
Supporting Real-world Activities in Database
Management Systems

Mohamed Y. Eltabakh #1, Walid G. Aref #2, Ahmed K. Elmagarmid #3, Yasin N. Silva #4, Mourad Ouzzani ∗5

#Computer Science Department, Purdue University
West Lafayette, IN, USA

1meltabak@cs.purdue.edu
2aref@cs.purdue.edu
3ake@cs.purdue.edu

4ysilva@cs.purdue.edu
∗Cyber Center, Purdue University

West Lafayette, IN, USA
5mourad@cs.purdue.edu

Abstract— The cycle of processing the data in many applica-
tion domains is complex and may involve real-world activities that
are external to the database, e.g., wet-lab experiments, instrument
readings, and manual measurements. These real-world activities
may take long time to prepare for and to perform, and hence
introduce inherently long time delays between the updates in
the database. The presence of these long delays between the
updates, along with the need for the intermediate results to be
instantly available, makes supporting real-world activities in the
database engine a challenging task. In this paper, we address
these challenges through a system that enables users to reflect
their updates immediately into the database while keeping track
of the dependent and potentially invalid data items until they
are re-validated. The proposed system includes: (1) semantics
and syntax for interfaces through which users can express the
dependencies among data items, (2) new operators to alert users
when the returned query results contain potentially invalid or
out-of-date data, and to enable evaluating queries on either valid
data only, or both valid and potentially invalid data, and (3)
mechanisms for data invalidation and revalidation. The proposed
system is being realized via extensions to PostgreSQL.

I. INTRODUCTION

In many application domains, e.g., scientific experimenta-
tion, the cycle of processing the data to generate new results
is complex and may involve sequences of real-world activities
that cannot be coded within the database system, e.g., wet-lab
experiments, instrument readings, and manual measurements.
As illustrated in Figure 1, it is typical in scientific applications
to have the following scenario: (1) scientists retrieve values
from the database system, (2) perform one or more real-world
activities that depend on the retrieved values, and then (3)
store the output results from the performed activities back into
the database. Current database technologies do not capture
the dependencies among the data items that involve real-
world activities. Therefore, updating a database value will
render all the dependent and derived values invalid until the
external activities involved in the dependency, e.g., the wet-lab
experiment, are re-executed and the output results are reflected
back into the database. Because of this mandated unbounded
delay in propagating the updates, parts of the underlying

This research was partially supported by NSF Grant Numbers IIS 0916614
and IIS 0811954, and by Purdue Cyber Center.

Database

(2) Perform real-world activities

(1) Read values from the DB

(3) Store the output value into the DB

Fig. 1. Processing cycle involving real-world activities

database may remain inconsistent while it still needs to be
available for querying.

With current database technologies, scientists may consider
one of the following two options: (1) postpone the database
updates until all dependent processes are executed and their
outputs become consistent, and then reflect these updates into
the database at once (may involve unbounded long delays),
or (2) reflect the updates immediately into the database and
temporarily compromise the consistency of the derived data
(in this case, users may lose track of the outdated data that
need re-evaluation). Both options have serious problems as
they delegate tracking the dependencies and maintaining the
data consistency to the end-users instead of the database
management system. In this paper, we propose a third, more
appealing, option where scientists can reflect the updates
immediately into the database while the DBMS keeps track
of the derived data by marking them as potentially invalid
(outdated) and reflecting them in the queries’ results until the
external manual activities are re-executed and the outdated
values are updated.

The theory of functional dependencies (FDs) [4], [8] and
its usage in ordinary databases address an orthogonal prob-
lem to the problem highlighted in this paper. That is, even
with a good schema design of the database and following
the decomposition and normalization rules, the inconsistency
problem of the derived data still exists. Several extensions
to functional dependencies have been proposed to address
other issues, e.g., [7], [5]. However, none of this past work
can be applied directly to the problem at hand. Other works
have been proposed to support long-running transactions,
e.g., [6], by loosening the ACID properties and avoiding locks,

using optimistic concurrency control techniques, and using
compensating transactions in the case of failures. However,
these techniques still expose invalid data for querying and
hence do not address the problems raised in this paper. Other
systems such as active databases, e.g., [10], and uncertain and
fuzzy databases, e.g., [3], [9], do not focus on modeling the
dependencies that involve real-world activities among the data
items, and hence they neither keep track of the temporarily
invalid data items nor alert users when their query results
involve out-of-date values.

