
Noname manuscript No.
(will be inserted by the editor)

Adaptive Correlation Exploitation in Big Data Query Optimization

Yuchen Liu, Hai Liu, Dongqing Xiao, Mohamed Y. Eltabakh
Worcester Polytechnic Institute (WPI), Computer Science Department, MA, USA
{yliu4, hliu2, dxiao, meltabakh}@cs.wpi.edu

the date of receipt and acceptance should be inserted later

Abstract Correlations among the data attributes are abun-
dant and inherent in most application domains. These corre-
lations, if managed in systematic and efficient ways, would
enable various optimization opportunities. Unfortunately,
the state-of-art techniques are all heavily tailored towards
optimizing factors intrinsic to relational databases, e.g.,
predicate selectivity, random I/O accesses, and secondary
indexes, which are mostly not applicable to the modern big
data infrastructures, e.g., Hadoop and Spark. In this paper,
we propose the EXORD+ system for exploiting the data’s
correlations in big data query optimization. EXORD+ sup-
ports two types of correlations; hard (which does not allow
for exceptions) and soft (which allows for exceptions). We
introduce a three-phase approach for managing soft correla-
tions including: (1) Validating and judging the worthiness of
soft correlations, (2) Selecting and preparing the soft corre-
lations for deployment, and (3) Exploiting the correlations
in query optimization. EXORD+ introduces a novel cost-
benefit model for adaptively selecting the most beneficial
soft correlations given a query workload. We show the com-
plexity of this problem (NP-Hard), and propose a heuristic
to efficiently solve it in a polynomial time. Moreover, we
present incremental maintenance algorithms for efficiently
updating the system’s state under data appends and work-
load changes. EXORD+ prototype is implemented as an
extension to the Hive engine on top of Hadoop. The ex-
perimental evaluation shows the potential of EXORD+ in
achieving more than 10x speedup while introducing mini-
mal storage overheads.

This project is partially supported by NSF-CRI 1305258 grant.

Authors’ address:
Worcester Polytechnic Institute
100 Institute Rd., Worcester, MA, USA, 01609.
Tel.: +1-508-831-6421
Fax.:+1-508-831-5000

1 Introduction

Most big data applications involve numerous correlations
and relationships among their data attributes. These correla-
tions range from “hard correlations” that must be satisfied
by all data tuples, to “soft correlations” that are satisfied
by most (but probably not all) data tuples. For example, in
transaction log applications, a zip code attribute may im-
ply the location attributes, e.g., city and state (hard correla-
tion), whereas in online marketing applications, a delivery
date can be within 3 to 10 days of the shipping date in most
cases (soft correlation). In general, a “correlation” from one
attribute A1 to another attribute A2 means that their values
are not independent. Instead, a value in A1 may determine
a unique value, a possible range, or a list of possible values
for the corresponding A2 attribute.

In traditional DBMSs, defining these correlations has an
immense advantage in both data integrity [11], and query
optimization [3,15,17,18]. Unfortunately, no similar tech-
nology for capturing and exploiting the data’s correlations
has been investigated in big data infrastructures such as
Hadoop and Spark systems. As a result, such important data
properties have been abandoned by the state-of-art big data
optimization techniques.

1.1 Benefits in Big Data Query Optimization

A key challenge in exploiting the data’s correlation in query
optimization is that domain experts may only be able to
provide their expectations on the possible correlations with-
out guarantees, i.e., most correlations are soft correlations.
There can be many of such candidate correlations with no
clear evidence on which ones are truly useful. In the follow-
ing motivation scenarios, we demonstrate that despite the
uncertainties inherent in these correlations, they still carry
big opportunities for query optimization.



2 Y. Liu, H. Liu, D. Xiao, M. Eltabakh

Motivation Scenario 1− Online Marketing and Usage
of Data Indexing: Analytics over transaction logs generated
from online marketing is a typical big data application. An
example of soft correlations that may exist among the data
attributes is that the delivery date in most cases (but not
necessarily all cases) is within 3 to 10 days from the ship-
ping date. Assume the dataset already has an index on the
shipping date to efficiently answer queries involving a selec-
tion predicate on that attribute, e.g., [5,7,9]. However, the
crucial limitation of these techniques is that queries involv-
ing selection predicates on the delivery date cannot be op-
timized, and would require a full scan over the data. More-
over, given the correlation’s uncertainty, a query issuer can-
not manually translate the predicate to a corresponding one
on the shipping date (by going backward 3 to 10 days), and
then filtering the results. This blind re-writing may generate
wrong results by missing the tuples satisfying the original
query but not conforming with the soft correlation.

Motivation Scenario 2− Airline Analytics and Usage
of Data Partitioning: Airline analytics companies manage
very large data about customer requests, flight status, seat
availability, and airport traffics. Most of the major air-
ports worldwide have a unique three-character code, called
IATA, which identifies the airport, and hence identifies its
city and country. However, many small airports—usually
with very limited traffic—do not have IATA code (denoted
as “***”), and thus this “***” code neither identifies the
city nor the country. Therefore, there is a soft correlation
from the airport code to the country. Assume the data is al-
ready partitioned on the country attribute to optimize cer-
tain queries [10,16]. The limitation now is that queries in-
volving predicates on the airport code would require a full
scan over the data without making any use of the avail-
able partitioning. The challenge is that in the general case,
the values violating the correlation may not be known in
advance, e.g., each country may assign random code for
these small airports of infrequent traffic, and thus manual
re-writing to optimize the query is not feasible.

Clearly, the soft correlations mentioned above open big
opportunities for query optimization—especially if we can
leverage any available indexing [5,7,9] or partitioning [10,
16] on the data, without the need to create additional ones.
This is crucial because building auxiliary structures over big
data is very expensive in both time and storage [7,9,10], and
thus should be kept to minimal whenever possible (Refer
also to our analysis in Section 7). For example, referring
to Motivation Scenario 1, creating an additional index on
the delivery date field to remedy the problem may not be a
justified solution because the index may not be used with
enough frequency to redeem its cost.

1.2 Limitations of Existing Techniques

Exploiting soft correlations in query optimization is not a
new problem and it has been previously studied in the con-
text of relational databases, e.g., [3,15,17,18]. However, as
we will discuss in Section 8, most of these techniques have
objectives that are specific only to RDBMSs, e.g., enhanc-
ing the selectivity of conjunctive predicates, avoiding ran-
dom I/O accesses, and enhancing the usage of secondary
indexes. These issues, although fundamental in RDBMSs,
are not applicable to the highly-distributed big data infras-
tructures, e.g., Hadoop. For example, Hadoop has two rigid
execution plans; either map-only or map-reduce, and pred-
icate selectively plays no role on deciding the execution
plan. Moreover, given the distributed retrieval of the data in
Hadoop clusters, there is no notion of random I/Os. Finally,
given the batch nature of big data queries, in which millisec-
onds are not a big deal (unlike RDBMS queries), it is always
safe in Hadoop-like systems to use indexes to answer selec-
tion queries regardless of their predicate selectivity (we will
show that the worst case has little overhead over full scans).

1.3 EXORD+and its Contributions

In this paper, we propose the “EXORD+” system for
Exploiting soft and hard correlations in big data query opti-
mization (Refer to Figure 1), which is an extended version
to our previous system [19]. EXORD+ targets the emerg-
ing Hadoop-like batch processing infrastructures, which
are fundamentally different from RDBMSs in their distri-
bution nature, query processing, data retrieval, and index
access patterns. EXORD+’s main objective is to perform
correlation-based query re-writing to trigger the usage of
any available indexing or partitioning over the dataset, and
thus avoid full scan plans. EXORD+ introduces the follow-
ing contributions:

(1) Balancing between System-Discovered and User-
Defined Approaches: All existing techniques go one ex-
treme, which is a full discovery-based approach [3,15,17,
18]. Although flexible, this approach puts major restrictions
on the discovered correlations, e.g., BHUNT [3] is only lim-
ited to numerical attributes and the correlations must be in
the form of a simple algebraic expression of one operator {+,
-, *, or /}. The other extreme that fully relies on domain ex-
perts to precisely define the correlations present in the data
is also a non-practical approach.

EXORD+ puts a more practical assumption that domain
experts have some (possibly uncertain) knowledge on the
candidate correlations that may exist in the dataset. There-
fore, EXORD+ introduces and enables defining two types
of correlations; hard and soft correlations. Then, the system
takes the liability of automatically validating, assessing, and



Adaptive Correlation Exploitation in Big Data Query Optimization 3

Indexing  
Techniques 

Materialization 
Techniques 

Partitioning 
Techniques 

Big Data Infrastructure (E.g., Hadoop) 

…	 Preparation 
Phase 

Deployment 
Phase 

Strategy for 
Handling 
Violations 

Use in Query 
Optimization 

EXORD+ Engine 

Validation Validation Validation 

Statistics 
collection  

Selection & 
Optimization Deployment 

Cost-based 
selection 

Exploitation in 
query re-writing 

Incremental  
Maintenance Data	&	Workload		

changes	

Fig. 1 EXORD+ Architecture.

deploying the useful ones. Correlations in EXORD+ can be
between any pair of attributes either numerical or categori-
cal, and the relationship logic may range from complex ex-
pressions to general look-up functions.

(2) Multi-Phase Management of Soft Correlations:
EXORD+ introduces a three-phase pipeline for managing
soft correlations (See Figure 1). The first phase is for collect-
ing statistics and gathering information (Validation Phase),
followed by a phase in which the system decides on the best
strategy for handling the violating records (Selection and
Optimization Phase). We propose two different violation-
handling strategies, namely Exclusion and Materialization,
which are suitable under different scenarios. Finally, the cor-
relations worthy of being used are prepared for the query
optimizer (Deployment Phase).

(3) Optimized Resource Management: Preparing the soft
correlations to be usable by the query optimizer involves a
cost for handling the violating records. Therefore, given a
set of candidate correlations and limited system resources,
deciding on which ones to select and be more beneficial
to a given query workload turns out to be a complex NP-
Hard optimization problem. EXORD+ introduces a novel
cost-benefit model for soft correlations augmented with a
heuristics-based algorithm under which it adaptively and dy-
namically selects the most beneficial correlations in a prac-
tical polynomial time.

(4) Adaptivity to Incremental Data Appends and Evolv-
ing Workloads: Data appends and evolving query work-
loads are practical issues in most applications. Adaptive cor-
relation maintenance is overlooked by all existing systems
in literature. EXORD+ introduces an incremental mainte-
nance approach integrated into its cost-benefit model to ef-
ficiently update the system’s state without the re-computing
the multi-phase pipeline from scratch (See Figure 1).

The core features of EXORD+ are infrastructure-
independent, and hence they are applicable to big data query
optimization in general. As a proof of concept, EXORD+

prototype is built on top of the Hadoop infrastructure and
it uses Hive as its high-level query engine. We opt for Hive
since it assumes a known structure for the data, which facil-
itates defining the correlations among the data attributes.

We utilized EXORD+ on top of two well-known opti-
mization strategies in Hadoop, i.e., indexing, and partition-
ing. EXORD+ extends the benefits of these strategies be-
yond their targeted attributes to optimize a broader class
of queries. The system’s empirical evaluation shows that
EXORD+ enables optimization opportunities that the state-
of-art techniques fail to discover. These optimizations lead
to up to 12x speedup in some queries.

The rest of the paper is organized as follows. Section 2
introduces the formal definitions of EXORD+ correlations.
In Section 3, we present the first two phases of EXORD+’s
framework under a static environment, namely the Valida-
tion and Selection and Optimization phases. In Section 4, we
propose enhancements and extensions to these two phases,
and in Section 5, we propose the adaptive and incremen-
tal maintenance mechanisms under a dynamic environment.
The deployment phase is presented in Section 6. In Sec-
tions 7 and 8, we present the experimental evaluation results,
and the related work, respectively. Finally, the conclusion re-
marks are included in Section 9.

2 Preliminaries

2.1 EXORD+ Correlations

In this section, we define the target queries to be optimized
by EXORD+, and formally introduce our definition of cor-
relations.

Definition 1 (Target Equality-Predicate Query) A target
equality-predicate query is a query involving an equality
predicate (Src = a), where Src is a data attribute of any
type, a is a constant value, and Src has no associated ac-
cess method to evaluate its predicate other than a full scan.

EXORD+’s goal is to leverage any available correlation
related to Src to re-write the query in terms of another at-
tribute that has more efficient access methods, e.g., index-
ing or partitioning, to evaluate its predicates. For the ease
of presentation, we focus now on queries involving equality
predicates as defined in Def. 1, and in Section 6.2, we re-
lax this definition to include range-predicate queries under
certain restrictions.

Definition 2 (Correlation) A correlation C over a given
dataset is a directed relationship from one attribute, called
“source”, to another attribute called “destination”. The



4 Y. Liu, H. Liu, D. Xiao, M. Eltabakh

correlation defines how the source’s values can be mapped
to the destination’s values. C is defined as a five-ary vec-
tor 〈Src, Dest, Type, Granularity, F ()〉, where, Src,
and Dest, are the source, and destination attributes of the
correlation, respectively, Type is the correlation’s type as
either “Hard” or “Soft”, and Granularity is the granular-
ity of mapping from a given source’s value to the destina-
tion value(s), and it takes either of the values “Singleton”
(one-to-one mapping), “Range” (one-to-range mapping), or
“List” (one-to-list mapping). Finally, Function F(s) is the
mapping function that takes a value s ∈ Src and returns its
corresponding mapping in Dest. Depending on the granu-
larity, F(s) returns either of a single value (for “Singleton”),
a list of values (for “List”), or a record {lower, upper} (for
“Range”).

For a given correlation C and a data record r, we use the
the notations “C � r” (or “C 7 r”) for indicating that the
correlation holds (or does not hold) over r, respectively.

Example 1: Referring to our motivation scenar-
ios, the correlation in Scenario 1 can be formu-
lated as: 〈deliveryDate, shippingDate, “Soft′′, “Range′′, F ()〉,
where for a given delivery date d, F (d).lower = (d
- 10 days), and F (d).upper = (d - 3 days). In con-
trast, the correlation in Scenario 2 can be formulated as:
〈airportCode, country, “Soft′′, “Singelton′′, F ()〉, where for
a given airport code a, Function F () lookups a small table
having the list of distinct airport codes and returns the cor-
responding country (For the special code “***”, the func-
tion returns Null).

In general, EXORD+ treats Function F ()—which is
provided by the system admin—as a black box without the
need to know its internal logic. The only requirement is that
F () should be a low-cost light-weight function that can be
executed with a very little cost per record. This requirement
is neither restrictive nor limiting the applicability of the sys-
tem because: 1) The Src and Dest attributes in a corre-
lation can be of any data type or domain and they can be
numerical or categorical, and 2) The mapping function F ()
may range from any mathematical or algebraic expression
to general light-weight lookup functions that search some
auxiliary structures and perform the mappings.

Definition 3 (Hard Correlation) A hard correlation C is
a correlation having C.Type = “Hard” and it is guaranteed
to hold for all records in the dataset D, i.e., C � r ∀r ∈ D.

Unlike hard correlations, soft correlations have a degree
of uncertainty and not all of them are useful, e.g., the vio-
lations for a given correlation can be too many. Therefore,
depending on the degree of violations, we categorize soft
correlations into Valid (useful) and Invalid (useless) as fol-
lows.

… ShippingDate DeliveryDate … 

May-2-2017 May-7-2017 

Nov-13-2017 Nov-19-2017 

Nov-3-2017 Nov-19-2017 

Nov-5-2017 Nov-19-2017 

Dec-2-2017 Dec-9-2017 

Dec-8-2017 Dec-9-2017 

… … 

Distinct Violating values 
{Nov-19-2017, 
  Dec-9-2017} 

C.Src	C.Dest	

Violating 
Records 

Fig. 2 Example of Violating Values and Violating Records (Refer to
Example 1).

Definition 4 (Violating Value) Given a dataset D and a
soft correlation C, a value v ∈ C.Src is called a violating
value iff ∃ r ∈ D, r.Src = v | C 7 r.

Example 2: Continuing with Example 1, and referring
to Figure 2, a value in the DeliveryDate column (which
is the correlation’s Src column) is considered a violating
value if it has at least one record in violation, e.g., Dates
{Nov-19-2017, Dec-9-2017}. This indicates that it is not
safe to blindly use the correlation on the transactions having
these delivery dates.

Definition 5 (Valid Soft Correlation) For a soft correla-
tion C of C.Type = “Soft”, let Φ(C) denotes the set of dis-
tinct violating values in C.Src (with cardinality |Φ(C)|),
and Γ (C) denotes the set of violating records in the dataset
(with cardinality |Γ (C)|). Given two user-defined thresh-
olds MaxVioDistinct > 1 and MaxVioRec > 1 (Typically
MaxV ioDistinct << MaxV ioRec), C is called “valid”
iff either (or both) of the following two conditions is met,
otherwise C is called ”invalid”.

