elements within a pane’s lifeSpan are set
to value 1 (done), then the corresponding bit of doneQueryMask
in the global cache registry can be updated accordingly, i.e., it also
is set to 1. Namely, the pane is marked as expired with respect to
its corresponding query.

In Figure 4(b), we show how this expiration mechanism applies
to the Status matrix for a binary join query. If the current win-
dow of S1 consists of panes from S1P5 to S1P7, then S1P4 is
considered expired for two reasons. First, it is no longer part of
the current window of S1. Second, all panes of S2 within S1P4’s
lifeSpan (panes S2P3, S2P4, and S2P5) have a value of 1.
Thus, we can safely set the corresponding bit in doneQueryMask
to 1.

Purging Expired Elements. To avoid an infinite growth of the
status matrix, Redoop periodically purges the meta description
about the expired panes to accommodate for new ones. Logically,
purging is accomplished by shifting the array in each dimension
from the high-index to the low-index side. The purging task is trig-
gered periodically based on a configurable parameterPurgeCycle,
a user-defined configuration parameter in Redoop. Its default value
is the slide size Slide of the data source in each dimension. During
the shifting, we scan each element in each dimension in ascend-
ing order by pane id until an element indicates that the task has
not yet been done. Thereafter, we can safely remove the consecu-
tive “done” panes and in their place insert the same number of new
panes into the matrix with an initialized value zero.

Figures 4(b) and (c) illustrate this shifting process using an ex-
ample. Assuming that the window constraints on S1 and S2 are
the same (win = 3 mins and slide = 2 mins). Then the default
shifting period is 2 minutes (i.e., PurgeCycle = slide). Thus, the
Status matrix purges expired elements every 2 minutes. In Fig-
ure 4(b), we start scanning the matrix from S2P1 horizontally. The
first four elements in row 1 indicate that the corresponding pairs of
panes have been processed with respect to their lifeSpan. For
example, the lifeSpan of S2P2 and S2P3 are 3 and 5 panes, re-
spectively. Elements corresponding to their lifeSpan have value
1. Thus, we can safely shift up the first 4 rows in the matrix and in-
sert 4 new panes in S2’s dimension, namely, from S2P8 to S2P11.
The same process applies to S1 dimension as well. As a result, 4
new columns, from S1P8 to S1P11, are inserted into S1’s dimen-
sion. Note that, the element of (S1P5, S2P5) is not removed even
though its value is 1, because neither S1P5 nor S2P5 have com-
pletely exhausted their set of tasks with other panes within their
lifeSpan, respectively. For example, as indicated in Figure 4(b),
the elements of (S1P5,S2P6) and (S1P5,S2P7) are both still
0. Therefore, the shifted matrix status is updated only as de-
picted in Figure 4(c).

The design of the cache status matrix is compact, as the system
only keeps one such data structure for each query. Moreover, all
operations on this status matrix introduce minimum overhead
to the window-aware cache controller. Specifically, the costs of
matrix initialization, update, and expiration are linear in the size of
matrix. The shifting operation’s costs are identical to those of the
matrix initialization costs in the worst case. Also, shifting is only
triggered periodically. Thus, the maintenance of this cache status
matrix is negligible.

4.3 Cache-Aware Task Scheduling
The goal of the Redoop’s scheduler is to schedule tasks that ex-

ploit the window-centric cached partitions as much as possible, re-
ducing redundant work across window panes. For example, Fig-
ure 5 is a sample schedule for a query joining data sources S1 and
S2. To improve performance, window-centric partitions from S1
and S2 are cached and reused in the recurring query processing.

Two task nodes are involved in this job. The scheduling of win-
dow 1 in Redoop is no different than in Hadoop: the map tasks are
arbitrarily distributed across the two task nodes as are the reduce
tasks. In the join step of window 1, the input states are S1P1 and
S2P1. Two map tasks are executed, each of which loads appro-
priate window partitions from input files into the local file system.
As in the original Hadoop architecture, the map and reduce tasks
are executed with each processing the input data according to hash
values on the join attribute.

The scheduling of the join step of window 2 of data source S1
can take advantage of the cache on data source S2 produced by
window 1: the map task that processes the specific data partition
S2P1 is thus scheduled on the task node where that data partition
was processed for window 1. That is when its cache already resides
as determined by previous task scheduling decisions.