In this paper, we propose a system [1], [2] that enable
users to register real-world activities in the database and to
create dependencies among the data items. We categorize
dependencies into computable and real-world dependencies.
Computable dependencies involve derivation functions that can
be executed by the database system, e.g., stored functions in
the database, whereas real-world dependencies involve real-
world activities that require human intervention, e.g., wet-lab
experiment, and hence cannot be coded within the database.
The proposed system extends the functionalities of current
DBMSs to include:
• Defining dependencies based on activities: Functional De-
pendencies (FDs) capture the dependencies at the conceptual
level, i.e., at the schema-design level. In contrast, the proposed
system allows users to define real-world activities inside the
database and to express the dependencies among the data items
using these activities.
• Tracking outdated data: To maintain the consistency of
the data, the proposed system keeps track of the outdated data
items in the database by marking them as outdated to indicate
that these values are potentially invalid and need re-evaluation.
Outdated data can be reported to end-users for verification.
• Extended querying mechanisms: We propose extended
querying mechanisms that include functionalities such as alert-
ing users of any potentially invalid data items in the returned
query results, and evaluating queries on either valid data only
and avoid building on any potentially invalid attribute values,
or both valid and potentially invalid data.
•Manipulation and curation mechanisms: We propose data
manipulation mechanisms for invalidating and re-validating
the data. We also propose curation mechanisms for recom-
mending the proper execution order of the real-world activities
to revalidate the data.

The rest of the paper is organized as follows. In Section II,
we formalize the proposed system and present the needed
definitions. In Sections III, we introduce the data manipulation
and curation operators. In Section IV, we present the extended
querying mechanism. The conclusion and implementation re-
marks are presented in Section V.

II. MODELING OF DEPENDENCIES AND FUNCTIONS

In this section, we present our model and introduce the
needed definitions for functions and dependencies.

A. Definitions

Function (F): A function is a general term that refers either
to a stored executable function or to a real-world activity. A
function takes one or more input parameters and produces one
output parameter. Each function has a set of properties that

GENE table

GID StartPos GSeq GDirection GFunction

JW0013 5130 TGCT… + F1

JW0014 10916 GGTT… + F2

JW0015 21112 GGCT… + F2

JW0018 31166 CGTT… - F4

JW0019 1905 TGTG… + F5

JW0012 17404 TTCG - F7

GeneFunExp

Fig. 2. Example of real-world dependencies

specify (1) whether or not F is executable, (2) the data types
of the inputs, (3) the data type of the output, and (4) the code
(the database function name) if F is executable.

For example, referring to Figure 2, the values in the gene
function attribute are inferred from both the gene’s sequence
and direction using a wet-lab experiment GeneFunExp. This
experiment can be defined in the database as a function with
the properties Not Executable, {text, char}, text, and Null.

It is common that the values stored in one database attribute
are produced using a number of possible functions. For exam-
ple, the values in the gene function attribute can be generated
using a group of different experiment types. We capture the
fact that any of these related functions can be used to generate
the output values using the notion of a Function Family.

Function Family (FF): A function family is a set of
functions that can be used alternatively to produce the output
parameter. All functions in a function family have the same
properties.

To specify constraints on the actual dependencies, we
introduce the concept of dependency schemas. Dependency
schemas allow the DBMS to control the permitted set of
dependencies that users can define. It is analogous to table
schemas that control the structure of the actual inserted tuples.

Dependency Schema (DS): A dependency schema defines
the structure of the permitted dependencies among a set of
database attributes. A dependency schema is defined as DS=
(S, D, FF, DS-Properties), where:
• S (Source Domain): An ordered set of database attributes

that represent the source domain from which the input
parameters will be drawn. The attributes are uniquely
identified by the table and column names.

• D (Destination Range): A database attribute that repre-
sents the destination range from which the output param-
eter will be drawn. The attribute is uniquely identified by
the table and column names.