(1) |Φ(C)| ≤MaxVioDistinct,
(2) |Γ (C)| ≤MaxVioRec

According to Def. 5, EXORD+ considers a soft correla-
tion to be valid (useful) when it satisfies at least one of the
two given conditions. The following example illustrates the
intuition behind having these two conditions.

Example 3: Continuing with Example 1, assume a large
transaction log dataset containing all the transactions deliv-
ered in Year 2017: R( ..., ShippingDate, DeliveryDate, ...).
The dataset consists of 109 records, and the two date fields
are at the granularity of a day (See Figure 2). The soft cor-
relation presented in Example 1 is defined on the dataset
(referred to as C).

Case 1: When testing C over R’s records, a large num-
ber of transactions is found to be in violation (say 5× 107),
which might not be feasible to keep track of all of them.
However, all these violating records are happening around
the Christmas season, i.e., in the two months of November
and December. In this case, according to Condition 2 in



Adaptive Correlation Exploitation in Big Data Query Optimization 5

Def. 5, C is useless because there are too many violating
records. However, Condition 1 enables EXORD+ to con-
sider C useful by not tracking the violating records them-
selves, but by only memorizing that the 61 days of Novem-
ber and December are violating values. Transactions in any
other date can make use of the correlation.

Case 2: When testing C over R’s records, only 105

records are found to be in violation, which represents 0.01%
of the original dataset size. However, these records are scat-
tered across all days of 2017, e.g., in each day some transac-
tions are in violation. In this case, according to Condition 1
in Def. 5, C is useless because all days have to be excluded
from using the correlation. Nevertheless, Condition 2 still
enables EXORD+ to consider the correlation useful since
the number of violating records is small.

2.2 MapReduce Overview

EXORD+ targets the emerging batch processing highly-
distributed infrastructures that are based on the MapReduce
architecture. In this section, we briefly overview the building
blocks of this architecture.

MapReduce Architecture: MapReduce is a popular
widely-used architecture for managing big data. It is a batch-
processing distributed architecture, where the data is up-
loaded to the system in big batches, e.g., large files of 100s
of MBs or GBs of data. Then, users submit offline queries
(A.K.A jobs) for processing the data. Common infrastruc-
tures that support this architecture are Hadoop [24] and
Spark [27]. Other higher-level engines have been developed
on top of these infrastructures to support structured data pro-
cessing and SQL-like capabilities, e.g., Hive (for Hadoop)
and SparkSQL (for Spark).

Job Tracker: This is the master node in a Hadoop’s
cluster. It receives a user’s job, decides how many tasks to
initiate, and where each task will execute (on which ma-
chine). Once tasks (map or reduce) are initiated, they work
in total isolation of each other until completion—with the
exception of heartbeat signals to report their progress and
indicate that they are still alive.

HDFS File System: Hadoop operates on a distributed
file system, called HDFS. Typically, applications upload
large files into HDFS. Each file gets automatically parti-
tioned into blocks, called HDFS blocks, of size 64MBs,
which is the default setting. However, applications can
change such configurations as desired. Then, each block is
replicated in HDFS three times (again the replication factor
can be configured by applications).

Map Phase: Any Hadoop job must involve a map phase
in which Hadoop creates a number of map tasks, also called
mappers, where each mapper is assigned one of the input
file’s blocks. A mapper reads the assigned block record-by-
record, and for each input record, it executes the plugged-in

application logic, and produces zero, one, or more output
records. The output records must follow the format of <key,
value> pairs. If the Hadoop’s job involves only a map phase,
then the output is written back to HDFS. Otherwise, the out-
put is automatically fed to the following phases.

Shuffle/Sort Phase (Internal Phase): If Hadoop’s job
involves map-reduce phases, then the output from the map-
pers goes first through the internal shuffle/sort phase. In this
phase, the data is automatically re-partitioned based on the
key value produced from the mappers such that all records
having the same key form one group in the form of <key,
{v1, v2, ..., vn} >. This phase involves shuffling the data
across machines—based on a hashing function, and then
sorting the records in each machine to form the groups.

Reduce Phase: This is the last phase of a Hadoop’s job
in which Hadoop executes a set of reduce tasks, also called
reducers. The number of these reducers typically depends on
the cluster configuration (independent of the data size). Each
reducer consumes as input a group-at-a-time from the set of
assigned groups, executes the plugged-in application logic,
and produces zero, one, or more output records. The output
records must follow the format of <key, value> pairs, and
they are written to HDFS.

Hive Engine: Apache Hive [25] is a SQL-like engine
implemented on top of Hadoop to seamlessly support struc-
tured data. Hive allows users to create a relational schema
(set of tables) to store their data. In our EXORD+ system, a
dataset corresponds to one Hive table. All metadata informa-
tion related to a dataset, e.g., column names, and partition-
ing and ordering information, is defined while creating the
table. Ultimately, a Hive table maps to a directory in HDFS,
and any loaded files to that tables are stored as HDFS files
under that directory. Hive maintains all the metadata infor-
mation in a light-weight repository, called Hive Metastore.
EXORD+ makes use of this Metastore to store various types
of correlation-related information.

3 EXORD+ under Static Environment

As illustrated in Figure 1, the management of soft corre-
lations is carried out using a multi-phase approach. In this
section, we focus on the first two phases; the Validation
Phase, and the Selection & Optimization Phase, under the
assumption of a static environment, i.e., static dataset and
query workload. We present various extensions to these two
phases in Section 4, and then consider the adaptivity under
a dynamic environment in Section 5.

3.1 Validation Phase

Assume a dataset D and a set of soft correlations in their
validation phase V = {C1, C2, ..., Cn}. EXORD+ executes



6 Y. Liu, H. Liu, D. Xiao, M. Eltabakh

Table 1 Testing correlation Ci over a given record.

Correlation Granularity Test Format
Singleton Dest = Ci.F(Src)
Range Dest ≥ Ci.F(Src).lower And

Dest ≤ Ci.F(Src).upper
List Dest in Ci.F(Src)

a statistics collection task over D, called StatsCollection,
to gather the needed statistics over each correlation. This
task is a map-only job that checks each input record r ∈ D
against each soft correlation Ci ∈ V according to Ci’s gran-
ularity as highlighted in Table 1.

EXORD+ allows the StatsCollection task to be either
manually triggered by users as a stand-alone task (through a
high-level ‘‘ASSESS CORRELATIONS ...’’ command), or
automatically triggered and piggybacked on the first user’s
job scanning the data. A Boolean system-level configura-
tion parameter (PiggybackEnabled) controls this behavior.
In the cases where the system might be idle for extended pe-
riods of time, the stand-alone execution is preferred to avoid
adding additional overheads to users’ queries and have them
subject to optimizations immediately. Otherwise, the piggy-
backed option can be a good choice if the system cannot
afford running separate background jobs. Additional imple-
mentation details are highlighted in Section 7.1.

For each correlation, each mapper in the StatsCollec-
tion task reports two types of statistics: (1) The number of
records violating Ci (without reporting the actual records),
and (2) Either the distinct violating values (Φ(Ci)) if their
number is less MaxV ioDistinct, or a flag indicating that
the number has exceeded the allowed threshold. Notice that
the goal is not to enumerate all distinct violating values, oth-
erwise it becomes an expensive map-reduce job by itself.
Instead, each mapper keeps maintaining the seen-so-far dis-
tinct violating values in its memory until the given threshold
is exceeded (if happened). Typically, MaxV ioDistinct is
set to few thousands, e.g., 10, 000, and in this case the map-
per’s consumed memory is very small, e.g., less than 1MB.

After all mappers are completed, a centralized task
aggregates the results to compute |Γ (Ci)|, and the final
duplicate-free set of Φ(Ci) (or a flag indicating that its size
exceeded MaxV ioDistinct). Based on these statistics and
according to Def. 5, each correlation is marked as either
Valid (and advances to subsequent phases) or Invalid (and
get eliminated from any further consideration). The statis-
tics and the status of each correlation are maintained in the
system’s Metadata Repository.

In practice, collecting 100% accurate statistics from the
entire dataset is not mandatory. In Section 4.1, we pro-
pose a sampling-based validation strategy that collects the
needed statistics from a relatively small percentage of the
dataset, e.g., 10% or 20%. We show—both experimentally

and theoretically—that such strategy scales very well under
large number of tested correlations while having a tiny and
negligible error rate.

3.2 Selection & Optimization Phase

Unlike hard correlations that are ready for exploitation by
the query optimizer, valid soft correlations require some
preparation by specially handling the violations and putting
strategies for guaranteeing correct query execution. This
handling involves a storage cost, which may vary signif-
icantly from one correlation to another. Moreover, not all
correlations have the same usefulness for query optimiza-
tion. For example, the system may pay the cost of preparing
many valid soft correlations while they are of little or no ac-
tual benefit to the current query workload, which may lead
to a significant waste in system resources.

In this section, we propose a cost-benefit model to au-
tomatically and adaptively select the correlations based on
their costs and benefits given a query workload and under
limited system resources. We show that this optimization
problem is very complex, and can be formulated as a sub-
modular knapsack problem, which is known to be an NP-
Hard problem [23]. And then, we propose a heuristic to ef-
ficiently solve it in polynomial time.

3.2.1 Correlations Cost Model

EXORD+ offers two different strategies—each comes with
an associated cost—for preparing a valid soft correlation,
namely “Exclusion” and “Materialization”. Each strategy
is applicable to a given soft correlation according to the fol-
lowing definitions:

Definition 6 (Exclusion Strategy) For a given valid soft
correlation C, the “Exclusion Strategy” is applicable to C
iff Condition (1) in Def. 5 is True, and it involves copying
the Φ(C) set to EXORD+’s Metadata Repository.

Definition 7 (Materialization Strategy) For a given valid
soft correlation C, the “Materialization Strategy” is appli-
cable to C iff Condition (2) in Def. 5 is True, and it involves
copying the Γ (C) set to a separate file, called exception
bucket, in the file system.

Example 4: To explain the rationale behind the two dif-
ferent strategies, we build on the two cases of Example 3:

Exclusion Strategy: This strategy is designed to handle
Case 1 in Example 3. More specifically, the Exclusion strat-
egy relies on keeping track of only the distinct violating val-
ues (even if the number of violating records is very large).
For example, the 61 days of November and December 2017
are extracted as illustrated in Figure 3(a). And then, when-
ever EXORD+ sees these values in a given predicate, that



Adaptive Correlation Exploitation in Big Data Query Optimization 7

… ShippingDate DeliveryDate … 

May-2-2017 May-7-2017 

Nov-13-2017 Nov-19-2017 

Nov-3-2017 Nov-19-2017 

Nov-5-2017 Nov-19-2017 

Dec-2-2017 Dec-9-2017 

Dec-8-2017 Dec-9-2017 

… … 

Distinct Violating values 
{Nov-19-2017, 
  Dec-9-2017} 

C.Src	C.Dest	

Violating 
Records 

Distinct Violating values 
{Nov-1-2017, 
Nov-2-2017,  

… 
Dec-30-2017, 

  Dec-31-2017} 

Stored in a light-weight  
Fast-accessible storage  

DB	

… ShippingDate DeliveryDate … 

May-2-2017 May-7-2017 

Nov-13-2017 Nov-19-2017 

Nov-3-2017 Nov-19-2017 

Nov-5-2017 Nov-19-2017 

Dec-2-2017 Dec-9-2017 

Dec-8-2017 Dec-9-2017 

… … 

Violating 
Records 

HDFS	

Exception buckets 
stored in HDFS 

Accessed at query compilation time 

Accessed at query 
execution time 

(a
)	E

xc
lu
sio

n	
(b
)	M

at
er
ia
liz
a:

on
	

Fig. 3 Example of the Exclusion and Materialization Strategies.

predicate is excluded from being re-written or optimized for
during the compilation and optimization time. Since the de-
cision of such exclusion takes place at compile time, the
distinct violating values are kept in EXORD+’s Metadata
Repository—which is a light-weight relational DBMS.

Materialization Strategy: This strategy is designed to
handle Case 2 in Example 3. More specifically, the Ma-
terialization strategy relies on physically copying the vio-
lating records into separate files (referred to as “exception
buckets”)—recall that in HDFS, the update of the original
file is not a possible operation. These exception buckets can
be relatively large in size, e.g., the size of the 105 violat-
ing records in Example 3 can be in 100s of MBs. Therefore,
these records are stored in the main HDFS file system (See
Figure 3(b)). Nevertheless, as we will explain in Section 6,
the exception buckets access is only required during query
execution not query optimization.

Given that the storage resources are not infinite, the max-
imum resources allotted to EXORD+, which are referred to
as the Resource Pool, are defined as follows:

Definition 8 (Resource Pool) The Resource Pool is the
maximum allowed storage that valid soft correlations can
compete for and consume. It is denoted as RPool = <

MPool, HPool >, where MPool, and HPool are the maxi-
mum sizes in the Metadata Repository, and the file system
(HDFS), respectively.

Recall that MPool is the storage space to be used for the
Exclusion strategy, whereas HPool is the storage space to be
used for the Materialization strategy.

Now, the formal cost model of soft correlations is de-
fined as follows (Hard correlations always has zero deploy-
ment cost).

Definition 9 (Correlation Cost) Let Φ(C).size and
Γ (C).size represent the size in bytes of the corresponding
sets Φ(C) and Γ (C). The deployment cost of a valid soft
correlation C is defined as follows:

Cost(C) =



< Φ(C).size, ∞ >, if only Def. 5.(1) = True

<∞, Γ (C).size >, if only Def. 5.(2) = True

< Φ(C).size, Γ (C).size >, Otherwise

According to Def. 9, if only Condition (1) in Def. 5 is
True, then the correlation is allowed to compete for a space
in MPool, whereas if only Condition (2) is True, then it is
allowed to compete for a space in HPool. And if both condi-
tions are True, then the correlation is allowed to compete
for both resources (although a higher priority is given to
MPool). Notice that in the cost model, Φ(C).size can be
exactly computed since the Φ(C) set is already available,
whereas Γ (C).size can be only estimated depending on the
known |Γ (C)| and its relative size to the base dataset.

3.2.2 Correlations Benefit Model

Given a workload of n queries W = {Q1, Q2, Q3, ..., Qn},
the benefit (reward) metric of a valid soft correlation Ci de-
pends on several factors including: (1) The percentage of
queries inW for which Ci is applicable, i.e., the queries that
involve an equality predicate on Ci.Src column. We refer
to these queries as the Coverage(Ci). (2) The percentage
of queries in W for which only Ci is applicable, i.e., if Ci
is not selected for deployment, then these queries will have
no other correlations to optimize them. We refer to these
queries as the ExclusiveCoverage(Ci). (3) The actual ex-
ecution savings, e.g., the wall clock time, achieved by Ci
from executing a re-written optimized query Q compared to
executing Q without re-writing. And (4) In addition to these
factors, maximizing the coverage of W while minimizing
the overall cost is also a desirable objective.

Example 5: As an illustrative example, we present in
Figure 4 a set of correlations C1, C2, and C3, and a query
workload consisting of four queries. An edge between a cor-
relation Ci and a query Qj indicates that Ci is applica-
ble to Qj and can be used to re-write and optimize this
query. The edge labels, e.g., “X → Y ”, indicate that
the correlation can be used to re-write a predicate on its
source column X in terms of a predicate on its destina-
tion column Y (and Y is assumed to have an associated
efficient access method, e.g., an index). In the figure, we
include the Coverage() and ExclusiveCoverage() sets
of each correlation. For example, both C1 and C2 can be
used to optimize the execution of Q2 by targeting differ-
ent predicates on different columns. That is why Q2 is in
their Coverage() sets. In contrast, neither of C1 nor C2

has queries in their ExclusiveCoverage() sets, but C3 has
Q4 in its ExclusiveCoverage().



8 Y. Liu, H. Liu, D. Xiao, M. Eltabakh

(X	=	10	And		
W	=	20)	

Query	Workload		
W	

Set	of		
Correla:ons	

C1	

C2	

C3	

Q1	

Q4	

Q3	

Q2	

X	è	Y	

W	è	Z	

Coverage(C1) = {Q2, Q3} 
Coverage(C2) = {Q2, Q3} 
Coverage(C3) = {Q4} 

ExclusiveCoverage(C1) = {} 
ExclusiveCoverage(C2) = {} 
ExclusiveCoverage(C3) = {Q4} 

Fig. 4 Benefit Factors of Soft Correlations.

Referring to Figure 4, it is evident that correlations may
have different priorities depending on each of the four fac-
tors mentioned above. For example, if we consider the 1st

factor (based on coverage), thenC1 andC2 have higher (and
equal) priorities over C3, whereas, if we consider the 2nd

factor (based on exclusive coverage), then C3 gets higher
priority. Moreover, according to the 4th factor (W ’s cover-
age with minimal cost), if C1 is selected by the system, then
C2’s priority should be significantly lowered since it does
not cover any new queries beyond those covered by C1.