7

The schedule in Figure 5 provides the ability to reuse historical
data cached on the local file system. There is no need to re-compute
these map outputs nor to communicate them to the reducers. In
window 1, if the reducer input partitions 0 and 1 are stored on nodes
n1 and n2, respectively, then in window 2, these partitions need not
be loaded, processed, nor shuffled again. In that case, in window 2,
only the new data partitions need S1P2 to be processed. With this
strategy, the reducer input now physically comes from two different
sources: the output from the mappers (i.e., for the new input data)
and the local file system (i.e., for the caches of previous panes).

(a) Window 1 (b) Window 2

Figure 5: Cache-Aware Task Scheduling
In order to maximize the cache utilization in Redoop, we as-

sume that the number of reducers in a given job does not change
over time. Moreover, the partitioning functions used between map-
pers and reducers are fixed. Two separate lists, mapTaskList and
reduceTaskList, are introduced for each type of tasks. This sep-
aration into two lists helps the scheduler find the appropriate task
to schedule, depending on the type of the available task slot on the
task nodes. Both map and reduce task lists are associated with the
window-aware cache controller. Specifically, whenever a ready
bit of a data partition in the window-aware cache controller turns
to 1 (available in HDFS), then the task using this data partition is
added to the map task list. This new entry indicates that a map task
can now be scheduled because its data partition has newly arrived.
If the ready bit of a data partition turns to 2 (cache available 1),
then it will be matched up with the other panes (which also have
cache available) based on its lifeSpan with respect to the other
data sources. Then, the cache pairs are added to the reduce task
list. For example, whenever S2P4’s ready bit in Table 2 becomes
2, it will be paired with S1P3. As a result, the cache pair (S1P3,
S2P4) is inserted into the reduce task list. However, S2P4 would
not be paired with S1P7 since S1P7 is beyond S2P4’s life span,
assuming the window and slide sizes of S1 are 3 minutes and 2
minutes (i.e., pane size is gcd(3, 2) = 1 minute), respectively.

The cache-aware task scheduler also tries to balance the work-
loads on each node when it decides on the task assignment. That
is, if the scheduler assigns the map or reduce tasks only based on
the locality of prior caches, the nodes storing these caches could
be overloaded quickly. Thus, our scheduler combines two metrics
to improve Redoop’s performance: the load in each node and the
affinity between the newly arrival data and the cached data on each
node. The first metric is used to assign a task to the node with more
resources available, and the second one tries to additionally exploit
the locality of cache. The combined metric for task assignment is
shown below:

node = arg min
i∈N

[Loadi + Ctask,i] (4)
where Loadi indicates the current load on the ith node, andCtask,i

denotes the I/O cost for a given task. We plug in the cost model
proposed by Li et al. in SOPA [20] to calculate Ctask,i, as the
I/O cost is shown to be the dominant cost. Given a task task to
schedule, Ctask,i is lower for the nodes where the required data is
cached, and it is higher for the rest of the nodes. The node with
the minimal value from Equation 4 is selected. For example, if all
task slots of a node have been taken by map or reduce tasks, the
scheduler assigns the new task to a different node even if a fully
loaded node has the desired cache available. In this case, the cache

would not be used for this particular task and the task execution is
identical to a regular map or reduce task.

Algorithm 2 describes our proposed cache-aware task scheduling
algorithm. In the beginning of a recurring job, the tasks are sched-
uled exactly the same as what would have been done by Hadoop
(Lines 2-5). The master node gets the cache information from the
window-aware cache controller. Thereafter, the scheduler consults
the two map and reduce task lists to assign any map or reduce task
to an available node. If the map task list is not empty (Line 6),
the scheduler selects a node to assign the task from this map task
list in FIFO order (Lines 7-9). Then the scheduler updates the as-
sociated information of the data partitions that participated in the
scheduled task, such as the local cache registry, the window-aware
cache controller, and the map task list (Lines 10-12). These update
operations follow the logic described in the above subsections.

If the reduce task list is not empty (Line 13), the scheduler se-
lects the appropriate node by using Equation 4 for a reduce task
from the reduceTaskList. The selection takes both workload
balancing and cache utilization on a node into account. (Lines 14-
16). Specifically, the scheduler tries to schedule the task in which
both data partitions are available as caches. If not, the scheduler
prefers the task containing at least one partition that is available
as cache. Once selected, the scheduler removes the scheduled task
from the list and updates the window-aware cache controller ac-
cordingly (Lines 17-18).