• FF: A function family that represents the set of possible
functions that can be used to map from S to D.

• DS-Properties: A set of properties of the dependency
schema that includes (1) Overlapping, and (2) Cyclic.
Overlapping indicates whether or not the destination
range can be covered by other dependency schemas.
Cyclic indicates whether or not this dependency schema
can be part of a cycle.

For example, referring to the GENE table in Figure 2,
a dependency schema DS1 = (S=[GSeq; GDirection],
D=[GFunction], FF={GeneFunExp1; GeneFunExp2}, DS-

Properties={No overlapping; No cycles}) states that attribute
GFunction depends on the pair of attributes GSeq and GDi-
rection using one of two possible experiments GeneFunExp1
or GeneFunExp2. Recall that these two experiments have to
be previously defined in the database as functions. The “No
overlapping” property indicates that there is no other means
by which GFunction can be derived or inferred. As a result, the
DBMS will reject any other dependency schema that contains
GFunction in its destination range. The “No cycles” property
indicates that DS1 cannot be part of a cycle. As a result, the
DBMS will reject any other dependency schema that forms a
cycle with DS1, e.g., schema that has GFunction in the source
domain and GSeq in the destination range.

Dependency Instance (DI): A dependency instance is
an actual dependency between a set of input parameters
(database cells) and an output parameter (database cell)
through a specific execution of a function. A dependency in-
stance is defined as DI= (DS, F, Exec-Properties,
QS, QD), where:
• DS: The dependency schema from which DI is inherited.
• F: The function involved in the dependency such that

F ∈ DS.FF .
• Exec-Properties: A set of execution properties of F that

captures the start time, end time, surrounding environ-
ment parameters, and runtime setup.

• QS: An ordered set of predicates over the tables defined
in the source domain of DS (DS.S). The number of
predicates in QS matches the number of columns in
DS.S where each predicate determines the exact table
cell in the corresponding column that will be an input
parameter to F .

• QD: A set of predicates over the table defined in the
destination range of DS (DS.D).

For example, dependency instance DI1 = (DS=
DS1, F=GeneFunExp1, Exec-Properties={start time = t1;
end time=t2}, QS =[{GID=JW0015}; {GID=JW0015}],
QD ={GID=JW0015}) inherits from the dependency schema
DS1. The first and second predicates in QS specify a database
cell in each of the GSeq and GDirection columns (the column
names are specified in DS1 schema) to be the inputs to
function GeneFunExp1 which are ‘GGCT...’ and ‘+’ in the
3rd tuple, respectively (Refer to Figure 2). The predicate
in QD specifies the database cell in the GFunction column
(‘F2’ in the 3rd tuple) to be the output from this execution
of GeneFunExp1. The DBMS enforces automatically the de-
pendency instance once defined. For example, if the sequence
of gene ‘JW0015’ is modified (the bold underlined value in
Figure 2), the DBMS marks automatically the corresponding
gene function as outdated (the dotted table cell) until exper-
iment GeneFunExp1 is re-conducted. In the example above,
all the predicates are the same because the columns are in the
same table and both the input and output parameters belong to
the same tuple. In general, the source and destination columns
may belong to different tables and hence the predicates in the
dependency instances will be different.

We summarize the process of defining the dependencies in
the database as follows: (1) define the functions and function
families that will be referenced in the database, (2) define the
dependency schemas that capture the attribute-level dependen-

cies and act as skeletons for the dependency instances, and
(3) define the dependency instances that capture the cell-level
dependencies, i.e., the exact input values, the output value, and
the execution properties of the involved function.

III. MANIPULATION AND CURATION OPERATORS

Users may invalidate (mark as outdated) or revalidate (mark
as up-to-date) the data inside the database. The invalidation
and revalidation operations are either explicit, e.g., explicitly
invalidating a suspicious piece of data, or implicit, e.g., modi-
fying an input parameter of a real-world activity will implicitly
invalidate all dependent data items until the real-world activity
is re-executed and its output result is reflected back into the
database. The invalidation and revalidation operations apply
also for functions. For example, a user may invalidate a
faulty experiment run, i.e., invalidates a specific execution
of an experiment, which in turn invalidates all data items
that depend on that specific experiment run. In all cases,
the DBMS keeps track of the cascading among the defined
dependencies and propagates the invalidation and revalidation
operations accordingly. In this section, we introduce three data
manipulation operations over a given database cell c.