Clearly, including all four factors into the benefit met-
ric makes it very complicated especially because estimating
the execution savings (The 3rd factor) requires execution
statistics, which may not be available for all correlation-
query pairs. To simplify the metric, we make a reasonable
and practical assumption that no matter how a query is op-
timized, e.g., through indexing or partitioning, the savings
from executing an optimized version are significant com-
pared to executing the un-optimized version (full scan).

This assumption implies that, it does not matter which of
the two correlationsC1 orC2 to use for optimizingQ2, what
matters is to haveQ2 covered. It also implies that EXORD+

always favors the use of these special structures over a full
scan regardless of the query selectivity. This is a valid as-
sumption in Hadoop-like infrastructures because under the
way the indexes are built [7,9] and the data blocks are ac-
cessed in a distributed manner, there is no notion of sec-
ondary indexes that may lead to random data accesses and
higher overheads compared simple sequential scans (this is
unlike the case in RDBMSs). As confirmed by our experi-
ments, even under the worst case where selectivity is close
to 100%, both partition-based and index-based techniques
are safe to choose as they would perform very similar to a
full scan.

Based on this simplifying assumption, the 3rd factor
concerning the actual execution savings can be ignored be-
cause all applicable correlations are now assumed to bring
”enough” and ”acceptable” benefit. Now, for the remaining
three factors, the correlation’s benefit can be formally de-
fined as follows:

Definition 10 (Static Correlation Benefit) For a given
workload W of size n queries, and a soft correlation Ci, the
static benefit of Ci is computed as the percentage of queries
for which Ci is either applicable or exclusively applicable.
That is:

SBenefit(Ci,W ) = |Coverage(Ci)|
n

Definition 11 (Dynamic Correlation Benefit) For a
given workload W , and a soft correlation Ci, the dynamic
benefit of Ci is re-computed after the selection of any other
correlation as follows:
Initial State:

DBenefit(Ci,W ) = SBenefit(Ci,W ), ∀ Ci,
subsequent State after the selection (and removal) of correlation Cj:

W =W − Coverage(Cj)
DBenefit(Ci,W ) = SBenefit(Ci,W ), ∀ Ci.

The static correlation benefit (Def. 10) basically takes
into account the 1st and 2nd factors, while ignoring the 4th

factor. Yet, its computations are easier since the benefits do
not depend on the previous decisions taken by the system. In
contrast, the dynamic correlation benefit (Def. 11) takes the
4th factor into account, and thus whenever a specific corre-
lation is selected, the benefits of the remaining correlations
are re-calculated.

3.2.3 The Optimization Problem

The optimization problem is now to select a subset of valid
soft correlations C = CX ∪ CM, where CX is the set of
correlations assigned the Exclusion strategy, CM is the set
of correlations assigned the Materialization strategy, and CX
and CM are disjoint sets. The objective function is to max-
imizing the total benefit (

∑
∀Ci∈C Benefit(Ci)) subject to

not exceeding the allowed resources by satisfying the fol-
lowing conditions:
∑
Φ(Ci).size ≤ RPool.MPool ∀Ci ∈ CX

and∑
Γ (Cj).size ≤ RPool.HPool ∀Cj ∈ CM

Clearly, if the benefit function follows Def. 10 (Static
benefit), then the optimization problem maps to the clas-
sic “0/1 knapsack” problem, which is NP-complete, but ef-
ficient approximation algorithms exist with computable er-
ror bound [14]. On the other hand, if the benefit function
follows Def. 11 (Dynamic benefit), which is semantically
stronger, then the optimization problem maps to the “sub-
modular knapsack” problem, which is even harder to solve
or approximate than “0/1 knapsack” [23].

Because of that, we propose an algorithm that combines
and retains the pros of both definitions. This is achieved by



Adaptive Correlation Exploitation in Big Data Query Optimization 9

Table 2 Cost()-Based Dominance Notation.

Dominance Type Cost(Ci) ≤ Cost(Cj) IFF

Ci 7→ΦΓ Cj (Φ(Ci).size ≤ Φ(Cj).size)

(All-Cost Dominance)1∗ And
(Γ (Ci).size ≤ Γ (Cj).size)

Ci 7→Φ Cj (Φ(Ci).size ≤ Φ(Cj).size)

(Exclusion Dominance)2∗

Ci 7→Γ Cj (Γ (Ci).size ≤ Γ (Cj).size)

(Materialization Dominance)3∗
1Ci must satisfy Conditions (1) & (2) in Def. 5.
2Ci must satisfy at least Condition (1) in Def. 5.
3Ci must satisfy at least Condition (2) in Def. 5.
∗Cj must satisfy Condition (1) or Condition (2) or both in Def. 5.

combining the static definition of the correlations’ benefit
(Def. 10) with a heuristic that captures the essence of the
dynamic definition. More specifically, the heuristic prevents
selecting correlations that adds no (or minimal) value to the
already selected ones. The heuristic relies on the following
definition of correlations’ dominance.

Definition 12 (Correlations Dominance) Given a
dominance-relaxation threshold ε ∈ [0, 1), a correlation
Ci (soft or hard) is said to dominate another correlation
Cj (soft), denoted as Ci 7→ Cj , iff Cost(Ci) ≤ Cost(Cj)

according to Table 2, ExclusiveCoverage(Cj) = φ, and
|Coverage(Cj) − Coverage(Ci)|

|Coverage(Cj)| ≤ ε. The dominance type
is either “All-Cost”, “Exclusion”, or “Materialization”
according to Table 2.

Definition 13 (Total and Partial Dominance) Given two
correlations Ci and Cj , where Ci 7→ Cj , if ε = 0, the dom-
inance is called “total dominance”, otherwise it is called
“partial dominance”.

The main idea of the heuristic is that before solving the
optimization problem, we apply a filtering step to eliminate
correlations that are dominated (or partially dominated) by
other correlations. In other words, instead of aiming for the
optimal solution according to Def. 11 (which is very ex-
pensive), we aim for avoiding the worst-case scenario that
Def. 10 may generate.

Example 6: Figure 5 gives an example of few correla-
tions and their dominance relationships based on Defs. 12
and 13. Figure 5(a) includes the metadata information for
each correlation. The key observations from Figure 5(b) in-
clude: (1) C3 cannot be dominated by any other correla-
tion because its ExclusiveCoverage is not empty, (2) C1 has
an “All-Cost Dominance” over C2, and it is also a “To-
tal dominance”, i.e., C1’s coverage is equal or superset of
C2’s coverage, (3) C4 has a “Materialization Dominance”

Id Cost <Φ.size, Γ.size> Coverage Exclusize 
Coverage 

C1 <10, 200> {Q1, Q2, Q3, Q4} {} 

C2 <30, 700> {Q2, Q3} {} 

C3 <50, ∞> {Q5} {Q10} 

C4 <40, 100> {Q1, Q2, Q3, Q4, Q5} {} 

… … … … 

ε = 0 (Total Dominance) 

C1                C2 

C4               C2 

C4               C1 

ε = 0.2 (Partial Dominance) 

C1                C2 

C4               C2 

C4               C1 

C1              C4 

(a) Metadata on example correlations 

(b) Dominance relationships  
                 (ε = 0) 

(c) Dominance relationships  
                 (ε = 0.2) 

Fig. 5 Example on Dominance Relationships.

over both C1 and C2, and it is also a “Total dominance”,
which indicates that if the three correlations are to compete
for the Hpool, then C1 and C2 can be eliminated, And (4) If
ε > 0, i.e., allowing partial dominance (as in Figure 5(c)),
then more dominance relationships can be leveraged. For
example, for ε = 0.2, C1 is found have an “Exclusion Dom-
inance” over C4 (cost 10 is less than 40), and C5 covers
only one additional query (Q5) out of its coverage set be-
yond what C1 is already covering, i.e., only 20% of its cov-
erage is useful compared to C1.

In Figure 6, we sketch the heuristic-based algorithm for
solving the correlation-selection optimization problem. The
algorithm takes as input a set of n valid soft correlations
P , and an observed query workload W . The outcome is a
subset of selected correlations O to deploy along with the
deployment strategy assigned to each one. The algorithm is
divided into three main phases: Phase 0 eliminates the dom-
inated correlations based on All-Cost dominance, Phase 1
solves the optimization problem for theMPool resource, and
Phase 2 solves the optimization problem for the HPool re-
source. Given the computational complexity of [14], which
is O(n log n), the proposed heuristic-based algorithm has
the same complexity of O(n log n), where n is the number
of correlations in P .

In Phase 0, we permanently eliminate any correlation
Cj that is All-Cost dominated by another correlation Ci
(Ci 7→ΦΓ Cj). This is because Cj cannot compete against
Ci for either of MPool or HPool.

In Phase 1, the remaining correlations compete for the
MPool resource, i.e., compete for the “Exclusion Strategy”.
The dominance heuristic is applied again to “temporarily”
eliminate any dominated correlations based on the Exclusion
Dominance type. After that, the optimization problem is
solved approximately using the “FPTAS” technique in [14].



10 Y. Liu, H. Liu, D. Xiao, M. Eltabakh

Workload-Driven Correlation Selection 
Inputs: 

-  Set of valid soft correlations P = {C1, C2, …, Cn}  
-  Query workload W
-  Dominance-relaxation threshold ε  

Output: 
 - subset of correlations to deploy O (initially empty)
   along with the deployment strategy for each one. 

 
Phase 0: Heuristic-Based Filtering based on All-Cost Dominance 
1-  For (each soft correlation Cj   in P ) Loop 
2-          - If  (    Ci            Cj) Then   Delete Cj  from  P  
3-  End For   

Phase 1: 0/1 knapsack optimization for resource RPool.Mpool 
//Heuristic-Based Filtering based on Exclusion Dominance 
4-  For (each soft correlation Cj   in  P  ) Loop 
5-         - If  (    Ci           Cj) Then    
 

6-   - Add Cj to TempList 
7-   - Delete Cj  from  P  
8 -       End If 
9-   End For          
10-  Result = Solve the optimization problem [14] 
11-  Delete Result from  P   
12-  O ç  (Result with assigned “Exclusion” strategy) 
 
Phase 2: 0/1 knapsack optimization for resource RPool.Hpool 
//Check correlations in TempList and may return some back 
13-  For (each correlation Cj in TempList) Loop 
14-     - If ( none of Cj’s dominating correlations is in O) & (                         ) 

       Then Admit back Cj to P   
15-  End For   
 
//Heuristic-Based Filtering based on Materialization Dominance 
16-  For (each soft correlation Cj   in  P  ) Loop 
17-       - If  (    Ci           Cj) Then   Delete Cj  from  P   
18-  End For          
 

19-  Result = Solve the optimization problem [14] 
20-  O ç O + (Result with assign “Materialization” strategy) 
          

�	

�	

�	

RPool.MPool resource, i.e., compete for the “Exclusion Strat-
egy”. For that purpose the cost function comparison will take only
the �().size component into account. The dominance heuristic
will be applied again to “temporarily” eliminate any dominated
correlations given this new cost function comparisons denoted as
Ci 7!� Cj (Refer to Table 1). After that, the optimization problem
is solved approximately using the “FPTAS” technique in [17]. The
selected correlations will be added to the output set O, and will be
assigned the “Exclusion” strategy.

Phase 2 has the same idea of Phase 1 but with two differences.
First, Phase 2 needs to re-examine each correlations, say Cj , that
is dominated by others in Phase 1 (and hence skipped from the
competition), and checks whether or not any of Cj’s dominating
correlations is actually in the output set O. If not, then Cj is ad-
mitted back to the candidate pool P , and is given a second chance
to compete for RPool.HPool only if �(Cj).size 6= 1. Second,
correlations in Phase 2 will now compete for the RPool.HPool re-
source, i.e., compete for the “Materialization” strategy. Therefore,
the cost function comparison for the dominance relationship will
now rely only on the �().size component, and the dominance is
denoted as Ci 7!� Cj (Refer to Table 1). Finally, the selected
correlations are added to the output set O and assigned the “Mate-
rialization” strategy.

4. DEPLOYMENT & EXPLOITATION
PHASE

The ultimate goal of EXORD is to exploit the available corre-
lations to re-write queries and enable more efficient access plans.
In Figure 5, we present the flowchart of the exploitation procedure.
The procedure takes as input a set of correlations in their deploy-
ment phase Y = {C1, C2, ..., Cn}, a dataset D to be queried, and a
target query Q as defined in Def. 2.1 consisting of a set of conjunc-
tive predicates p1 ^p2 ^ ...pk.4 Set Y includes a mix of hard corre-
lations, and soft correlations along with their deployment strategies
as either Exclusion, or Materialization.

As the first step, the system checks whether any of Q’s predi-
cates, say pk, can enable an access plan other than a full scan, e.g.,
by leveraging indexing or partitioning strategies. If that is the case,
then Q is returned without correlation-driven re-writing. Other-
wise, EXORD tries to re-write any of the predicates using the avail-
able correlations in Y . While searching Y , the priority is given first
to the hard correlations, followed by the Exclusion-based soft cor-
relations, followed by the Materialization-based soft correlations
(The 2nd, 3rd, and 4th conditions in the flowchart, respectively).
The intuition is that hard correlations apply to the entire dataset
D without any restrictions or exceptions, and thus they are given
the highest priority. On the other hand, the Exclusion-based cor-
relations are given higher priority over the Materialization-based
correlations because, as will be explained later, the processing of
the queries optimized using a Materialization-based correlation in-
volves more overhead due to the need for querying the correspond-
ing exception bucket.

Assume the selected correlation is Ci 2 Y , and it will be used
to re-write a specific predicate in Q, say pk, which is in the form
of pk: Ak = sk, where Ak is one of the data’s attributes, and sk

is a constant value. Therefore, Ci.Src = “A00
k , and we assume

Ci.Dest = “B00
k , which is another attribute in D. The re-writing

procedure, which generates a new query Q’ is the same regard-
less of the Ci’s type. That is, the three different correlation-driven

4An analytical query might be more complex, e.g., involving joins
and aggregations. However, Q in our context represents the sub-
query involving only the selection predicates.

Exists predicate pk 
enabling non-full-scan 

plan? 

Exists hard correlation Ci 
to re-write predicate pk? 

Exists Exclusion-based 
correlation Ci to re-write 

predicate pk? 

Exists Materialization-
based correlation Ci to re-
write predicate pk? 

Yes 

No 

- Return Q to execute on D 

-  Q’ = Re-write(Q, Ci, pk) 
-  Return Q’  to execute on D 

Yes 

No 

Yes 

No 

No 

Return Q to execute on D 
with full-scan plan 

-  Return Q to execute on  
     D-Ci-ExpBucket 

-  Q’ = Re-write(Q, Ci, pk) 
-  Return Q’  to execute on D 

Yes 
-  Union the results 

Inputs 
-  Query Q consisting of a set of conjunctive predicates P = p1, p2, …pk 

 Each pk is in the form of   pk: (Attribute Ak = Constant sk)
-  Correlations in deployment phase Y = {C1, C2, …, Cn} 
-  Dataset D to be queried.

(Ci.Src = Ak) 

(Ci.Src = Ak  
And sk  Φ(Ci)) �	

(Ci.Src = Ak) 

Correlation-Driven Re-Writing 

Ci Granularity Augmented Predicate to pk in Q’ 

Singleton “AND Bk = Ci.F(sk)” 

Range “AND (Bk ≥ Ci.F(sk).lower    
  And(Bk ≤ Ci.F(sk).upper)”  

List “AND Bk in Ci.F(sk)” 

Augmentation Rules of Re-Write(Q, Ci, pk: Ak = sk) 

Figure 5: Exploitation in Query Optimization Flowchart.

re-writing cases illustrated in Figure 5 (The 2nd, 3rd, and 4th con-
ditions) execute the same Re-Write(Q, Ci, pk: Ak = sk) pro-
cedure. Re-Write augments an additional predicate (in a conjunc-
tive form) to pk, where the format of the new predicate depends on
Ci’s granularity as illustrated in Figure 5 (bottom table).

After generating the new query Q’, the execution plan to gen-
erate the correct results depends on the correlation’s type and the
adopted deployment strategy. That is, in the cases where Ci is a
hard correlation or an Exclusion-based soft correlation, only the
new query Q’ needs to execute on the original dataset D (The 2nd,
and 3rd cases in the flowchart). Whereas, in the case where Ci is a
Materialization-based correlation, executing Q’ on D may not be
enough as it may miss some data records that satisfy Q but in vi-
olation of Ci, i.e., may miss records in �(Ci). Therefore, the new
query Q’ executes on D, and also the original query Q executes
on the execution bucket file D-Ci-ExpBucket, and then the results
union together to generate the final correct results. Since the results
from the two queries are guaranteed to be disjoint, there is no spe-
cial processing needed to eliminate duplicates when constructing
the final answer.