Algorithm 2 Cache-Aware Task Scheduling Algorithm
Input: Node node, Map〈Node, List 〈Partition〉〉 cache
1: boolean start = true
2: if start = true then
3: Partition p = defaultSchedule(node);
4: cache.get(node).add(p);
5: start = false;
6: else if !mapTaskList.isEmpty() then
7: Partition p = mapTaskList.get(0);
8: node = selectNode(M, p); // select a node for a map task
9: schedule(p, node);

10: cache.get(node).add(p);
11: mapTaskList.remove(0);
12: updateCache(p); // update cache associated information
13: else if !reduceTaskList.isEmpty() then
14: Partition p = reduceTaskList.get(0);
15: node = selectNode(R, p); // select a node for a reduce task
16: schedule(p, node);
17: reduceTaskList.remove(index);
18: updateCache(p); // update cache associated information
19: end if

5. REDOOP IMPLEMENTATION
This section presents the Redoop implementation details.
Window Controller and API. As Figure 2 depicts, Redoop’s

window-aware cache controller is added as a new component to
the Hadoop architecture. For this, the task scheduler is modified
from Hadoop’s classes JobInProgress and TaskScheduler, respec-
tively. Specifically, the cache-oriented TaskScheduler fully exploits
the cache information to schedule when and which task to assign to
the available task slot.

Additionally, Redoop extends the Hadoop API to facilitate client
programming. Concretely, the programmer specifies a recurring
query by providing:

1. The computation performed by each map and reduce in the
recurring query’s body. These functions have exactly the same in-
terfaces as they do in Hadoop.

2. The window constraints ofwin and slide associated with data
sources. The constraints are used to initialize the window-aware
cache controller and to associate the input files with each pane.

8

3. To specify the inputs and output of each execution, the pro-
grammer implements two functions: GetInputPaths(int recurrence,
int win, int slide) and GetOutputPaths(int recurrence, int win, int
slide), where recurrence indicates the number of times that a win-
dow has slided. Specifically, the returned input file paths consists
of two kinds of input data, newly arrival data, and cached input
data from prior query recurrences. The returned output file path is
expected to have a unique output path for future query executions.

4. The application-specific incremental computation function fi-
nalization(int[] recurrences) (discussed in Section 2.1) expresses
different patterns of processing, such as stateless or stateful incre-
mental. Our Redoop returns the required intermediate data files
according to the recurrence numbers.

Caching. We have implemented Redoop’s caching mechanism
by modifying the classes MapTask, ReduceTask, and TaskTracker.
In map or reduce tasks, Redoop creates a directory in the local file
system to store the cached data. The directory, under the task’s
working directory, is tagged with the cache name (following the
naming convention described in Section 3.2). With this approach,
a task accessing the cache in the future can access the data for a
specific window and pane as needed. After the recurring query
finishes, all files storing cached data are removed from HDFS.

Failure Recovery. Redoop retains the desired fault-tolerance
properties of Hadoop through the following mechanisms:

1. Redoop inherits Hadoop’s strategy for task failures: a failed
task is restarted some number of times before it causes the job to
fail. Intermediate data from unexpired panes is maintained on local
disks to recover from a task failure.

2. In the case of a slave node failure, all work assigned to this
node is rescheduled. Further, any data held on the failed node must
be reconstructed. The additional failure situation is introduced by
the caches, since they are written only to local disks rather than be-
ing replicated to the HDFS. However, rebuilding these lost caches
on the failed node in Redoop is naturally achieved by re-executing
the tasks hosted by the failed node. During these task re-executions
on other nodes, the caches are re-constructed on their latest hosts
accordingly without incurring any additional costs.

3. In addition to the cache re-construction, a task failure or slave
node failure also triggers rollbacks on the data structures associated
with the cache, such as the window-aware cache controller and the
map/reduce task lists. Specifically, if a cache is lost, the ready
bit of the associated pane must be changed to 1 (HDFS-available).
The scheduled tasks, using this cache, must be removed from the
ReduceTaskList immediately by the TaskScheduler. There-
after, a new task should be inserted into the MapTaskList to re-
construct this cache as in Hadoop failure recovery is completely
transparent to user programs.