Invalidate(c): invalidates c by marking it as outdated. The
DBMS recursively invalidates all data items that depend on c
either through computable or real-world dependencies. In the
case where c is already invalid, the Invalidate(c) procedure
does nothing since all dependent data items are already invalid.

Validate(c): validates c by marking it as up-to-date. The
target database cell c is validated only if all source parameters
from which c is derived are up-to-date, otherwise the validation
is rejected. If c is validated successfully, then all data items
that are derived from c through computable dependencies are
recursively validated. In contrast, data items that are derived
from c through real-world dependencies will remain invalid
until the corresponding real-world activities are performed and
their output results are updated back into the database.

Update(c): modifies the value of c and may change its status
as well. In the case where c is up-to-date, the modification in
c’s value results in invalidating all database items c’ that are
derived from c through real-world dependencies, i.e., calling
Invalidate(c’) recursively. Moreover, all database items c” that
are derived from c through computable dependencies are re-
computed and recursively updated, i.e., calling Update(c”) re-
cursively. If c is already outdated, then update(c) will validate
c only if all source parameters from which c is derived are
up-to-date, otherwise the value of c will be modified without
changing c’s status. Independent of whether c will be validated
or not, all database items that are derived from c through real-
world dependencies will not be automatically revalidated since
they are waiting on real-world activities to be performed.

In addition to the data manipulation operations, there is a
need for data curation operations to manage the dependency
graphs formed from the user-defined dependencies. These
dependency graphs involve both computable and real-world
dependencies as illustrated in Figure 3. For example, data
item ‘7’ is derived from both data items ‘3’ and ‘4’ through a
real-world activity, whereas ‘6’ is derived from ‘3’ through a
computable function, e.g., stored function inside the database.
In the proposed system, a database item can be an output

1

2 3

5 6 87

9

4

10

x x

xx

xx

x

1

2 3

5 6 87

9

4

10

x

x

xx

x

(a) Modifying Item 1 results in re-computing
Items 2 and 5, and marking the other items as
outdated.

(b) Re-evaluating and validating Item 3
result in re-computing and validating Item
6 automatically.

Computable Dependency

Real-world Dependency

Up-to-date node

outdated nodex

Fig. 3. DAGs generated from the user-defined dependencies

parameter to at most one dependency instance, i.e., a specific
value in the database cannot be computed or inferred by
two different means. Based on this property, the formed
dependency graphs are in fact directed acyclic graphs (DAGs).
The order of re-validating the data items inside the database is
important. For example, if two tandem real-world activities A
and B, where A is feeding its output to B, are invalidated, then
B cannot be validated until A is validated. Curation operators
support operations such as: (1) Reporting the database items
that are ready to be validated, i.e., database items that do not
depend on other invalid data items, (2) Reporting a plan (order)
by which users can re-validate all the potentially invalid data
items in the database, and (3) Reporting the database items
that need to be validated before validating a given database
item I. We introduce the following curation operators:
• OutdatedRoots(): Returns the set of outdated database

items that are ready to be validated, e.g., the outdated roots
in Figures 3(a) and (b) are the sets {‘3’, ‘4’}, and {‘4’},
respectively.
• PreValidation(I): Returns an ordered set (based on the

validation order) of outdated database items that need to
be validated by the user before validating database item I,
e.g., PreValidation(‘9’) in Figure 3(a) returns the ordered
set {‘3’, ‘4’, ‘7’}. Notice that the curation operators need
to take into account the type of the involved dependencies,
i.e., whether a dependency is computable or real-world. For
example, data item ‘6’ is not reported to users as a pre-required
validation of data item ‘9’ because ‘6’ will be validated
automatically once ‘3’ is validated as illustrated in Figure 3(b).
• PostValidation(I): Returns the set of outdated database

items that will be ready for validation once data item I is
validated, e.g., PostValidation(‘4’) in Figures 3(a) and (b)
returns the sets {‘8’}, and {‘7’, ‘8’}, respectively.