Recall that Q’ contains the newly added predicates on Ci.Dest,
which has an associated efficient access method. And thus, Q’
execution on the big dataset D is expected to be efficient as it avoids
the expensive full-scan plans. On the other hand, the execution of Q
on the exception bucket is also expected to be efficient—although
it uses a full-scan plan—because exception buckets are relatively

Fig. 6 Workload-Driven Selection for Correlations.

The selected correlations are added to the output set O, and
assigned the “Exclusion” strategy.

Phase 2 has the same idea of Phase 1 but with two differ-
ences. First, Phase 2 needs to re-examine each correlation,
say Cj , that is dominated by others in Phase 1 (and hence
skipped from the competition), and checks whether or not
any of Cj’s dominating correlations is actually in the output
set O. If not, then Cj is admitted back to the candidate pool
P , and it is given a second chance to compete forHPool only
if Γ (Cj).size 6= ∞. Second, the heuristic is applied based
on the Materialization Dominance type. Finally, the selected
correlations are added to the output set O and assigned the
“Materialization” strategy.

• Execution of the Selected Strategy: For a given cor-
relation C, if the assigned strategy is Exclusion, then no fur-
ther preparation is needed since the Φ(C) set is already col-
lected during the Validation phase, and the correlation ad-
vances to the deployment phase. In contrast, if the assigned
strategy is Materialization, then a full scan map-only task,
called Prep4Deployment1, executes over the dataset D for
reporting the violating records and materializing them into

1 Depending on the PiggybackEnabled system-level configu-
ration parameter (Section 3.1), the Prep4Deployment task is either pig-

an exception bucket file uniquely identified for the 〈D, C〉
pair. After that C advances to the deployment phase.

4 EXORD+ Design Extensions

4.1 Sampling-Based Validation Phase

The purpose of the Validation phase is to collect statistics
on the violations of a given soft correlation Ci, and decide
on whether or not Ci is valid according to Def. 5. In Sec-
tion 3.1, we presented the StatsCollection task as a full-scan
task. In this section, we present a less expensive sampling-
based strategy for the StatsCollection task.

Granularity and Applicability: We adopt random sam-
pling to sample from the input dataset (i.e., HDFS files) at
the HDFS block level (see the validation phase below). We
highlight below (and present more theoretical details in [20])
that random sampling is statistically sufficient and highly
accurate for the types of statistics we are collecting assum-
ing that the data values are randomly distributed across the
HDFS blocks, i.e., no specific sorting or partitioning. Ran-
dom sampling is also used in several papers to collect similar
correlation-related statistics [3,15,17].

To ensure that the system applies the sampling-based
strategy only on columns that have no specific partitioning
or sorting, EXORD+ applies the sampling at the granularity
of a single correlation. That is, given a set of correlations
to validate, say V = {C1, C2, ..., Cn}, EXORD+ identifies
the correlations whose Src or Dest columns have specific
partitioning or sorting (say set VORD). This information can
be easily obtained from the system’s metadata information
(which is a Hive Metastore). Then, the StatsCollection tasks
automatically adjusts its execution such that all mappers
collect statistics for the correlations in VORD, while only
a small subset of them collect statistics for the rest of the
correlations (say set VRAND). Given that in typical applica-
tions, the data might be ordered or partitioned only on one
or two fields (if any), then the sampling strategy remain ap-
plicable for most of the correlations.

Modifications in Validation Phase: Instead of making
all StatsCollection map tasks collect the violation statistics
for all candidate correlations in V , the system randomly se-
lects a small percentage of these mappers (say x%) to col-
lect the statistics. Each map task randomly and indepen-
dently decides with a probability x/100 on whether or not
to test the corrections in VRAND on its local data block2.
Each of these mappers reports for each soft correlation
Ci ∈ VRAND an estimation for the two statistics presented

gybacked on the next user’s query or manually triggered as part of the
‘‘ASSESS CORRELATIONS ...’’ command (Section 7.1).

2 If VORD is not empty, then each mapper needs to examine these
correlations.



Adaptive Correlation Exploitation in Big Data Query Optimization 11

in Section 3.1, i.e., an estimation for the number of violating
records ˆ|Γ (Ci)|, and an estimated set for the distinct violat-
ing values ˆΦ(Ci) (or a special flag if the set size exceeds the
MaxV ioDistinct threshold).

Validity of ˆ|Γ (Ci)| Estimator: The estimation of the
total number of violating records ˆ|Γ (Ci)| is computed as
follows ˆ|Γ (Ci)| = v ∗ 100/x, where v is the number of
observed violations in the sample of size x%. Since the val-
ues of Ci.Src are in a random order, ˆ|Γ (Ci)| is an unbiased
estimator of |Γ (Ci)|, where E( ˆ|Γ (Ci)|) = |Γ (Ci)|.

Validity of ˆΦ(Ci) Estimator: For the distinct violating
values (the Φ() set), it is important to emphasize that our
objective is not to estimate the total number of distinct vio-
lating values. This task is shown to be hard to estimate using
a sample [12]. Fortunately, our problem is simpler due the
presence of the upper bound threshold MaxV ioDistinct,
which is relatively very small compared to the number of
checked records even in a small sample. Our problem re-
quires listing the distinct violating values only if their num-
ber does not exceed MaxV ioDistinct, otherwise reporting
a special Max-Exceeded flag indicating that the Exclusion
strategy is not applicable for the tested correlation. For this
constraint reporting of the distinct violating values, we can
theoretically prove that ˆΦ(Ci) = Φ(Ci) with a tiny proba-
bility of error. The detailed analysis is presented in [20], and
in the following, we give the main intuition.

In a nutshell, if any of the sampled mappers reports the
Max-Exceeded flag, then with certainty the Max-Exceeded
flag is the final correct output. Moreover, if all mappers
provide their list of violating values, but the centralized
process that unions and de-duplicates the values reports
the Max-Exceeded flag, then again with certainty the Max-
Exceeded flag is the final correct output. The only chance
of error is when both all sampled mappers and the cen-
tralized merging process observe less than or equal to
MaxV ioDistinct violating values while in reality the num-
ber is much larger. The theoretical analysis in [20] shows
that if the number of randomly tested records is much big-
ger than MaxV ioDistinct, e.g., two orders of magnitudes
or more, then the error probability is negligible.

Modifications in Selection Phase: The proposed cost-
benefit model and the proposed solution presented in Sec-
tion 3.2 remain unchanged. The only extension is in the
preparation step after selecting the subset of the soft corre-
lations to be deployed and assigning either an Exclusion or a
Materialization strategy to each one (The last paragraph of
Section 3.2.3). Since the statistics are now collected based
on a sample, the complete set of Φ(C) is not yet available.
Therefore, the Prep4Deployment task needs—in addition
to building the exception buckets for the Materialization-
assigned correlations—to collect the exact and complete set
of distinct violating values for the Exclusion-assigned cor-

relations. Recall that the exact computations of Φ() and Γ ()
sets are essential to ensure exact query results at runtime.

4.2 Weighted Query Workloads

In Section 3.2.2, we assumed for simplicity that all queries
in the workload W have the same weight. In this section,
we relax this assumption. In fact, EXORD+ allows differ-
ent queries to have different integer-value weights ≥ 1, e.g.,
weights that reflect their execution frequency or business
priority. These weights can be integrated into the benefit
model by replacing Def. 10 with the following definition:

Definition 14 (Static Correlation Benefit) Given a
workload W = {Q1, Q2, Q3, ..., Qn}, where each query
Qi has an associated positive integer weight Qi.wi. The
static benefit of a soft correlation Ci is computed as follows:

SBenefit(Ci,W ) =
∑
Qk.wk, ∀Qk ∈ Coverage(Ci)∑

Qj .wj , ∀Qj ∈ W

This extension automatically propagates to the dynamic
benefit (Def. 11) since it is an iterative function over the
static benefit.

Now, the correlation dominance definition (Def. 12)
needs to be modified. One criterion of the original defini-
tion that measures the extra contribution of correlation Cj
over another correlation Ci uses a set difference operation
between their coverage sets, which is correct if all queries
have the same weight. Yet, under the different weights, the
definition is as follows:

Definition 15 (Correlations Dominance) A correlation
Ci (soft or hard) is said to dominate another correlation
Cj (soft), denoted as Ci 7→ Cj , iff Cost(Ci) ≤ Cost(Cj),
ExclusiveCoverage(Cj) = φ, |DiffCoverage(Cj ,Ci)|

|Coverage(Cj)| ≤
ε1, and

∑
Qk.wk, ∀Qk ∈ DiffCoverage(Cj)∑
Qj .wj , ∀Qj ∈ Coverage(Cj)

≤ ε2, where ε1
and ε2 are small threshold values ∈ [0, 1).

where DiffCoverage(Cj , Ci) = Coverage(Cj) -
Coverage(Ci). Basically, Def. 15 considers Cj to have
a little contribution over Ci if both the number of the new
queries covered by Cj is small relative to its coverage set
(the ε1 threshold), and the total weights of these new queries
is small relative to the overall weights in its coverage set
(the ε2 threshold).

5 EXORD+ under Dynamic Environment

5.1 Evolving Datasets

In big data applications, datasets are continuously updated
by appending new batches of files. A naive inefficient ap-
proach to update EXORD+’s state, e.g., the correlations’



12 Y. Liu, H. Liu, D. Xiao, M. Eltabakh

Invalid Skipped Exclusion Materialization  

Invalid 0 Δ* Δ* Δ* 

Skipped --- Δ* Δ* Δ* 

Exclusion --- D + Δ Δ X + Δ 

Materialization  --- D + Δ D + Δ Δ 

Current State of Correlation C 

N
ew

 S
ta

te
 o

f C
 

Add	to	the	cost	factor	in	Dominance	table:	
	
Dominance	Type	1:	(Ci.State	=	Cj.state	or	Cj.state	=	skipped)	
	
Dominance	Type	2:	(Ci.State	=	Cj.state	or	Ci.state	=	Ex)	
	
Dominance	Type	3:	(Ci.State	=	Cj.state	or	Cj.state	=	Mat)	

High cost Low cost Medium cost 

D: The original dataset X: <D, C> Exception Bucket Δ: The appended dataset 

Δ*: Means  only a sample of Δ is scanned if the sampling-based strategy is enabled.    
       Otherwise Δ is scanned   

Fig. 7 State Transitions & Scanning Cost under Data Appends.

costs, selections, and deployment strategies, is to redo the
whole process from scratch over the entire dataset including
the newly appended files. In this section, we present an effi-
cient incremental mechanism for updating EXORD+’s state
under new dataset appends. In the rest of this section, we
use the notations D and ∆ to refer to the original dataset on
which EXORD+state is currently built, and the newly ap-
pended dataset, respectively.

The basic assumption is that hard correlations always
hold and they remain satisfied in the appended dataset. On
the other hand, a soft correlation C may change its state as
summarized in Figure 7. These states are:
• Invalid: If C is invalid according to Def. 5, then it re-
mains invalid under any append since the MaxVioDistinct
and MaxVioRec thresholds are both absolute values.
• Skipped: A skipped correlation C indicates that C is
valid, and it had competed for either of the Mpool or the
Hpool resources (or both), but it had not been selected for
deployment. Nevertheless, C’s statistics are still maintained
to enable incremental update. This includes |ΓD(C)| iff
|ΓD(C)| ≤ MaxV ioRec, and |ΦD(C)| iff |ΦD(C)| ≤
MaxV ioDistinct.
• Exclusion: Correlation C is in this state if it is deployed
under the Exclusion-Based strategy. In this case, the exact
ΦD(C) set is already present in Mpool. In addition, we also
maintain the |ΓD(C)| iff |ΓD(C)| ≤MaxV ioRec.
• Materialization: Correlation C is in this state if it is
deployed under the Materialization-Based strategy. In this
case, the exact ΓD(C) records are already present in an ex-
ception bucket in Hpool. In addition, we also maintain the
|ΦD(C)| iff |ΦD(C)| ≤MaxV ioDistinct.

The steps of the incremental update are as follow:

Step 1: Statistics and Cost Updates: Similar to collect-
ing statistics on the base dataset, the StatsCollection task is
executed over the new∆ dataset. Depending on the system’s
configuration parameters, StatsCollection executes either on
the entire ∆ file (and in this case, |Γ∆(C)| and Φ∆(C) are
computed for each correlation C), or on a sample of ∆ (and

ψ	

O
ve

r t
he

  
Δ 

da
ta

se
t 

O
ve

r t
he

  
D 

Da
ta

se
t •  Map each v     ΦD(C) to its corresponding bits in the 

Bloom Filter using three different hash functions. 

0	0	 0	1	1	1	

ψ	•  Map each z     ΦΔ (C) to its corresponding bits in the 
Bloom Filter using the same hash functions. 

•  ω  = Number of z values triggering at least one bit 
flipping from 0 to 1. 

Building Phase 

Probing Phase 

Fig. 8 Bloom Filter for Φ(C) values under Skipped and Materializa-
tion states.

in this case, ˆ|Γ∆(C)| and ˆΦ∆(C) are computed). Given that
the sample-based estimates are good representatives to the
true values (Section 4.1), we will use the true value nota-
tions (|Γ∆(C)| and Φ∆(C)) throughout this section.

The final cost of Γ (C), i.e., the total number of violating
records, is computed as follows:

|ΓFinal(C)| = |Γ∆(C)|+ |ΓD(C)| (5)

Nevertheless, the final cost of Φ(C)—assuming that nei-
ther of |ΦD(C)| nor |Φ∆(C)| exceeds MaxVioDistinct—is
not as straightforward. This is because the distinct values in
Φ∆(C) and ΦD(C) may overlap, and thus their union could
be much smaller than the sum of their sizes. IfC is already in
the Exclusion state, then |ΦFinal(C)| can be precisely com-
puted since the ΦD(C) set is maintained. Nevertheless, if C
is in the Skipped or Materialization state, then the individ-
ual values of ΦD(C) are not maintained and only set size
is available. In the following, we present the straightforward
approach for estimating |ΦFinal(C)| followed by a more ef-
ficient approach.

Loose Count-Based Estimation for |ΦFinal(C)|: A
straightforward, but loose, estimation relies on maintaining
only the count of values in ΦD(C). Therefore, the lower
and upper bounds of |ΦFinal(C)| follow Eq. 6.

Max(|ΦD(C)|, |Φ∆(C)|) ≤ |ΦFinal(C)| ≤ |Φ∆(C)| + |ΦD(C)|
(6)

And then |ΦFinal(C)| (the total number of distinct vio-
lating values across D and ∆) is estimated as the average of
these two bounds. However, this is clearly a loose estimation
that can be way off the true value.

Tight BF-Based Estimation for |ΦFinal(C)|: To get a
tighter estimation for |ΦFinal(C)| under the the Skipped and
Materialization states, we maintain an additional bloom fil-
ter (BF) structure for C that acts as a replacement signa-
ture for the individual values of ΦD(C). The main idea of
using the bloom filter is illustrated in Figure 8. While col-



Adaptive Correlation Exploitation in Big Data Query Optimization 13

0	

2000	

4000	

6000	

8000	

10000	

90%	 80%	 60%	 40%	 20%	 10%	

36%	 25%	 7%	 -6%	 -16%	 -21%	

1%	
1.4%	

0.6%	

-2%	
-3%	

0.6%	

Overlapping	%	between	ΦD(C)	&		ΦΔ(C)	

Si
ze
	o
f	Φ

Fi
na
l(C
)		

Ground	Truth	 Count-Based	Es:ma:on	 BF-Based	Es:ma:on	

Es:ma:on	error	%	

Fig. 9 Comparison between Count-Based and BF-Based Estima-
tions for |ΦFinal(C)|. Estimation error % = ((estimation - ground
truth)*100/ground truth).

lecting C’s statistics over the original dataset D, each value
v ∈ ΦD(C) is mapped to bits in the bloom filter using mul-
tiple hash functions (three functions is a typical number).
These bits are switched from 0 to 1. If C ends up in the
Skipped or Materialization state, then the individual violat-
ing values in ΦD(C) are discarded and only C’s bloom filter
is kept (Top half of Figure 8).

When the new ∆ dataset arrives, each distinct violating
value z ∈ Φ∆(C) probes the bloom filter using the same
hash functions—without modifying the filter’s content. If
any of the probed bits is 0, then z is guaranteed to be a new
violating value, and the count of these values is maintained,
say ω (Bottom half of Figure 8).

The big advantage of bloom filters is that they have a
theoretically proven error rate [2]. This error rate represents
the number of new violating values that the bloom filter
may not detect (false positives), i.e., they do not hit bits of
value 0 although they are new values. Assume the bloom
filter is constructed to have an error rate e, e.g., 10%, then
|ΦFinal(C)| has the lower and upper bounds indicated in
Eq. 7.

|ΦD(C)|+ ω ≤ |ΦFinal(C)| ≤ |ΦD(C)|+ ( 1
1−e ) ∗ ω (7)

The lower bound reflects what has been actually ob-
served, while the upper bound adds up the expected bloom
filter’s error rate. |ΦFinal(C)| is then estimated as the aver-
age of these two bounds.