6. EXPERIMENTAL EVALUATION
The goal of this experimental study is to show that the Redoop

framework achieves its goals. Namely, we will show that: (1) Re-
doop seamlessly supports window-based recurring query process-
ing over data sources, (2) Redoop outperforms Hadoop system sig-
nificantly with caching enabled, and (3) Redoop is effective even
under input data fluctuations due to adaptivity support.

6.1 Experiment Setup & Methodologies
We implemented the Redoop framework as an extension to the

open-source Hadoop. We enriched the Hadoop framework by in-
tegrating our techniques for recurring queries. All the experiments
were conducted on a shared-nothing compute cluster of 30 slave
nodes and a single master node. Each server consisted of one quad-
core Intel Core Duo 2.6GHz processors, 8GB RAM, 76GB disk,

and interconnected using 1Gbit Ethernet. Each server ran Linux
(kernel version 2.6.18), Java 1.6, Hadoop 0.20.2. Each worker was
configured to run up to 6 map and 2 reduce tasks concurrently. The
sort buffer size was set to 512MB, and speculative execution was
turned off so to boost performance. The replication factor was set
to 3 unless stated otherwise.

Datasets. We use two real datasets. The WorldCup Click (WCC)
dataset (236GB) [1] records all 1.3 billion requests made to the
1998 World Cup Web site. The second dataset is from high velocity
sensor data (FFG) collected from a football field of the Nuremberg
Stadium in Germany [2]. The FFG dataset (26GB) is repeatedly
used for each window.

Metrics & Measurements. We measure the most common met-
ric for data management systems, namely the processing time. Our
results are the average over 10 runs. While the experiments are
reported using time-based sliding windows, count-based windows
provide similar results.

Methodology. We evaluate the performance of the Redoop sys-
tem for two key computational tasks, namely, recurring aggrega-
tion and join queries. Both are implemented in Redoop and in
Hadoop (using the traditional driver approach). For each type of
query, we compare the performance of both systems by varying the
most important parameters of the window-based recurring queries.
Specifically, our experiments vary the factor called overlap, which
corresponds to the ratio between slide size slide and window size
win, to measure scalability and efficiency of Redoop pane-based
caching on high volume data sources. Moreover, we measure how
well the Redoop system copes with the input data fluctuations. Last
but not least, we demonstrate Redoop’s fault tolerance by conduct-
ing experiments with slave node failures.

6.2 Effect of Pane-based Caching
Our incremental processing experiments evaluate the Redoop

system’s performance by varying the factor overlap = win−slide
win

,
a ratio between the slide and window size. This ratio represents the
portion of the newly arriving data tuples in the window after the
window slides. Thus, the higher the ratio is, the greater the amount
of data shared between consecutive windows.

6.2.1 Aggregation Query Evaluation
We run an aggregation query over the WCC dataset that ranks

the movements of players. Figure 6 shows the results for Redoop
and Hadoop. Overall, as the figures show, for an aggregation job,
Redoop significantly improves on the run-time when the cache is
enabled. We now describe these results in more detail.

Overall response time. In this experiment (Figure 6), Redoop
significantly outperforms Hadoop. Redoop’s task scheduling and
pane-based caching substantially reduce aggregation time. The
running time depicted in Figures 6(a), (c), and (e) (left column)
demonstrate the response time of the aggregation query for 10 win-
dows. In all three figures, for the initial window, both Redoop and
Hadoop need to process the whole window full of tuples and thus
they achieve similar performance. Hadoop is slightly faster because
it does not cache the data produced by the mappers. For the subse-
quent sliding steps (windows 2-10), Redoop benefits from the pane-
based caching, resulting in a significant advantage over Hadoop.
Reusing the cached results of previously processed data, Redoop
only needs to process the newly arriving tuples after the window
slides, and then merge all intermediate results. Figure 6(a) achieves
the best improvement (lowering the response time by a factor of 8
on average) among the three settings, because its overlap = 90%.
Namely, 90% data tuples in each window are cached on the Redoop
local file system from each previous window processing step.