IV. QUERYING MECHANISMS

In the proposed model, some values of the underlying
database are marked as valid (up-to-date), while the other
values are marked as potentially invalid (outdated). Therefore,
it is important for the querying mechanism to report back, as
part of the query results, the status information of the values
in the results. We extend the querying mechanisms to include
the following functionalities:
• Annotating query results with status information: Query

operators are extended to propagate automatically the status
information of the data items appearing in the query results,
i.e., each value in the query result has an attached flag

indicating whether the value is up-to-date or outdated. For
example, referring to Figure 2, the following select statement,
"Select GFunction From GENE", returns value ‘F2’
that corresponds to gene ‘JW0015’ marked as outdated while
all the other function values marked as up-to-date.
• Querying only up-to-date data: We define new query

operators that allow users to execute their queries over only
the up-to-date data values and exclude the outdated val-
ues even if they satisfy the query predicates. For example,
the following select statement, "Select * From GENE
Where GFunction =@ ‘F2’", returns the information
corresponding only to gene ‘JW0014’ (2nd tuple in Figure 2).
The ‘=@’ operator is a newly defined equality operator that
returns True only if the matching value in the database is up-
to-date, and False otherwise.
• Querying outdated data: Some users may prefer con-

servative query answers that include tuples having the po-
tential to satisfy the query predicates. For example, the fol-
lowing select statement, "Select * From GENE Where
GFunction =- ‘F1’", returns the information corre-
sponding to genes ‘JW0013’ and ‘JW0015’ even if the latter
gene does not currently satisfy the query. The reason is that the
function of gene ‘JW0015’ is under re-evaluation and it may
satisfy the query predicate once corrected. The ‘=-’ operator is
a newly defined equality operator that return True if the value
in the database qualifies a given predicate or if the value does
not qualify but it is under re-evaluation (outdated).

V. CONCLUSION

Integrating real-world activities into the database engine is a
challenging task especially because it affects the consistency of
the data. In this paper, we addressed several of these challenges
including: (1) Enabling users to define real-world activities in
the database and to express dependencies among the data items
using these activities, (2) Keeping track of any temporarily
outdated data values and reflecting their status over the query
results, (3) Proposing new data manipulation and curation
mechanisms to support the invalidation and re-validation of
data, and (4) Proposing extended querying mechanisms that
enable evaluating queries on either up-to-date data only or
both up-to-date and outdated data.

REFERENCES

[1] M. Eltabakh, M. Ouzzani, and W. Aref. bdbms: A database management
system for biological data. In CIDR, pages 196–206, 2007.

[2] M. Eltabakh, M. Ouzzani, W. Aref, A. Elmagarmid, Y. Laura-Silva,
M. Arshad, D. Salt, and I. Baxter. Managing biological data using
bdbms. In ICDE, pages 1600–1603, 2008.

[3] J. Galindo, A. Urrutia, and M. Piattini. Fuzzy databases: Modeling,
design, and implementation. Idea Group Publishing, 2006.

[4] D. Maier. Theory of relational databases. In Comp. Sci. Press, 1983.
[5] M. K. Mohania, P. R. Krishna, K. V. P. Kumar, K. Karlapalem, and

M. W. Vincent. Functional dependency driven auxiliary relation selection
for materialized views maintenance. In COMAD, pages 37–45, 2005.

[6] H. Molina and K. Salem. Sagas. SIGMOD Rec., 16(3):249–259, 1987.
[7] A. D. Sarma, J. Ullman, and J. Widom. Functional dependencies

for uncertain relations. Technical Report Technical Report, Stanford
University, 2007.

[8] J. Ullman. Principles of database and knowledge-base systems. In Comp.
Sci. Press, volume 1, 1988.

[9] J. Widom. Trio: A system for integrated management of data, accuracy,
and lineage. CIDR, pages 262–276, 2005.

[10] J. Widom and S. Ceri, editors. Active Database Systems: Triggers and
Rules For Advanced Database Processing. Morgan Kaufmann, 1996.