The following example demonstrates the effectiveness
of the BF-Based estimation.

Example 7: Assume the “MaxVioDistinct” threshold is
set to 10,000. Also assume that we use three distinct hash-
ing functions for the bloom filter, and our target error rate
is 5%. According to [2], the size of the bloom filter should
be ≈ 8KB. We performed an experiment where each of
the ΦD(C) and Φ∆(C) sets is randomly populated with
5,000 distinct values. We varied the overlap between the two
sets between 10% to 90% as indicated in Figure 9 (x-axis).

Given that the ground truth of |ΦFinal(C)| is known (the
black bars), we calculated the estimates generated from the
Count-Based and BF-Based approaches (y-axis). Figure 9
also shows the estimation error % from each approach. The
Count-Based approach always generates the same estima-
tion because the lower and upper bounds are fixed (Eq. 6),
and hence its estimation error can be very high ( 36% in our
experiment). In contrast, BF-Based estimation is dynamic
since the lower and upper bounds depend on the observed
new values (Eq. 7), and hence it provides a very good esti-
mation.

In summary, Step 1 updates the cost of each soft cor-
relation according to Eq. 5 (|ΓFinal(C)|) and Eq. 7 (for
|ΦFinal(C)|), and then Defs. 5 and 5 are applied to decide
on which of the correlations remain valid, and which ones
make the transition to the Invalid state (The 1st row in Fig-
ure 7).

Step 2: Re-Evaluation of Extended Correlation Domi-
nance: Under the new costs, the optimization problem pre-
sented in Section 3.2 need to be re-solved. However, the
Correlation Dominance relationship introduced in Def. 12
requires a modification because correlations now have
states, and transitioning from one state to another involves
different costs, which affects the dominance relationships.

To illustrate this point, we first refer to the scanning costs
indicated in Figure 7 for each possible transition. All transi-
tions require scanning the ∆ dataset, which is performed in
Step 1 above. In addition, some transitions involve extensive
high cost (marked in Black), e.g., a transition from Skipped
to Exclusion. These high-cost transitions require going back
and scanning the original dataset D to either collect the ex-
act ΦD(C) or extract the Γ (C) records. Some other tran-
sitions involve medium cost (marked in Dotted Red), e.g., a
transition from Materialization to Exclusion, which requires
scanning the exception bucket in Hpool to retrieve the exact
set of ΦD(C).

Having these different transition costs in mind, it is
wrong to assume according to Def. 12 and Def. 15, that for
example, Correlation C1 dominates C2 without taking their
current states into account. Therefore, under the incremen-
tal appends, the dominance definition is extended as follows
(Def. 16 and Table 3) 3:

Definition 16 (Correlations Dominance Under In-
cremental Append) A soft correlation Ci is said
to dominate another soft correlation Cj , denoted
as Ci 7→ Cj , iff Cost(Ci) ≤ Cost(Cj) accord-
ing to Table 3, ExclusiveCoverage(Cj) = φ, and
|Coverage(Cj) − Coverage(Ci)|

|Coverage(Cj)| ≤ ε, where ε is a small
threshold value ∈ [0, 1).

3 Def. 16 assumes un-weighted query workload and extends Def. 12.
It is straightforward to extend Def. 15 for weighted query workload in
the same manner.



14 Y. Liu, H. Liu, D. Xiao, M. Eltabakh

Dominance Type Cost(Ci) ≤ Cost(Cj) IFF

Ci 7→ΦΓ Cj ((Φ(Ci).size ≤ Φ(Cj).size) And (Γ (Ci).size ≤ Γ (Cj).size)) And
((Ci.state = Cj.state) Or (Cj.state = Skipped))

Ci 7→Φ Cj (Φ(Ci).size ≤ Φ(Cj).size) And

((Ci.state = Cj.state) Or (Ci.state = Exclusion))
Ci 7→Γ Cj (Γ (Ci).size ≤ Γ (Cj).size) And

((Ci.state = Cj.state) Or (Cj.state != Materialization))

Table 3 Cost()-Based Dominance Notation under Data Appends.

Basically, the cost comparison presented in Table 3 has
been extended to include the correlations’ current state. In
the three dominance types presented in the table, one possi-
ble condition that makes the cost comparison valid is that
both correlations have the same state, i.e., (Ci.state =

Cj.state). Furthermore, in the case of global dominance
(Ci 7→ΦΓ Cj), it is possible to have the correlation to-be-
eliminated (Cj) in a Skipped state regardless of Ci’s state.
This is because according to the transition costs indicated
in Figure 7, the Exclusion and Materialization states always
have lower (or at most equal) transition cost compared to the
Skipped state. Therefore, it is safe to eliminateCj if all other
conditions included in Def. 16 are satisfied.

Following the same logic, the conditions of the other two
dominance types have been extended. TheMpool dominance
(Ci 7→Φ Cj) considers only the transition costs to an Exclu-
sion state—which is the 3rd row in Figure 7. Whereases,
The Hpool dominance (Ci 7→Γ Cj) considers only the tran-
sition costs to a Materialization state—which is the 4th row
in Figure 7.

Step 3: Re-Solving the Optimization Problem: The
heuristic-based algorithm presented in Figure 6 still exe-
cutes the same three phases. The extended definition of the
correlations dominance takes effect in Lines 2, 5, and 17
of the algorithm. Finally, we incorporate the correlations’
states while solving the knapsack problem (Lines 10 and
19). Notice that from Figure 7 all transitions must perform
a scan over the ∆ dataset, which is already performed in
Step 1. Any additional scanning overhead translates to re-
ducing the benefit of the correlation by a decaying factor
(the more data to scan, the bigger the decaying factor). We
do not add this scanning overhead to a correlation’s cost be-
cause the cost and the total budget of the knapsack problem
are in terms of storage units, which is not compatible with
the processing overhead.

More specifically in Line 10, while competing for the
Mpool resource based of the |ΦFinal(C)| cost estimated
by Eq. 8—which reflects the storage cost— any additional
scanning cost is taken into account. Recall that competing
for Mpool means aiming for a transition to a new Exclu-
sion state, which is the 3rd row in Figure 7. The same logic
applies in Line 19 when competing for the Hpool resource

Invalid Skipped Exclusion Materialization  

Invalid 0 --- --- --- 

Skipped --- 0 0 0 

Exclusion --- D  0 X 

Materialization  --- D D 0 

Current State of Correlation C 

N
ew

 S
ta

te
 o

f 
C

 

D: The original dataset X: C’s Exception Bucket 

High cost No cost Medium cost 

Fig. 10 State Transitions & Scanning Cost under Workload Changes.

based of the |ΓFinal(C)| cost computed by Eq. 5 along with
the corresponding scanning costs presented in the 4th row in
Figure 7.

Step 4: Execution of the Selected Strategies: The final step
is to execute the Prep4Deployment task to handle the viola-
tions of the selected correlations. Figure 7 summarizes the
datasets that are scanned to perform a transition depending
on the current and the new state. For example, if a correla-
tion switches from Materialization to Exclusion, then ∆ is
scanned (which is Step 1 above), and the correlation’s ex-
ception bucket, denoted as X , is also scanned to collect the
exact distinct violating values from D and combine them
with those obtained from the ∆’s scan.

Estimation Errors Reseting: It is important to high-
light that despite any approximations performed during the
statistics collection phase (the StatsCollection task), the fi-
nal scans performed in this step (by the Prep4Deployment
task) guarantee that the Γ (C) or Φ(C) sets are collected in
an exact and precise way. This ensures exact query answer,
and it also resets any sampling-based or other approximation
types. Hence, no error accumulation takes place as more fu-
ture datasets are appends.

5.2 Evolving Query Workload

Incrementally updating EXORD+’s state under evolving
query workloads builds on top of the extensions presented
in Section 5.1. Assume that the current workload is denoted
as W , and the newly observed workload is denoted as W ’.



Adaptive Correlation Exploitation in Big Data Query Optimization 15

The first step is to re-compute the benefit of each valid soft
correlation. Since only the benefits are changing while costs
remain the same, the possible state transitions are slightly
different from the case of data appends. For example, any
valid correlation is guaranteed to remain valid under the new
workloadW ’. The possible state transitions along with their
involved scanning cost are summarized in Figure 10.

After re-computing the benefits (according to Def. 10 or
Def. 14), Steps 2, 3, and 4 presented in Section 5.1 are exe-
cuted to decide on the correlations’ dominance, re-solve the
optimization problem and select the best correlations, and
finally deploy them. Notice that the extended dominance
definition in Def. 16 along with the cost comparisons in
Table 3 still apply under the case of evolving query work-
load. This is because the relative cost comparison (equality,
greater than, or less than) among the possible transitions in
Figures 7 and 10 are the same.

6 Deployment & Exploitation Phase

The ultimate goal of EXORD+ is to exploit the available
correlations—more specifically the ones in the deployment
phase—to re-write queries and enable more efficient access
plans. In Section 6.1, we present the exploitation procedure
for equality predicates, and in Section 6.2, we extend the
support to range predicates.

6.1 Optimizing Equality-Predicate Queries

In Figure 11, we present the flowchart of the exploitation
procedure. The procedure takes as input a set of correlations
in their deployment phase Y = {C1, C2, ..., Cn}, a dataset
D to be queried, and a target query Q as defined in Def. 1
consisting of a set of conjunctive equality predicates p1 ∧
p2 ∧ ...pk. Set Y includes a mix of hard correlations, and
soft correlations along with their deployment strategies as
either Exclusion, or Materialization.

As the first step, the system checks whether any of Q’s
predicates, say pk, can enable an access plan other than a full
scan, e.g., by leveraging indexing or partitioning strategies.
If that is the case, then Q is returned without correlation-
driven re-writing. Otherwise, EXORD+ tries to re-write any
of the predicates using the available correlations in Y . While
searching Y , the priority is given first to the hard correla-
tions, followed by the Exclusion-based soft correlations, fol-
lowed by the Materialization-based soft correlations (The
2nd, 3rd, and 4th conditions in the flowchart, respectively).
The intuition is that hard correlations apply to the entire
dataset D without any restrictions or exceptions, and thus
they are given the highest priority. On the other hand, the
Exclusion-based correlations are given higher priority over
the Materialization-based correlations because, as will be

Exists predicate pk 
enabling non-full-scan 

plan? 

Exists hard correlation Ci 
to re-write predicate pk? 

Exists Exclusion-based 
correlation Ci to re-write 

predicate pk? 

Exists Materialization-
based correlation Ci to re-
write predicate pk? 

Yes 

No 

- Return Q to execute on D 

-  Q’ = Re-write(Q, Ci, pk) 
-  Return Q’  to execute on D 

Yes 

No 

Yes 

No 

No 

Return Q to execute on D 
with full-scan plan 

-  Return Q to execute on  
     D-Ci-ExpBucket 

-  Q’ = Re-write(Q, Ci, pk) 
-  Return Q’  to execute on D 

Yes 
-  Union the results 

Inputs 
-  Query Q consisting of a set of conjunctive predicates P = p1, p2, …pk 

 Each pk is in the form of   pk: (Attribute Ak = Constant sk)
-  Correlations in deployment phase Y = {C1, C2, …, Cn} 
-  Dataset D to be queried.

(Ci.Src = Ak) 

(Ci.Src = Ak  
And sk  Φ(Ci)) �	

(Ci.Src = Ak) 

Correlation-Driven Re-Writing 

Ci Granularity Augmented Predicate to pk in Q’ 

Singleton “AND Bk = Ci.F(sk)” 

Range “AND (Bk ≥ Ci.F(sk).lower    
  And(Bk ≤ Ci.F(sk).upper)”  

List “AND Bk in Ci.F(sk)” 

Augmentation Rules of Re-Write(Q, Ci, pk: Ak = sk) 

Fig. 11 Exploitation in Query Optimization Flowchart.

explained next, the processing of queries under the latter
strategy involves more overhead due to the need for scan-
ning the corresponding exception bucket.

Assume the selected correlation is Ci ∈ Y , and it is used
to re-write a specific predicate in Q, say pk, which is in the
form of pk: Ak = sk, where Ak is one of the data’s at-
tributes, and sk is a constant value. Therefore, Ci.Src =

“Ak”, and we assume Ci.Dest = “Bk”, which is another
attribute in D. The re-writing procedure, which generates a
new query Q’ is the same regardless of the Ci’s type. That
is, the three different correlation-driven re-writing cases il-
lustrated in Figure 11 (The 2nd, 3rd, and 4th conditions) ex-
ecute the same Re-Write(Q, Ci, pk: Ak = sk) procedure.
Re-Write augments an additional predicate (in a conjunc-
tive form) to pk, where the format of the new predicate de-
pends on Ci’s granularity as illustrated in Figure 11 (bottom
table).



16 Y. Liu, H. Liu, D. Xiao, M. Eltabakh

After generating the new queryQ’, the execution plan to
generate the correct results depends on the correlation’s type
and the adopted deployment strategy. That is, in the cases
where Ci is a hard correlation or an Exclusion-based soft
correlation, only the new query Q’ needs to execute on the
original dataset D (The 2nd, and 3rd cases in the flowchart).
Whereas, in the case where Ci is a Materialization-based
correlation, executing Q’ on D may not be enough as it may
miss some data records that satisfy Q but in violation of Ci,
i.e., may miss records in Γ (Ci). Therefore, the new query
Q’ executes on D, and also the original query Q executes
on the execution bucket file D-Ci-ExpBucket, and then the
results union together to generate the final correct results.
Since the results from the two queries are guaranteed to be
disjoint, there is no special processing needed to eliminate
duplicates when constructing the final answer.

Recall that Q’ contains the newly added predicates on
Ci.Dest, which has an associated efficient access method.
And thus, Q’ execution on the big dataset D is expected to
be efficient as it avoids the expensive full-scan plans. On
the other hand, the execution of Q on the exception bucket
is also expected to be efficient—although it uses a full-scan
plan—because exception buckets are relatively very small
compared to the original dataset.

6.2 Optimizing Range-Predicate Queries

EXORD+ enables optimizing range-predicate queries under
certain restrictions. These restrictions come from the fact
that a correlation’s mapping function is blackbox to the sys-
tem. And thus, without the mandatory properties specified in
the following definition (Def. 17), EXORD+ cannot guaran-
tee correct mapping of the range predicates at query time.

Definition 17 (Target Range-Predicate Query) As-
sume a range-predicate query Q involving predicate
p = (l op1 Src op2 u), where Src is a data attribute of
numerical or date types, l and u are the lower and
upper constant values, respectively, op1, op2 ∈ {<,≤},
and Src has no associated access method to evaluate
its predicate other than a full scan. Q is applicable for
optimization by a correlation C having the same source
attribute Src iff C.Dest is also of numerical or date
types, C.granularity 6= List, and ∀(l, u) the following
mapping of p holds:


(C.F (l) op1 C.Dest op2 C.F (u)), if “Singleton”

(C.F (l).lower op1 C.Dest op2 C.F (u).upper), if “Range”

In other words, in range-predicate queries, the source
and destination attributes are restricted to numerical or date
types because categorical attributes do not have a notion of

continuous range. The data type condition alone is not suf-
ficient since numerical types can be used, for example, to
encode categorical attributes. Therefore, the inclusion of the
additional mapping condition is mandatory for correct query
re-writing at runtime. These mapping rules are to be applied
within the Re-Write() function in the exploitation algo-
rithm in Figure 11.

Given that the mapping function is a blackbox, the do-
main expert must inform the system whether or not the con-
ditions in Def. 17 are satisfied. This is realized in EXORD+

by extending Def. 2 to include the “RangeOpt” Boolean
flag: 〈Src, Dest, Type, Granularity, F (), RangeOpt〉. The
flag is set when defining the correlation. If set to True, then
the range-predicate optimization is enabled, otherwise it is
disabled.

Example 8: Following on Example 1 in Section 2.1,
the correlation in Motivation Scenario 1 is now formulated
as: 〈deliveryDate, shippingDate, “Soft′′, “Range′′, F (), T rue〉,
where for a given delivery date d, F (d).lower = (d -
10 days), and F (d).upper = (d - 3 days). Now, since
RangeOpt = True, given a query Q involving a range pred-
icate:

March-14-2016 < deliveryDate ≤ April-20-2016

Q can be re-written based on the correlation to augment the
following predicate:

March-4-2016 < shippingDate ≤ April-17-2016

And then the rest of the algorithm presented in Figure 11
applies.

7 Experiments

7.1 Implementation & Setup Details

Implementation Details: EXORD+ is implemented as an
extension to Apache Hive 1.2.0. We used MySQL DBMS
as the metadata repository engine. We extended Hive SQL
interface and added a new command:

‘‘CREATE CORRELATION ON <tableName> ...’’

The command enables the database admins to define the
soft and hard correlations along with their parameters, e.g.,
the basic parameters introduced in Def. 2, and the RangeOpt
flag introduced in Section 6.2. The metadata repository
stores the correlations, their status, the statistics collected
from the validation phase, and the assigned strategy. In ad-
dition, for the Exclusion-based soft correlations, the distinct
violating values are stored in the metadata repository.