Time distribution. To better understand Redoop’s improve-

9

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
s)

Window

Redoop
Hadoop

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Redoop Hadoop

R
un

ni
ng

 T
im

e
(s

ec
s)

shuffle
reduce

a) Q1, overlap = 0.9 b) Q1, shuffle v.s reduce

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
s)

Window

Redoop
Hadoop

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Redoop Hadoop

R
un

ni
ng

 T
im

e
(s

ec
s)

shuffle
reduce

c) Q1, overlap = 0.5 d) Q1, shuffle v.s reduce

 700

 720

 740

 760

 780

 800

 820

 840

 860

 880

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
s)

Window

Redoop
Hadoop

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Redoop Hadoop

R
un

ni
ng

 T
im

e
(s

ec
s)

shuffle
reduce

e) Q1, overlap = 0.1 f) Q1, shuffle v.s reduce

Figure 6: Aggregation Query Performance

ments to each processing phase, we also compared the cost dis-
tribution of the aggregation across the Shuffle and Reduce phases.
Figures 6(b), (d), and (f) (right column) show the sum of the cost
distribution of the aggregation for 10 windows. The Y axis shows
the time spent on each phase. In both Redoop and Hadoop, reduc-
ers start to copy data immediately after the first mapper completes.
“Shuffle time” is normally the time between reducers starting to
copy map output data, and reducers starting to sort copied data;
shuffling is concurrent with the rest of the unfinished mappers. The
reduce time in the figures is the total time a reducer spends after the
shuffle phase, including sorting and grouping, as well as accumu-
lated Reduce function call times. Considering all three charts, we
conclude that Redoop outperforms Hadoop in both phases.

Both the “shuffle” and “reduce” bars of Redoop are shorter com-
pared to Hadoop, because Redoop takes advantage of the cached
data. Also, the aggregation between new data tuples and cached
data is pane-based rather than tuple-based since the data in caches
is already aggregated by previous processing. Thus, the cost be-
comes negligible in Figure 6(b). By contrast, for Figure 6(f), the
cache does not help much, because the overlap (10%) is low. The
results in Figure 6 clearly demonstrate the effectiveness of our in-
cremental design gained by using pane-based caching.

6.2.2 Join Query Evaluation
We run a join query on the FFG dataset with the same system set-

tings as above. Overall, as Figure 7 shows, for a join job, Redoop
achieves better performance by winning almost an order of magni-
tude in the best case scenario with the cache enabled, as described
below.

Overall response time. Redoop’s performance shows a simi-
lar pattern with the join query on the FFG dataset. The running
times in Figures 7(a), (c), and (e) demonstrate the processing time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
s)

Window

Redoop
Hadoop

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

Redoop Hadoop

R
un

ni
ng

 T
im

e
(s

ec
s)

shuffle
reduce

a) Q2, overlap = 0.9 b) Q2, shuffle v.s reduce

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
s)

Window

Redoop
Hadoop

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

Redoop Hadoop

R
un

ni
ng

 T
im

e
(s

ec
s)

shuffle
reduce

c) Q2, overlap = 0.5 d) Q2, shuffle v.s reduce

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
s)

Window

Redoop
Hadoop

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

Redoop Hadoop

R
un

ni
ng

 T
im

e
(s

ec
s)

shuffle
reduce

e) Q2, overlap = 0.1 f) Q2, shuffle v.s reduce

Figure 7: Join Query Performance

of the join query for 10 windows. Again, for the initial window,
both Redoop and Hadoop need to process the whole window full
of tuples and thus achieve similar performance. For the subse-
quent sliding steps (windows 2-10), Redoop benefits from the pane-
based caching, resulting in a significant performance advantage
over Hadoop. Figure 6a achieves 9 fold performance improvement
by taking advantage of reusing a huge portion of its cache data
(overlap = 90%).

Time distribution. Similarly, we compared the cost distribu-
tion of the join processing across the Shuffle and Reduce phases.
Figures 7(b), (d), and (f) show the sum of the time distribution of
the join for 10 windows corresponding to different overlap set-
tings. As expected, both the “shuffle” and “reduce” bars of Redoop
are shorter compared to Hadoop, because it takes advantage of the
cache data. In particular, the reducers in Redoop only need to pro-
cess the incremental inputs and produce new results which are com-
bined with the cached reducer outputs from last occurrence to form
the final results. In contrast to the results of the aggregation query,
the time distribution is much different. Figure 7(b) shows that the
reduce phase is the dominant time. The reasons include the join
selectivity, the implementation of the join operation, etc. However,
our pane-based caching is orthogonal to these factors and the pos-
sible optimization techniques for these factors are out of the scope
of this paper. What is interesting to observe is that by exploiting
pane-base caching for recurring queries, Redoop achieves an up to
9 times performance gain compared to the basic Hadoop.