We introduced another command to allow the system
admin to manually trigger the validation and selection
phases on the correlations (if desired). The command takes
the query workload defined in a specific JSON format, and
offers a set of flags for flexible configurations as presented



Adaptive Correlation Exploitation in Big Data Query Optimization 17

”ASSESS CORRELATIONS ON <tableName>
       WORKLOAD <josn file> [-SVPXAW] ...”
	

-S:	Enables	the	sampling-based	strategy	during	stats.	collec:on.		
	

-V:	Executes	StatsCollec.on	task	for	collec:ng	the	basic	sta:s:cs		
							on	the	correla:ons.	
	

-P:	Executes	Prep4Deployment	task	for	preparing	the				
							Materializa:on-assigned	correla:ons.	
	

-X:	Executes	Prep4Deployment	task	for	preparing	the				
							Materializa:on-assigned	and	Exclusion-assigned	correla:ons.	
	

-A:	Re-assess	the	correla:ons	under	Data	Append	mode.		
							(EXORD+	can	find	out	the	newly	appended	data).	
	

-W:	Re-assess	the	correla:ons	under	Workload	Changed	mode.	
							(The	new	workload	is	passed	in	the	json	document)	
	

Fig. 12 ASSESS CORRELATIONS Command.

in Figure 12. For example, flags "-SV" indicate executing
only the StatsCollection task (without the preparation step
that materializes the execution buckets and the distinct vio-
lating values), and the sampling strategy is enabled. Flags
"-VP" indicate running the cascaded tasks StatsCollection
followed by Prep4Deployment using a full scan over the
data. In contrast, flags "-SVPA" indicates that the system
needs to re-assess the correlations on the specified table
because a new dataset (∆) is appended. The StatsCollection
and Prep4Deployment tasks execute on ∆ in order, and
StatsCollection uses the sampling-based strategy.

In addition to these commands, a system-level Boolean
configuration parameter PiggybackEnabled is defined4. If
set to False, then the correlations’ validation and prepa-
ration tasks are triggered only through the ‘‘ASSESS

CORRELATIONS ..’’ command. Otherwise, they are trig-
gered either by executing the command or by receiving a
user’s job (whatever comes first).

For detecting workload changes and triggering the in-
cremental maintenance (Section 5.2), EXORD+ has a con-
figurable behavior through a set of configuration parameters
and pluggable modules to accommodate the different needs
of different applications. The initial workload (W ) is either
provided by the system’s admin, or observed by the system
over a given interval. The interval is either count-based, i.e.,
observing NumQueries queries, or time-based, i.e., observ-
ing the queries submitted over the last TimeWindow, where
NumQueries and TimeWindow are configuration parameters.
As presented in Section 5.2, the system keeps track of each
distinct query Qi along with its weight Qi.wi representing
the frequency of its occurrence. Then, the system optimizes
its correlation selection based on W .

As more queries are submitted, EXORD+ observes and
collects a new workload (W ′) based on the NumQueries

or TimeWindow configuration parameters. Then, the dis-
tance between the two workloads is calculated Dist(W,

4 The system maintains few other configuration parameters that are
omitted from the discussion.

W’), where Dist() ∈ [0, 1] can be a standard distance func-
tion, e.g., Jaccard index, or a pluggable function provided by
the system’s admin (in the form of a jar file). If the distance
exceeds a threshold, then the adaptive workload incremental
maintenance is triggered5.

Cluster Setup: We used Apache Hadoop infrastructure
(version 1.1.2). All experiments are conducted on a dedi-
cated local shared-nothing cluster consisting of 20 compute
nodes. Each node consists of 32-core AMD 3.0GHz CPUs,
128GB of memory, and 2TBs of disk storage, and they are
interconnected with 1Gbps Ethernet. We used one server
as the Hadoop’s master node, while the other 19 servers
are slave nodes. Each slave node is configured to run up
to 20 mappers and 12 reducers concurrently. The following
Hadoop’s configuration parameters are used: sort buffer size
was set to 512MB, JVM’s are reused, speculative execution
is turned off, and a maximum of 4GB JVM heap space is
used per task. The HDFS block size is set to 128MB with a
replication factor of 3.

Datasets (Application & Synthetic): Most of our ex-
perimental evaluation uses a real-world application dataset
from the airline analytics domain. In addition, we generate
a synthetic dataset to stress test some extreme cases and
broader ranges of configuration parameters. The applica-
tion dataset contains airline traffic logs from 100s of air-
line companies and consists of customers’ ticket reserva-
tion records. Each record has more than 80 attributes, how-
ever the key ones of interest to us include: StartCountry,
StartCity, StartAirportIATA, which define the start-
ing point of a flight (and similar attributes exist for the
destination point), RequestTimestamp, ConfTimestamp,
which define the timestamp of a user requesting a reserva-
tion, and the timestamp of confirming the reservation—the
time difference includes the seat confirmation with the air-
line and the payment confirmation with the bank, and the
TicketClass, TicketPrice attributes, which define the
seat class and the corresponding price. The total size of the
dataset is around 2.3 TBs, and with the 3-way replication the
total size is around 7 TBs in HDFS. For experimental pur-
poses, we create three versions of the dataset with different
sizes, which are Small (500GBs), Mid (1.0 TB), and Large
(2.3 TBs).

The dataset has several interesting soft correlations. In
Figure 13, we summarize few correlations that are of our
focus. Correlation C1 is explained in detail in Motivation
Scenario 2 in Section 1. Correlation C2 indicates that in the
majority of the cases, the confirmation timestamp is within
1 to 5 mins after the request timestamp, however there can

5 The system dumps continuous reports on the queries that are
optimized by correlation-based re-writing, the queries that are not
optimized, the number of times a correlation is used to optimized
queries. These reports enable system admins to tune the system as de-
sired, or even manually trigger re-assessment using the ‘‘ASSESS
CORRELATIONS ..’’ command.



18 Y. Liu, H. Liu, D. Xiao, M. Eltabakh

ID Source Column Dest Column Short Desc. Strategy 

C1 StartAirportIATA StartCountry In most cases, the airport code 
determines the country (Refer to 
Motivation Scenario 2)   

Exclusion 

C2 ConfTimestamp RequestTimestamp In most cases, the ConfTimestamp 
is within 1 to 5 mins from the 
Requesttimestamp 

Materialization 

C3 TicketPrice TicketClass The price givens an indication on 
the ticket class code. 

Materialization 

Fig. 13 Correlations in the Working Dataset.

 
DataSet 
Size 

Partitioning (map-reduce Job) Indexing (map-reduce Job) 

Storage  Time (sec) Storage Time (sec) 

500 GBs 1.5 TBs 962 192GBs 2605 

1 TB 3 TBs 2173 413GBs 6643 

2.3 TBs ~ 7 TBs 4669 1.12TBs 16369 

Fig. 14 The storage (including 3-way replica) and time overheads of
creating an additional data organization (Partitioning or Indexing) for
Current-Auxiliary (Aux) technique.

certainly be exceptions to this correlation. Moreover, there
is a correlation between the ticket price and the ticket class
(Correlation C3), and we are going to synthetically control
such correlation in different ways as explained in the exper-
iments.

7.2 Performance Evaluation

7.2.1 Query Execution Gain

We start by studying the gain from using EXORD+ in
query execution. We assume the soft correlations described
above are already processed and they are in their deploy-
ment phase. As indicated in Figure 13, Correlation C1 uses
the Exclusion strategy, while the remaining correlations use
the Materialization strategy. In the following, we demon-
strate the effectiveness of EXORD+ in the context of both
selection and aggregation queries on top of two special ac-
cess methods, namely partitioning and indexing.

EXORD+ is compared against two baseline techniques,
which are referred to as “Current” and “Current-Auxiliary”
(or “Aux” for short). For a given query involving a selec-
tion predicate over an attribute A, Current would perform
a full scan over the data since A—by default—has no spe-
cial organization associated with it. In contrast, in Aux, we
manually build an additional special organization over A to
efficiently support its queries. In Figure 14, we report the
storage and time overheads involved in building such ad-
ditional organizations. The key observation is that building
these additional organizations involves significant overheads
that make it almost impractical to build several of them
over a single dataset. As the experimental evaluation will
show, EXORD+ can provide very similar performance to
Aux without paying this huge cost upfront.

Correlation C1: To study the benefits of using Corre-
lation C1, we first partition the data on the StartCountry

attribute. Nevertheless, our equality-based selection query
(C1-selection) involves a selection predicate on the
StartAirportIATA attribute instead. In the query, we ex-
periment with 10 different airport codes (excluding “***”)
from different countries to have diverse selectivity, and
then average their results. The performance of the C1-
selection query is presented in Figure 15(a). The cur-
rent technique [16] (labeled as “Current”) have to per-
form a full scan over the data, EXORD+ makes use of
Correlation C1 and adds an additional predicate over the
StartCountry which enables leveraging the existing par-
titioning, and “Aux” makes use of the additional partition-
ing created based on StartAirportIATA attribute. As the
results show, both EXORD+ and Aux achieve a factor of
12x speedup, and their performance is identical as they both
touch only the same relevant partitions. The key difference
between them is that EXORD+ does not pay the partitioning
overhead reported in Figure 14.

In Figure 15(b), we study a more complex varia-
tion of Query C1-selection, i.e., C1-aggr, in which the
query involves an equality-based selection followed by
an aggregation. In this case, the aggregation overhead—
more specifically, the shuffling/sorting and the reduce
phase overheads—are the same to all techniques including
EXORD+. Yet, the benefits from EXORD+ are still signif-
icant as it saves around 65% of the job’s execution time,
which is mostly due to the savings in the map phase. Again,
EXORD+ has identical performance to Aux.

CorrelationC2: In Figure 16, we demonstrate the usage
of Correlation C2 under the presence of indexes. In these
experiments, we build a local Hadoop++ index over the
RequestTimestamp attribute in each partition and use a cus-
tomized InputFormat to access the data as introduced in [7].
Our experimental queries C2-selection and C2-aggr involve
a selection predicate on the ConfTimestamp attribute in-
stead. Correlation C2 uses the Materialization strategy for
storing the violating records in a separate exception bucket.
The exception bucket sizes are 273MBs, 695MBs, and
1.17GBs for the datasets of sizes 500GBs, 1TB, and 2.3TBs,
respectively. We repeat each experiment with 5 different
timestamps, and for each timestamp we execute three ex-
periments with matching granularities of a Second, Minute,
and Hour to have different selectivities. The selectivity var-
ied from few 100s of records (in the case of a Second gran-
ularity) to several 100s of thousands of records (in the case
of an Hour granularity).

In Figure 16(a), we present the results of the selection
query C2-selection. The state-of-art technique [7] (“Cur-
rent”) have to perform a full scan over the data without the
use of the index, EXORD+ triggers two jobs; one over the
entire dataset and leverages the index, and another one to
scan the exception bucket, and “Aux” leverages the addi-
tional index built on the ConfTimestamp attribute. As the



Adaptive Correlation Exploitation in Big Data Query Optimization 19

0	

200	

400	

600	

800	

1000	

500GB	 1TB	 2.3TB	
0	

300	

600	

900	

1200	

1500	

500GB	 1TB	 2.3TB	
0	

200	

400	

600	

800	

1000	

500GB	 1TB	 2.3TB	
Dataset Size Dataset Size 

E
xe

cu
tio

n 
T

im
e 

(S
ec

) 

E
xe

cu
tio

n 
T

im
e 

(S
ec

) 

E
xe

cu
tio

n 
T

im
e 

(S
ec

) 

(a) Selection-Only Job (b) Selection-Aggr. Job 

EXORD 

Current 

Aux 

EXORD 

Current 

Aux 

C
ur

re
nt

 

A
ux

 

C
ur

re
nt

 

C
ur

re
nt

 

E
X

O
R

D
 

E
X

O
R

D
 

E
X

O
R

D
 

A
ux

 

A
ux

 

1TB 2.3TB 500GB 

Excep Bucket Processing 

Dataset Processing 

E
xe

cu
tio

n 
T

im
e 

(S
ec

) 

Dataset Size 
(a) Selection-Only Job 

0	

300	

600	

900	

1200	

1500	

500GB	 1TB	 2.3TB	

Excep Bucket Processing 

Dataset Processing 

Aggr Job 

A
ux

 

C
ur

re
nt

 

C
ur

re
nt

 

E
X

O
R

D
 

E
X

O
R

D
 

E
X

O
R

D
 

A
ux

 

A
ux

 

1TB 2.3TB 500GB 
Dataset Size 

(b) Selection-Aggr Job 

C
ur

re
nt

 

Fig. 15 Study of Correlation C1 (Use of Partitioning).

0	

200	

400	

600	

800	

1000	

500GB	 1TB	 2.3TB	
0	

300	

600	

900	

1200	

1500	

500GB	 1TB	 2.3TB	
0	

200	

400	

600	

800	

1000	

500GB	 1TB	 2.3TB	
Dataset Size Dataset Size 

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

) 

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

) 

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

) 

(a) Selection-Only Job (b) Selection-Aggr. Job 

EXORD 

Current 

Aux 

EXORD 

Current 

Aux 

C
ur

re
nt

 

A
ux

 

C
ur

re
nt

 

C
ur

re
nt

 

E
X

O
R

D
 

E
X

O
R

D
 

E
X

O
R

D
 

A
ux

 

A
ux

 

1TB 2.3TB 500GB 

Excep Bucket Processing 

Dataset Processing 

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

) 

Dataset Size 
(a) Selection-Only Job 

0	

300	

600	

900	

1200	

1500	

500GB	 1TB	 2.3TB	

Excep Bucket Processing 

Dataset Processing 

Aggr Job 

A
ux

 

C
ur

re
nt

 

C
ur

re
nt

 

E
X

O
R

D
 

E
X

O
R

D
 

E
X

O
R

D
 

A
ux

 

A
ux

 

1TB 2.3TB 500GB 
Dataset Size 

(b) Selection-Aggr Job 

C
ur

re
nt

 

Fig. 16 Study of Correlation C2 (Use of Indexing).

0	

250	

500	

750	

1000	

1250	

1500	

0	

200	

400	

600	

800	

1000	

1	Class	 10	Classes	 50	Classes	 500	Classes	 765	Classes	C
ur

re
nt

 

A
ux

 

A
ux

 

A
ux

 

A
ux

 

A
ux

 
EXORD EXORD EXORD EXORD EXORD 

1 Class 10 Classes 50 Classes 500 Classes 763 Classes 

Excep Bucket Processing 

Dataset Processing 

E
xe

cu
ti

on
 T

im
e 

(S
ec

) 

Selectivity (# TicketClasses out of 763 Classes) & Violation % 

(a) Selection-Only Job 
C

ur
re

nt
 

A
ux

 

A
ux

 

A
ux

 

A
ux

 

A
ux

 

EXORD EXORD EXORD EXORD EXORD 
1 Class 10 Classes 50 Classes 500 Classes 763 Classes 

Excep Bucket Processing 

Dataset Processing 

Aggr Job 

E
xe

cu
ti

on
 T

im
e 

(S
ec

) 

Selectivity (# TicketClasses out of 763 Classes) & Violation % 

(b) Selection-Aggr Job 

Fig. 17 Study of Correlation C3 (Use of Partitioning over the 2.3TBs Dataset).

results show, EXORD+ achieves up to 82% reduction in the
query time compared to Current, and the only additional
overhead compared to Aux is the processing of the excep-
tion bucket—which is relatively very small compared to the
data.

In Figure 16(b), we present the performance of the ag-
gregation Query C2-aggr in which we aggregate over the
StartAirportIATA attribute and calculate the count of the
entries after applying the selection predicate. Both the Cur-
rent and Aux techniques execute the query in a single map-
reduce job, whereas EXORD+ executes three jobs (one se-
lection over the entire dataset, one selection over the execu-
tion bucket, and then one aggregation on the output of the
first two jobs). Again, EXORD+ achieves around 50% re-
duction in the query time compared to Current and has a
slight overhead compared to Aux, which is mostly due to the
scanning of the exception bucket and the overheads of start-
ing three jobs instead of one. Yet, this overhead is negligi-
ble compared to the pre-processing overhead that Aux pays
to build the index, which would require around 150 of such
C2-aggr queries to just redeem the index-building overhead.

Correlation C3: For Correlation C3, we use the largest
dataset of size 2.3TBs which contains 763 distinct codes in
the TicketClass attribute, and we partition the data based
on that attribute. We synthetically assign price ranges for
the class codes such that some ranges are unique to spe-
cific classes, i.e., given a price in that range it maps to a
single ticket class, while other ranges map to several (or all)
classes. The purpose of such assignment is to have various
selectivities as described next. In these experiments, we vary
the percentage of the records violating the price-class corre-
lation over the values of {0.1%, 0.5%, 1%, 5%}, which lead

to the exception bucket sizes of {1.9GBs, 11.4GBs, 22GBs,
97.3GBs}, respectively.

In Figures 17(a) and 17(b), we illustrate the performance
of the selection query (C3-selection), and its extended ag-
gregation query (C3-aggr), respectively. The selection pred-
icate is on the TicketPrice attribute. On the x-axis of the
figures, we vary the TicketClass selectivity of the price pred-
icate such that the price maps to either 1, 10, 50, 500, or 763
(All) classes. The overall record selectivity from the predi-
cate is kept the same of approximately 10% of the input data.
For both experiments, the Current technique would perform
a single job (either a map-only for C3-selection, or a map-
reduce for C3-aggr) that scans the entire dataset. In con-
trast, EXORD+ would perform two map-only jobs for C3-
selection, and an additional third map-reduce job for C3-
aggr. On the other hand, Aux makes use of the additional
partitioning created on the TicketPrice attribute and can
answer both queries in a single job as in the Current tech-
nique.

As the results show, both EXORD+ and Aux are very ef-
ficient compared to Current and their performance increases
relative to the number of relevant touched partitions. In the
worst case, where all partitions are touched, Aux performs
identical to Current, and EXORD+ has a slight overhead
due to the processing of the exception bucket (and trigger-
ing three jobs instead of one in the case of C3-aggr in Fig-
ure 17(b)).

Synthetic Dataset. We generate a synthetic dataset of
size 1TB (3 TBs with replication) to stress test the query se-
lectivity and violation percentage parameters. The dataset
is generated as follows. Each record consists of four at-
tributes; namely Id, Field1, Field2, and Tail. The first



20 Y. Liu, H. Liu, D. Xiao, M. Eltabakh

0	

200	

400	

600	

800	

0%	 1%	 5%	 10%	20%	40%	 0%	 1%	 5%	 10%	20%	40%	 0%	 1%	 5%	 10%	20%	40%	 0%	 1%	 5%	 10%	20%	40%	 0%	 1%	 5%	 10%	20%	40%	 0%	 1%	 5%	 10%	20%	40%	

1%	 10%	 20%	 40%	 80%	 100%	

Excep Bucket Processing 

Dataset Processing 

C
ur

re
nt

 

A
ux

 

C
ur

re
nt

 

A
ux

 

C
ur

re
nt

 

A
ux

 

C
ur

re
nt

 

A
ux

 

C
ur

re
nt

 

A
ux

 

C
ur

re
nt

 

A
ux

 

EXORD EXORD EXORD EXORD EXORD EXORD 

Selectivity (1% to 100%) & Violation (0% to 40%) 

1% 10% 20% 40% 80% 100% 

E
xe

cu
ti

on
 T

im
e 

(S
ec

) 

Fig. 18 Synthetic datasets under various selectivity and violation percentages.

three attributes are integers, and the Tail attribute is a large
text field of size 3KBs. Our focus is on Field1 (which has
an index by default), and Field2 which has a soft corre-
lation (based on a simple mathematical formula) to Field1.
Field1 has the domain range between 1 and 106. The tested
query is a selection query over Field2 with a range predi-
cate that varies the record selectivity from 1% to 100% as
indicated in Figure 18, and within each selectivity degree,
the correlation’s violation percentage varies from 0% (Hard
correlation) to 40%.

In Figure 18, we compare Current (which performs a
full scan), Aux (which builds and leverages an additional in-
dex over Field2), and EXORD+. The first key insight from
the figure is that allowing large exception buckets may hurt
the performance and may diminish the savings from exploit
the correlation. Typically is it recommended to only accept
correlations, i.e., consider them as valid according to Def. 5,
only if the violation’s percentage is around or below 10% of
the base data. A more concrete recommendation is to have
the upper bound on the exception bucket size, i.e., MaxV-
ioRec in Def. 5, equal to the amount of data that can be pro-
cessed by a single wave (or at most two waves) of mappers.
For example, in our cluster setup, we have 400 concurrent
mappers and each processes 128MBs of data, which leads to
51GBs that can be processed in a single wave of mappers. In
Figure 18, the 1% and 5% violations fit in one wave, while
10% fits in two waves (and it doubles for 20% and 40%).

The second key insight from Figure 18 is that even with
bigger selectivity percentage, e.g., 80% and 100%, the over-
heads from the index processing and the exception bucket
are relatively small compared to Current—if we exclude
the un-recommended settings of 20% and 40% violations.
These overheads are between 5% for Aux and EXORD+-0%
violation, and 11% for the EXORD+-10% violation. The in-
dex overhead is due to increasing the dataset size (by around
10%), and hence increasing the I/O cost.

7.2.2 Optimizations of Correlation Selection

In this section, we evaluate the proposed heuristic-based al-
gorithm for correlation selection under limited resources.
We enumerated 16 different correlations that the do-
main experts believe to exist in our working dataset.

0	

20	

40	

60	

80	

100	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	13	14	15	16	17	18	19	

Correlation Id 

(a)   Exception Bucket Size 

E
xc

ep
ti

on
 B

uc
ke

t S
iz

e 
(G

B
s)

 

0	

10	

20	

30	

40	

50	

60	

0	 0.15	 0.3	 Sta:c	Def	

Dominance Threshold ε  

E
rr

or
 %

 

Ex & Cov Factors: 0-2 

Ex & Cov Factors: 2-3 

Ex & Cov Factors: 4-4 

(b) Accuracy of the Correlation Selection Algorithm 

Qualifying for  
Exclusion  

Fig. 19 Heuristic-Based Correlation Selection.

For example, in addition to the three correlations pre-
sented in Figure 13, other similar correlation include:
StartAirportIATA → StartCity, DestAirportIATA

→ DestCountry, DestAirportIATA → DestCity, and
RequestTimestamp → ConfTimestamp. Other interest-
ing correlations include ToFlightDays → Purpose, and
ToFlightDays → Duration. Capturing these correlations
is not only important for query optimization, but also im-
portant for the business logic and providing better pricing
models. In addition to these correlations, we replicated the
TicketPrice attribute in correlation C3 three more times,
and replicated C3 along with these new attributes. The pur-
pose of this replication is to have the four violation percent-
ages studied in Figure 17(a) all present in the dataset at once.
Therefore, the selection pool has 19 soft correlations.

We then execute a validation task to collect statistics on
these correlations. In Figure 19(a), we illustrate the excep-
tion bucket sizes for the 19 correlations (ordered by the size).
Only 4 out of the 19 correlations qualify for the Exclusion
strategy. Therefore, to simplify our experimental setup, we
assume that these 4 qualified correlations fit in the metadata
allowed pool Mpool since the total combined sizes of their
violating values are less than 1MB. We then focus on the
optimization selection problem of the remaining 15 correla-
tions competing for the Hpool resource.

To setup the experiment, we vary the available re-
source pool Hpool over the values 100GBs, 150GBs, and
200GBs, and the Γ ().size costs of the 15 correlations are
set according to the results in Figure 19(a). The benefit
model of the correlations is created as follows. We build
a workload of 50 queries, and distribute these queries over



Adaptive Correlation Exploitation in Big Data Query Optimization 21

the ExclusiveCoverage(), and Coverage() sets accord-
ing two configuration parameters, namely ExFactor, and
CovFactor. The ExFactor, which varies over the values
{0, 2, 4}, defines the number of queries that are exclu-
sively assigned to correlations (random assignment). And
then, for the remaining correlations, each is replicated be-
tween 2 to CovFactor times over the Coverage() set
of some different correlations (random assignment). The
CovFactor varies over the values of {2, 3, 4}. For exam-
ple, if CovFactor is set to 3, then each query is replicated
either 2 or 3 times (random selection within this range), and
the corresponding correlations are also chosen randomly.

As discussed in Section 3.2.3, the computational com-
plexity of the proposed heuristic-based algorithm for cor-
relation selection is O(n log n), where n is the number of
correlations. In contrast, the optimal brute-force algorithm
is exponential as it entails enumerating all permutations of
the 15 correlations of all sizes from 1 to 15 (no repetition,
but the order matters) and selecting the highest-benefit fea-
sible solution.

We omit the detailed results of the heuristic-based algo-
rithm under each configuration of the three changing vari-
ables Hpool, ExFactor, and CovFactor due to its negli-
gible tiny overhead. In summary, the execution time is in
the order of milliseconds ranging from 34 to 52 millisec-
onds. In these experiments, the dominance threshold ε (in
Def. 12) is set to 0.15. In contrast, the brute-force algo-
rithm is prohibitively expensive and a single execution takes
around 7.8 Days (187.2 Hours). We executed the brute-force
algorithm under three selected configurations to get their
ground-truth optimal solution, which are: {150GBs, 0, 2},
{150GBs, 2, 3}, and {150GBs, 4, 4}, where the numbers
correspond to the Hpool, ExFactor, and CovFactor, re-
spectively. Clearly, the brute-force algorithm is not a practi-
cal solution.

Regarding the accuracy of the heuristic-based algorithm,
we focus on the three configurations for which we ob-
tained the optimal highest-benefit selection, and test the
heuristic-based algorithm under three values for the domi-
nance threshold ε as depicted in Figure 19(b). In addition,
we suppress the heuristic and thus the algorithm now maps
to the static definition of the correlations’ benefits (Def.10).
The y-axis of Figure 19(b) shows the error percentage com-
puted as 100 ∗ (opt− approx)/opt, where opt and approx,
are the optimal and the approximated values, respectively.
As the results in Figure 19(b) show, the static definition
yields a relatively high error rate. This is due to unneces-
sary selection of correlations having high overlap in their
coverage.

7.2.3 Validation and Preparation Overheads

We now focus on evaluating the overheads involved in man-
aging the soft correlations, i.e., validation (the StatsCollec-
tion task) and preparation (the Pre4Deployment task).

0	

200	

400	

600	

800	

1000	

500GB	 			 1TB	 			 2.3TB	
0	

2	

4	

6	

8	

10	

12	

14	

500GB	 			 1TB	 			 2.3TB	
0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

500GB	 			 1TB	 			 2.3TB	
Dataset Size Dataset Size Dataset Size 

Jo
b 

E
xe

cu
tio

n 
T

im
e 

(S
ec

) 

E
xe

 T
im

e 
O

ve
rh

ea
d 

%
 

E
xe

 T
im

e 
O

ve
rh

ea
d 

%
 

3 Correlations 12 Correlations 24 Correlations 6 Correlations 

(a)   No Piggybacking (Dedicated Job)  (b) Piggybacking over Map-Only Job (c) Piggybacking over Map-Reduce Job 

Fig. 20 Validation Overhead of Soft Correlations.

Full-Scan Validation Overheads: In Figure 20(a), we
show the validation overhead without piggybacking. The
figure shows the execution time for each of the three dataset
sizes while validating the the three correlations C1, C2, and
C3. The small stacked bars illustrate the additional time
overhead in the cases of having 6, 12, and 24 correlations
to be validated instead of just 3 correlations (these correla-
tions are replicas of the 3 correlations with slight variations).
The key observation is that a dedicated full-scan StatsCol-
lection task can be expensive, especially in the case of large
datasets. Nevertheless, the advantage is that the system be-
comes ready to immediately optimize users’ queries.

In Figures 20(b) and 20(c), we illustrate the piggyback-
ing performance over a map-only, or a map-reduce job, re-
spectively. As expected, if the validation task is piggybacked
over a map-reduce job, then the overhead is negligible, and
many correlations can be verified at the same time since the
additional CPU cost for checking more correlations is al-
most entirely masked by the job’s own execution time. In
the case of the map-only job, the additional overhead per-
centage ranges from 3% to 13% (See Figure 20(b)).

Sample-Based Validation Overheads: As discussed in
Section 4.1, the validation phase can be executed over a
sample of the data instead of the entire dataset. In Fig-
ure 21, we extend our previous experiment (reported in Fig-
ure 20) by studying the effect of sampling on the validation
performance. We use the real-world dataset along with its
three distinct subsets of sizes 500GBs, 1TB, and 2.3TBs.
For each dataset, we consider executing the validation job
over either the entire dataset (100% size) or a sample of
size 40%, 20%, or 10% (the x-axis). Figure 21(a) illustrates
the job overhead without piggybacking (a dedicated job for
validation), whereas Figures 21(b) and 21(c) illustrate the
additional overhead percentage in the case of piggyback-
ing over another map-only or map-reduce job, respectively.
As expected, compared to the full dataset validation, the
sampling-based validation can significantly reduce the over-
heads by two to four folds.

Accuracy of Sample-Based Validation: To support the
theoretical analysis presented in Section 4.1 for the estima-
tion errors, we experimentally measure the accuracy of the
sample-based validation strategy. The exact differences be-
tween the estimated and actual values of Γ () and Φ() are



22 Y. Liu, H. Liu, D. Xiao, M. Eltabakh

0	
2	
4	
6	
8	
10	
12	
14	

10%	 20%	 40%	 100%	 10%	 20%	 40%	 100%	 10%	 20%	 40%	 100%	

500GB	 1TB	 2.3TB	

0	
0.5	
1	

1.5	
2	

2.5	
3	

3.5	

10%	 20%	 40%	 100%	 10%	 20%	 40%	 100%	 10%	 20%	 40%	 100%	

500GB	 1TB	 2.3TB	

Dataset Size & Sampling % 

Dataset Size & Sampling % 

Ex
e 

Ti
m

e 
O

ve
rh

ea
d 

%
 

Ex
e 

Ti
m

e 
O

ve
rh

ea
d 

%
 

3 Correlations 12 Correlations 24 Correlations 6 Correlations 

3 Correlations 12 Correlations 24 Correlations 6 Correlations 

0	

200	

400	

600	

800	

1000	

10%	 20%	 40%	 100%	 10%	 20%	 40%	 100%	 10%	 20%	 40%	 100%	

500GB	 1TB	 2.3TB	

Dataset Size & Sampling % 

Jo
b 

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

) 

(a)   No Piggybacking (Dedicated Job)  

(b) Piggybacking over Map-Only Job 

(c) Piggybacking over Map-Reduce Job 

3 Correlations 12 Correlations 24 Correlations 6 Correlations 

Fig. 21 Sample-Based Validation Overheads of Soft Correlations.

Sampling	%	

0.1%	 0.2%,		1%,	2%	 5%,	10%,	40%,	80%	

	
Before	

Deployment	

Valid	Set	 15/17	 15/16	 1	

Invalid	Set	 2/4	 3/4	 1	

	
A@er	

Deployment	

Exclusion	Set	 1	 1	 1	

MaterializaHon	
Set	

11/12	 1	 1	

Set	Phase	

Fig. 22 Sample-Based Validation: Accuracy using Jaccard Coefficient
J Compared to a Full-Scan Validation (0 ≤ J ≤ 1). J = 1 indicates
exact matching.

not critically important, but what is more important is their
effect on the status of the soft correlations, i.e., being valid
vs. invalid, and the final deployment status. Therefore, in
our experiments, we measure the accuracy by comparing
the correlations at two phases (Refer to Figure 22): First
comparing the Valid and Invalid sets from the full scan with

their counterpart sets from the sample-based strategy. Sec-
ond, comparing the deployment sets, namely Exclusion and
Materialization, from the full scan with their counterpart
sets from the sample-based strategy.

In this experiment, we only consider the largest real-
world dataset of size 2.3TBs, and vary the sampling percent-
age between 0.1% to 80% as indicated in Figure 22. We use
the set of the 19 correlations described in Section 7.2.2 as
the testing set. We set the MaxVioRec and MaxVioDistinct
parameters such that in the baseline case, which is a full-
scan validation, three of these correlations are invalid while
the rest are valid ones. Moreover, four of the valid correla-
tions belong to the Exclusion strategy, eleven belong to the
Materialization strategy, and one is skipped.

Under each sampling percentage, we execute one exper-
iment to collect the violation statistics, categorize the corre-
lations into valid and invalid sets, and then solve the opti-
mization problem to label the valid ones as either Exclusion,
Materialization, or Skipped. We use Jaccard coefficient as
the similarity measure between the output sets from the sam-
pling strategy and the corresponding sets produced from the
full scan.

As the results in Figure 22 show, the sampling-based val-
idation is highly accurate. With a very small sample of 5%
(or larger) an exact matching is found compared to the full-
scan output. Even with a smaller sample size between 0.2%
and 2%, a tiny mismatch is found in the valid and invalid
sets compared to the full-scan sets (the Before Deployment
phase). However, this mismatch did not affect the final deci-
sion regarding the ones chosen for actual deployment. Only
when the sample rate is set to 0.1%, we noticed a minor mis-
match where the sample-based method added an additional
false-positive correlation to the Hpool.