6.3 Effect of Adaptive Input Partitioning
In this experiment, we study the effectiveness of our adaptive

strategy that handles input data fluctuations. For comparison, we
again use Hadoop as baseline. We measure the processing time
for 10 windows. The workload used in this experiment varies pe-

10

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
s)

Window

Redoop+ Redoop Hadoop

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
s)

Window

Redoop+ Redoop Hadoop

 0

 1000

 2000

 3000

 4000

 5000

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
s)

Window

Redoop+ Redoop Hadoop

a) overlap = 0.9 b) overlap = 0.5 c) overlap = 0.1

Figure 8: Adaptive Input Partitioning

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

ec
s)

Window

Redoop w failures
Redoop w/o failures

Hadoop w failures
Hadoop w/o failures

overlap = 0.5

Figure 9: Fault Tolerance

riodically. Specifically, windows 1, 4, 7, and 10 have the normal
workloads. The workloads of the rest of the windows are doubled.
Figure 8 shows the processing time for 10 windows with three dif-
ferent settings (overlap = 90%, 50%, and 10%).

For very small overlaps as shown in Figure 8(a), Hadoop is out-
performed by the adaptive Redoop and even Redoop. The reason
is that when having workload spikes, adaptive processing as ex-
ploited in Redoop, smooths out the doubled workloads by starting
the query execution earlier with the newly arrival data at a finer
granularity (i.e., sub-panes). Redoop without exploiting such adap-
tive strategy would waste time on waiting for more data than what
it could possibly handle at a time. Worse yet, Hadoop uses the de-
fault batch processing strategy, which only starts processing data
whenever the window slides. On the other hand, the adaptive strat-
egy avoids creating too many small sub-panes by exploiting the
estimation model discussed in Section 3.3.

However, as the overlaps grow, we observe an interesting behav-
ior by Redoop without adaption. In Figure 8(c), we see that Redoop
only has slight gain over Hadoop. This time, the amount of data and
thus computation needed become more significant in a shorter time
period. Neither Hadoop nor Redoop without the adaptive strategy
can handle such high workload spikes. On the contrary, we ob-
serve that the adaptive Redoop starts query execution earlier rather
than waiting until all data had been received. This gives excel-
lent results, even outperforming the basic Redoop by 2.7 times on
average during the workload fluctuations. In summary, the above
results demonstrate the effectiveness of the adaptive input partition-
ing strategy in Redoop.

6.4 Fault Tolerance
Redoop and plain Hadoop will have the same behavior with re-

spect to a slave node failure. Thus, in this section, we focus on
cache failure where the cached data is lost from a given node.
As middle ground, we use a FFG dataset to run an aggregation
query with overlap = 50%. We inject cache removals at the be-
ginning of each window, and plot the running time in Figure 9,
where Redoop(f) and Hadoop(f) correspond the cases when task
failures happen, and Redoop and Hadoop to the cases without fail-
ure. As shown in Figure 9, Hadoop(f) has the worst performance
as we expected. On the contrary, the accumulative running time of
Redoop(f) is still much shorter than that of Hadoop. The reason is
that Redoop caches the intermediate data in a fine-grained unit (i.e.,
pane) rather than at the granularity of the whole window. Thus,
even some cached intermediate data is lost due to failures, Redoop
can still exploit the rest of the caches during its task execution.

Notice that Redoop(f) has a small loss for the first two windows.
This is attributed to the cold start of the query processing on Re-
doop - similar to Figure 6(a) with the same trend. What happens
is that with more windows, a larger number of panes are cached.
In short, the advantage of pane-base caching remains apparent for

Redoop even with task failures.

7. RELATED WORK
Hadoop Extension. MapReduce [14] and its open-source im-

plementation Hadoop [28] have emerged as a popular model for
large-scale distributed data processing in shared-nothing clusters.
Hence, several extensions have been proposed to improve Hadoop’s
performance w.r.t different query types, e.g., SQL-like queries [18,
25], online processing [13], and iterative queries [11]. However,
none of these systems support or optimize the data-intensive recur-
ring queries addressed in this paper.