Preparation Overheads: For the Exclusion strategy, If
the validation phase is performed over the entire dataset
without sampling, then the violating values are already col-
lected. Thus, the preparation overhead involves the inser-
tion of these values into EXORD+’s metadata repository,
which is a MySQL DB. The overhead of this task is tiny
and negligible as it takes few seconds for the values to be
inserted into the database. For completeness, we report in
Figure 23(a) the time overhead to insert a number of val-
ues varying from 1 (which is the case for correlation C1) to
10,000 into MySQL database. On average, each value is 20
bytes, and the database table has a B+-tree index built before
inserting the values.

In the case the validation phase is performed over a sam-
ple, then the preparation phase (the Prep4Deployment task)
needs to collect the complete set of violating values. The
performance of this job is similar to that reported in Fig-
ure 20.

For the Materialization strategy, the preparation over-
head involves collecting the violating records and copy them
to an exception bucket. In Figure 23(b), we report this over-
head under the two cases of piggybacking the preparation



Adaptive Correlation Exploitation in Big Data Query Optimization 23

0	

3	

6	

9	

12	

15	

18	

273M	 695M	 1.17G	 1.9G	 11.4G	 22G	 97G	
Exception Bucket Size 

E
xe

 T
im

e 
O

ve
rh

ea
d 

%
 

Map-Reduce Piggybacking 

Map-Only Piggybacking 
# Values Insertion Time 

1 12.6 msec 

10 22.9 msec 

100 43 msec 

1000 0.97 sec 

10,000 8.32 sec 

(a)   Exclusion Strategy: Insertion 
into the Metadata Repository  

(b) Materialization Strategy: Overhead to create    
      Exception Buckets  

Fig. 23 Preparation Overhead of Soft Correlations.

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

100	

1%	 2%	 4%	 8%	 16%	 32%	 64%	
Appended Data Percentage (Δ /D) % 

In
cr

em
en

ta
l M

ai
nt

en
an

ce
 S

pe
ed

up
 %

 

Piggybacking	Disabled	

Piggybacking	Enabled	

(non_incremental	–	incremental)	x	100	

non_incremental	
*	Speedup	=	

*	Speedup	%	=	(non_incremental	–	incremental)	x	100	/	non_incremental	

Fig. 24 Incremental Maintenance Speedup under Data Appends. “Pig-
gybacking Enabled” approach has the disadvantage that the first user’s
job after each append operation is bypassed from query optimization
and executed with a full scan.

job over a user’s map-only job (scanning and reporting 10%
of the data) and a map-reduce job (aggregating over the en-
tire dataset). On the x-axis, we consider the creation of the
exception buckets corresponding to the Correlations C2 and
C3 studied in Section 7.2.1, and the y-axis shows the over-
head percentage to the user’s job. As expected, the overhead
depends on the exception bucket’s size, and it is clearly sig-
nificantly smaller if the user’s job is map-reduce job.

7.2.4 Evaluation of Incremental Maintenance

Data Appends: In Figure 24, we study the combined vali-
dation and preparation performance (the sum of there over-
heads) under data appends. We consider the real-world
dataset size of 2.3TBs as the base dataset (D). The size of
the appended dataset (∆) varies from 1% to 64% of D (the
x-axis of Figure 24). We assume the 19 candidate correla-
tions discussed in Section 7.2.2. The state of these corre-
lations under D is {3 Invalid, 1 Skipped, 4 Exclusion, 11
Materialization}. The statistics are collected based on 10%
of the data, i.e., 10% of ∆ for the incremental maintenance
and 10% of (D +∆) for the non-incremental maintenance.

When piggybacking over user’s jobs is disabled, the
maintenance of the system state is triggered either manu-
ally through the ASSESS CORRELATIONS ... command or
automatically when a new dataset ∆ is appended. The re-
sults in Figure 24 show the big savings that can be achieved

0	

3	

6	

9	

12	

15	

18	

21	

24	

27	

80%	 60%	 40%	 20%	 10%	

New-Workload’s Overlap Factor 

N
um

be
r o

f U
n-

O
pt

im
iz

ed
 Q

ue
rie

s 

Current  
Workload 

No Workload Adaptivity 

Workload Adaptivity 

Fig. 25 Number of Un-Optimized Queries under Workload Changes.
“Current Workload” consists of 50 queries. The “Overlap Factor” pa-
rameter controls the transition from the current workload to the new
workload, which also consists of 50 queries.

under the incremental maintenance approach. The big ad-
vantage of disabling the piggybacking under data appends
is that the system becomes ready to immediate optimize the
next user’s query without interruption.

When piggybacking over user’s jobs is enabled, the
maintenance of the system state is triggered by the first
user’s job after the data append operation. The main disad-
vantage here is that this job is bypassed from optimizations
in order to collect the needed statistics. The non-incremental
approach starts from scratch and sample from the entire
dataset (D + ∆), whereas the incremental approach only
samples from the appended dataset (∆). The difference in
the overhead in this case is shown to be around 15% to 30%
because the user’s job dominates the processing anyway.

Workload Changes: To study the adaptivity feature under
workload changes, we use the largest dataset size (2.3TBs)
and the 19 correlations {C1, C2, ..., C19} discussed in Sec-
tion 7.2.2. Similar to our setup in Section 7.2.2, we generate
a query workload W (referred to as the current workload)
of 50 queries controlled by the two configuration parame-
ters ExFactor and CovFactor. The only difference here
is that the queries in W can only reference 10 out of the 19
correlations, say {C1,C2, ..., C10}, and the remaining 9 cor-
relations are of no benefit toW . This implies that EXORD+

selects and deploys correlations only from the referenced
ones—depending on the available resources—because the
others have zero benefit.

We then generate a new workload W ’ consisting also of
50 queries. We use a new parameter OverlapFactor to con-
trol the percentage of queries that are common between W
and W ’. As illustrated in Figure 25, OverlapFactor varies
from 80% to 10%. The rest of the queries in W ’ (the new
queries) are generated according to the same two configu-
ration parameters ExFactor and CovFactor except that
they can reference any of the 19 correlations. The smaller the
value of the OverlapFactor parameter, the more new queries
are introduced and the more new correlations become rele-
vant to W ’ compared to the old workload W .



24 Y. Liu, H. Liu, D. Xiao, M. Eltabakh

In Figure 25, we study how the system responds to
the workload changes. The y-axis shows the number of
queries that are not covered by any deployed correlation (un-
optimized queries), mainly due to the restricted resources in
the optimization problem. Under the current workload W ,
three queries are not covered. When the transition occurs to
the new workloadW ’, the non-adaptive approach fails to ad-
just the selected correlations, and thus more queries become
un-covered by the previously chosen correlations. In con-
trast, EXORD+ incrementally re-evaluates the benefit mea-
sure of the correlations and adjust the selected and deployed
correlations accordingly.

8 Related Work

Query Optimization in Big Data. Query optimization in
big data is a fundamentally important problem, especially
because (1) the datasets to be processed are getting very
large, (2) the analytical queries are increasing in complex-
ity and may take hours to execute if not carefully optimized,
and (3) the pay-as-you-go cost model for cloud comput-
ing adds additional urgency for optimized processing. Be-
cause of these reasons, various aspects of query optimization
have been studied on the emerging highly-scalable infras-
tructures, e.g., Hadoop [24]. These optimizations include
techniques such as indexing [5,7,9], pre-partitioning [16],
re-organization and colocation [10], materialization and re-
usability of intermediate results [4,8,22], among many oth-
ers.

Although the aforementioned optimizations have shown
to be very effective in saving system’s resources and exe-
cution time, they do not come for free. Instead, they usu-
ally encompass significant overheads in time and storage [5,
8,9,10] (Refer also to our reported results in Figure 14).
The proposed EXORD+ system is complementary to and
can work in conjunction with most of the existing tech-
niques, e.g., indexing either local indexes [5,7] or global in-
dexes [9], pre-partitioning [10,16], and materialization [8].
The key advantage is that EXORD+ would enable optimiz-
ing a broader class of queries (beyond those on a single in-
dexed or partitioned attribute) with minimal additional cost.
Without EXORD+, existing systems either perform a full
scan, which is up to 10x slower, or pay the high cost of
building more auxiliary structures, and still get almost the
same performance as in EXORD+.

Data Correlations in Relational DBs. Correlations
represent important features of the data, which if effec-
tively captured and leveraged would lead to significant im-
provement in query processing [3,15,17,18]. That is why
discovering and exploiting correlations have been exten-
sively studied in RDBMSs including functional dependen-
cies [13,21,26], conditional functional dependencies [1,11],
soft correlations [3,15,17,18], and denial constraints [6].
The closest techniques to EXORD+ (in sprit) include
BHUNT [3], CORDS [15], Correlation Maps (CM) [17],

and CORADD [18], which all try to discover and exploit
soft correlations in query optimization. However, these tech-
niques are either heavily tailored towards the processing
mechanism of relational DB—which is fundamentally dif-
ferent from Hadoop-like infrastructures—and thus they are
not applicable in our context [15,17,18], or very restricted
in their correlation definition compared to EXORD+ [3].

In more details, CORDS [15] tries to discover only the
presence of correlations between pairs of attributes (say A1

and A2) and estimate their strength without keeping track of
the detailed mappings from one attribute to the other. This
is because CORDS objective is not query re-writing but in-
stead providing better estimation for predicate selectivity for
queries involving conjunctive predicates, e.g., over A1 and
A2. This is crucial in RDBMSs because under the typical
assumption of independence the estimated selectivity can be
way off, which leads to bad query plans and significant un-
necessary overheads. However, in Hadoop-like infrastruc-
tures there is no notion of conjunctive predicate selectivity
or different query plans; it is always a single plan (map-
only for certain types of jobs or map-reduce for other types).
Even more, predicate selectivity in general is not critical in
Hadoop-like systems because as we discussed in Section 1
(and confirmed by the experimental evaluation), it is safe to
always leverage an index (or partitioning) if exist instead of
a full scan regardless of the selectivity.

The CM [17] and CORADD [18] techniques have the
observation that secondary indexes (on un-clustered at-
tributes) usually have poor performance due to the ran-
dom access of disk pages. However, if such un-clustered at-
tributes are correlated with the clustered attribute (on which
the relation is sorted), then by re-writing the query and
adding predicates on that clustered attribute a significant
performance gain can be achieved. The two systems have
focused on capturing such mappings using new compressed
data structures, called Correlation Maps (CMs), instead of
the traditional secondary indexes [17], and providing better
design for the database in the form of materialized views and
recommendations for their clustered attributes [18]. Again,
these issues although fundamental in RDBMSs, they are not
applicable to Hadoop-like infrastructures. First, big datasets
typically do not have a clustered attribute on which the
entire dataset is sorted. Second, as we highlighted in Sec-
tion 3.2.2, there is no notion of a random vs. sequential ac-
cesses in Hadoop-like systems.

On the other hand, BHUNT [3] has the same objective as
EXORD+, which is capturing the soft correlations and the
mapping mechanism from one attribute to another, and then
using that for query re-writing and adding additional pred-
icates. However, as an automatic discovery tool, BHUNT
puts strong restrictions on the correlations that can be cap-
tured. First, the attributes A1 and A2 have to be numerical
(numbers or dates), and second their mapping has to be an
algebraic expression in the form of (A1 ⊕ A2), where ⊕ is
one of {+, -, *, /}. This significantly limits the applicability



Adaptive Correlation Exploitation in Big Data Query Optimization 25

of the system in big data applications. In contrast, EXORD+

is a validation tool, which enables defining correlations on
attributes of any data type, and domain experts can provide
more complex and broader ranges of mappings, e.g., com-
plex expressions or even look-up functions searching auxil-
iary metadata information.

9 Conclusion

We presented the EXORD+ system for exploiting the data’s
correlations in the context of big data query optimization.
EXORD+ supports both hard and soft correlations. We in-
troduced a multi-phase approach for the validation, selec-
tion, and deployment of the soft correlations. We proposed a
novel cost-benefit model that maps the adaptive selection of
the most beneficial soft correlations for a given query work-
load to the well-known submodular knapsack optimization
problem. We then, proposed a heuristic-based algorithm to
efficiently solve the problem in a polynomial time. We in-
troduced incremental maintenance strategies for efficiently
updating the system’s state under data appends and work-
load changes. EXORD+ is can be applied on top of various
big data query optimization techniques, e.g., indexing, parti-
tioning, and materialization. Our prototype implementation
demonstrates the significant speedup that can be achieved at
query time compared to the state-of-art techniques.

References

1. P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for data cleaning. In IEEE
ICDE, pages 746–755, 2007.

2. F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and
G. Varghese. An improved construction for counting bloom fil-
ters. In 14th Conference on Annual European Symposium, pages
684–695, 2006.

3. P. Brown and P. J. Haas. BHUNT: automatic discovery of fuzzy
algebraic constraints in relational data. In VLDB, pages 668–679,
2003.

4. Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. Haloop: efficient
iterative data processing on large clusters. Proc. VLDB Endow.,
3(1-2):285–296, 2010.

5. S. Chen. Cheetah: a high performance, custom data warehouse on
top of mapreduce. Proc. VLDB Endow., pages 1459–1468, 2010.

6. X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints.
PVLDB, 6(13):1498–1509, 2013.

7. J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad. Hadoop++: Making a yellow elephant run like a cheetah
(without it even noticing). In VLDB, volume 3, pages 518–529,
2010.

8. I. Elghandour and A. Aboulnaga. Restore: reusing results of
mapreduce jobs. Proc. VLDB Endow., 5(6):586–597, 2012.

9. M. Y. Eltabakh, F. Özcan, Y. Sismanis, P. Haas, H. Pirahesh,
and J. Vondrak. Eagle-Eyed Elephant: Split-Oriented Indexing in
Hadoop. In Proceedings of the 16th International Conference on
Extending Database Technology (EDBT), pages 89–100, 2013.

10. M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and
J. McPherson. Cohadoop: Flexible data placement and its ex-
ploitation in hadoop. PVLDB, 4(9):575–585, 2011.

11. W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Condi-
tional Functional Dependencies for Capturing Data Inconsisten-
cies. ACM Trans. Database Syst., 33(2):6:1–6:48, 2008.

12. P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes. Sampling-
based estimation of the number of distinct values of an attribute. In
Proceedings of the 21th International Conference on Very Large
Data Bases, pages 311–322, 1995.

13. Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. TANE:
an efficient algorithm for discovering functional and approximate
dependencies. Comput. J., 42(2):100–111, 1999.

14. O. Ibarra and C. Kim. Fast approximation algorithms for the knap-
sack and sum of subset problems. Journal of the ACM, 22:463–
468, 1975.

15. I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga. Cords:
Automatic discovery of correlations and soft functional dependen-
cies. In In SIGMOD, pages 647–658, 2004.

16. D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The performance of mapre-
duce: an in-depth study. Proc. VLDB Endow., pages 472–483,
2010.

17. H. Kimura, G. Huo, A. Rasin, S. Madden, and S. B. Zdonik. Cor-
relation Maps: A Compressed Access Method for Exploiting Soft
Functional Dependencies. PVLDB, 2(1):1222–1233, 2009.

18. H. Kimura, G. Huo, A. Rasin, S. Madden, and S. B. Zdonik.
CORADD: correlation aware database designer for materialized
views and indexes. PVLDB, 3(1):1103–1113, 2010.

19. H. Liu, D. Xiao, P. Didwania, and M. Y. Eltabakh. Exploiting soft
and hard correlations in big data query optimization. Proc. VLDB
Endow., 9(12):1005–1016, 2016.

20. Y. Liu, H. Liu, D. Xiao, and M. Y. Eltabakh. Adaptive Cor-
relation Exploitation in Big Data Query Optimization. Tech-
nical Report: http://web.cs.wpi.edu/˜meltabakh/
WPITR1803.pdf.

21. H. V. Nguyen, E. Müller, P. Andritsos, and K. Böhm. Detecting
correlated columns in relational databases with mixed data types.
In SSDBM, pages 30:1–30:12, 2014.

22. T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas.
Mrshare: sharing across multiple queries in mapreduce. Proc.
VLDB Endow., pages 494–505, 2010.

23. Z. Svitkina and L. Fleischer. Submodular approximation:
Sampling-based algorithms and lower bounds. SIAM J. Comput.,
40(6):1715–1737, 2011.

24. The Apache Software Foundation. Hadoop.
http://hadoop.apache.org.

25. A. Thusoo, R. Murthy, J. S. Sarma, Z. Shao, N. Jain, P. Chakka,
S. Anthony, H. Liu, and N. Zhang. Hive - a petabyte scale data
warehousing using hadoop. In ICDE, 2010.

26. J. Ullman. Principles of database and knowledge-base systems.
volume 1, 1988.

27. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica. Spark: Cluster computing with working sets. In USENIX
Conference, pages 10–10, 2010.

http://web.cs.wpi.edu/~meltabakh/WPITR1803.pdf
http://web.cs.wpi.edu/~meltabakh/WPITR1803.pdf

	Introduction
	Preliminaries
	EXORD+ under Static Environment
	EXORD+ Design Extensions
	EXORD+ under Dynamic Environment
	Deployment & Exploitation Phase
	Experiments
	Related Work
	Conclusion