While some studies such as HaLoop [11] and Twister [15] have
utilized disk-based caches to improve the performance of Hadoop,
their domain of queries, which is the recursive and iterative queries,
is different from ours. These systems identify and then maintain
invariant data during subsequent recursions. HaLoop [11] caches
each stage’s input and output to save I/Os during iterations. The
major difference between the aforementioned approach and Re-
doop is that we use a well-understood set of principles from win-
dow semantics [21, 29, 17] to provide an end-to-end optimization
for supporting recurring queries. Similar to HaLoop, Twister [15]
extends MapReduce to preserve data across iterations, in which
mappers and reducers are long running processes with distributed
memory caches. However, Twister’s architecture between mappers
and reducers is sensitive to failures. Also the memory cache suffers
from potential scalability issues.

Nova [24] is the most closest work to the Redoop system in that
Nova supports the convenient specification and processing of incre-
mental workloads on top of Pig/Hadoop. However, Nova acts as a
middle-ware layer on top of Hadoop that is treated as a black-box
system. Thus, Nova can identify which incremental files (deltas)
to process in each execution, but it cannot exploit the optimization
opportunities offered by Redoop including adaptive data partition-
ing, caching of the intermediate data to avoid redundant shuffling,
cache-aware task scheduling to utilize cache locality, and adaptivity
to the data arrival rate.

In-Memory Hadoop. Several recent systems have been pro-
posed to support in-memory processing on top of Hadoop including
the M3R [26], SOPA [20], C-MR [10], and In-situ (iMR) [22]
systems. In general, these systems focus on changing the disk-
based processing inherent in Hadoop into memory-based real-time
processing, and hence they cannot be applied to the disk-based
recurring queries. For example, SOPA [20] replaces the MapRe-
duce I/O intensive merge sort by hash-based in-memory process-
ing. However, not being aware of overlapping windows, SOPA
does not provide caching across MapReduce jobs. M3R [6] builds
a main-memory implementation of MapReduce and places con-
straints on the type of supported jobs imposed by available mem-
ory size. C-MR [10] supports stream processing by eliminating
disk buffers. However, C-MR focuses on aggregation queries over

11

a single stream, rather than providing a general solution of support-
ing window-based queries. Worse yet, C-MR keeps all interme-
diate workflows in a shared in-memory buffer. Consequently, no
fault tolerance is provided by C-MR. In-situ (iMR) [22] uses the
MapReduce programming interface to deploy a single MapReduce
job onto an existing data stream management system (DSMS) to
support count- or time-based sliding windows. However, iMR only
optimizes log processing applications rather than the more general
recurring queries that are our focus. Worse yet, iMR computing
nodes are fixed to specific map or reduce jobs and thus are unable
to benefit from any form of load balancing and cannot adapt to
workload or resource volatility.

Distributed stream processing systems. Distributed stream pro-
cessing systems have been proposed to enable scalable and dis-
tributed execution of the continuous queries over data streams [4,
3, 8, 19]. However, as we highlighted in Section 1, since these
systems are optimized for main-memory processing with real-time
response, they are not suitable for the disk-based data-intensive re-
curring queries. First, they will not scale well to the sheer volume
of data that must be processed by our target applications. And sec-
ond, continuously maintaining the data in memory would waste
significant system resources during the inactive periods between
recurring query executions. That is why Redoop addresses sev-
eral challenges that do not apply to streaming systems such as
disk-based caching and recovery mechanisms for cache failure, and
cache-aware scheduling of tasks.

8. CONCLUSION
In summary, this work presents the design, implementation, and

evaluation of the Redoop technology, a novel distributed system
that optimizes the recurring query processing as MapReduce jobs
on big data. Redoop offers 3 key innovations: (1) adaptive in-
cremental data processing to reduce resource utilization and to re-
duce query processing time; (2) window-aware caching to avoid re-
peated work and disk access; and (3) window-aware cache-oriented
scheduling to improve the cached data utilization and to improve
the query processing performance. Our experiments show that the
Redoop system achieves an up to 9 times performance gain com-
pared to the standard Hadoop.

9. ACKNOWLEDGEMENTS
The authors thank Lei Cao, Qingyang Wang, Medhabi Ray, and

other DSRG members for helpful discussions.

10. REFERENCES
[1] 1998 world cup. http://ita.ee.lbl.gov/html/

contrib/WorldCup.html.
[2] Soccer - real time tracking system.

http://www.iis.fraunhofer.de/en/bf/ln/
referenzprojekte/redfir.html.

[3] D. J. Abadi, Y. Ahmad, M. Balazinska, et al. The design of
the borealis stream processing engine. In CIDR, pages
277–289, 2005.

[4] D. J. Abadi, D. Carney, U. Çetintemel, et al. Aurora: A data
stream management system. In SIGMOD, page 666, 2003.

[5] A. Abouzied, K. Bajda-Pawlikowski, et al. Hadoopdb in
action: building real world applications. In SIGMOD, pages
1111–1114, 2010.

[6] A. M. Aly, A. Sallam, B. M. Gnanasekaran, et al. M3:
Stream processing on main-memory mapreduce. In ICDE,
pages 1253–1256, 2012.

[7] Apache. Oozie: Hadoop workflow system.
http://yahoo.github.com/oozie/.

[8] A. Arasu, B. Babcock, S. Babu, M. Datar, et al. Stream: The
stanford stream data manager. IEEE Data Eng. Bull.,
26(1):19–26, 2003.

[9] M. Armbrust, A. Fox, et al. A view of cloud computing.
Commun. ACM, 53(4):50–58, Apr. 2010.

[10] N. Backman, K. Pattabiraman, R. Fonseca, et al. C-mr:
continuously mapreduce workflows on multi-core
processors. In Proceedings of 3rd international workshop on
MapReduce and its Applications Date, pages 1–8, 2012.

[11] Y. Bu, B. Howe, M. Balazinska, and others. Haloop:
Efficient iterative data processing on large clusters. PVLDB,
3(1):285–296, 2010.

[12] C. Chatfield. The holt-winters forecasting procedure. Applied
Statistics, pages 264–279, 1978.

[13] T. Condie, N. Conway, P. Alvaro, et al. Mapreduce online. In
NSDI, pages 313–328, 2010.

[14] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, pages 137–150,
2004.

[15] J. Ekanayake, H. Li, B. Zhang, et al. Twister: a runtime for
iterative mapreduce. In Proceedings of the 19th ACM
International Symposium on High Performance Distributed
Computing, pages 810–818, 2010.

[16] M. Y. Eltabakh, Y. Tian, F. Özcan, et al. Cohadoop: Flexible
data placement and its exploitation in hadoop. PVLDB, pages
575–585, 2011.

[17] L. Golab. Sliding window query processing over data
streams. PhD thesis, University of Waterloo, Waterloo, Ont.,
Canada, Canada, 2006. AAINR23520.

[18] Hive. http://hadoop.apache.org/hive.
[19] C. Lei, E. A. Rundensteiner, and J. D. Guttman. Robust

distributed stream processing. In ICDE, pages 817–828,
2013.

[20] B. Li, E. Mazur, Y. Diao, et al. A platform for scalable
one-pass analytics using mapreduce. In SIGMOD, pages
985–996, 2011.

[21] J. Li, D. Maier, K. Tufte, et al. No pane, no gain: efficient
evaluation of sliding-window aggregates over data streams.
SIGMOD Rec., pages 39–44, 2005.

[22] D. Logothetis, C. Trezzo, K. C. Webb, et al. In-situ
mapreduce for log processing. In USENIXATC, pages 9–9,
2011.

[23] T. Nykiel, M. Potamias, et al. Mrshare: sharing across
multiple queries in mapreduce. Proc. VLDB Endow., pages
494–505, 2010.

[24] C. Olston, G. Chiou, L. Chitnis, et al. Nova: continuous
pig/hadoop workflows. In SIGMOD, pages 1081–1090,
2011.

[25] Pig. http://hadoop.apache.org/pig.
[26] A. Shinnar, D. Cunningham, B. Herta, et al. M3r: Increased

performance for in-memory hadoop jobs. PVLDB, pages
1736–1747, 2012.

[27] R. Sumbaly, J. Kreps, and S. Shah. The big data ecosystem at
linkedin. In SIGMOD, pages 1125–1134, 2013.

[28] The Apache Software Foundation. Hadoop.
http://hadoop.apache.org.

[29] S. Wang, E. Rundensteiner, S. Ganguly, et al. State-slice:
new paradigm of multi-query optimization of window-based
stream queries. In VLDB, pages 619–630, 2006.

12

