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Abstract—Many graphs in social and business applications are
not deterministic, but are uncertain in nature. Related research
requires open access to these uncertain graphs. While sharing
these datasets often risks exposing sensitive user data to the
public. However, current graph anonymization works only target
on deterministic graphs and overlook the uncertain scenario.

Our work seeks a solution to release uncertain graphs with
high utility without compromising user privacy. We show that
simply combining the representative extraction strategy and
conventional graph anonymization method will result in the
addition of noise that significantly disrupts uncertain graph
structure. Instead, we introduce an uncertainty-aware method,
Chameleon, that provides identical privacy guarantees with much
less noise. With the possible world semantics, it enables a fine-
grained control over the injected noise. Finally, we apply our
method to real uncertain graphs and show that it produces
anonymized uncertain graphs that closely match the originals
in graph structure statistics.

I. INTRODUCTION

In several emerging applications, such as business to busi-
ness (B2B) and online social networks (OSN), graphs serve as
powerful models to capture the inherent complex relationships.
Most graphs in these applications are uncertain by nature,
where each edge carries a degree of uncertainty (probability)
representing the probability of its presence in the real world
as shown in Figure 1. The existence of the edges is inferred
with the use of a variety of statistical approaches.

These uncertain graphs are invaluable for scientific research
and commercial applications [2, 7]. However, sharing these
uncertain graphs might violate the privacy of users or entities
profiled inside. For example, B2B networks contain informa-
tion about transactions among companies. Any privacy leak
can be used to infer the business model–the key and confi-
dential business asset. It calls for methods to share uncertain
graphs without compromising privacy.
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(a) Social Trust Network
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(b) B2B Network

Figure 1: Real-world uncertain graphs with privacy concerns.

State-of-the-Art Techniques. A significant amount of works
has been done in privacy preserving deterministic network

publishing. Existing methods can be classified into two main
categories. The first ones try to publish the data in an
anonymized manner. Most of them leverage syntactic privacy
models derived from k-anonymity to provide ad-hoc privacy
protections against specific kinds of attack [9–11, 16, 18].
Another avenue is to apply ε−differential privacy for providing
the formal privacy guarantee. It roughly falls into two direc-
tions. The first direction aims to release differentially private
graph mining results such as degree distributions, sub-graph
counts, and frequent graph patterns [4]. Such methods limit
the use of new queries can be permitted on the data. The
second direction aims to publish a sanitized graph [15, 17].
Most research projects an input graph to dK-series and ensures
differential privacy on dK-series statistics. These private statis-
tics are then either fed into generators or sampling process to
generate a fit graph. While, there is no a genearl policy to set
the value of ε that provides sufficient differential privacy [8].

An obvious approach is to convert uncertain graph
anonymization problem into the deterministic scenario by
using edge probabilities as edge weights. However, by disre-
garding possible world semantic of uncertain graphs, such an
approach fails to reflect important properties (i.e., connectivity,
and spectrum) of uncertain graphs correctly [6, 14].

In summary, these techniques tailored towards determin-
istic graphs and overlook uncertain ones where each edge
carries a degree of uncertainty. The ignorance of edge uncer-
tainty makes these solutions inefficient for sanitizing uncertain
graphs. The inefficiency due to various reasons including the
wrong assumption of privacy attacks and improper utility loss
metrics. In contrast, our approach is able to provide enough
privacy guarantee and preserve uncertain graph structure.

Challenges. To achieve our design goals, the following key
challenges must be handled.
• Stochastic Privacy Attacks. Discarding edge uncertainty in

the released graph is impractical since it severely deteriorates
data utility. However, the additional release of edge uncertainty
makes privacy protection far more difficult. The release of
edge uncertainty would empower the adversary and make the
profiled entity more vulnerable to stochastic privacy attacks.
• Stochastic Utility Loss Metric. It is well-known that the

choice of utility loss metric is critical for graph anonymization
techniques. Some metrics such as graph edit distance [9], spec-
trum discrepancy [18], community reconstruction error [16]
and shortest path discrepancy [10] are used in prior works.



While, they are heavily tailored for deterministic graphs and
built on the top of deterministic graph concepts. Thus, they
aren’t right choices in the uncertain scenario. We need a well-
defined metric to accurately capture the structural deviation of
uncertain graphs after anonymization.
• Intractable Search Space. Finding an anonymized graph

with the desired level of privacy by as few graph contractions
as possible is known to be NP-hard [5]. In this work, the edge
operation is no longer a binary operation (addition/deletion),
but there can be infinite probability values assigned to each
edge. It becomes more computationally challenging.

Contribution. Our contributions include:
• We first identify uncertain graph anonymization problem

where edge uncertainty needs to be seamlessly integrated
into the core of anonymization.

• We propose a benchmark solution, Rep-An, which com-
bines the representative extraction strategy and existing
graph anonymization methods together. We show it would
deteriorate data utility for edge uncertainty detachment.

• We develop a new scheme, Chameleon, which adopts sev-
eral stochastic shifts including the evaluation of privacy
risk, utility loss, and judicious stochastic modifications
following the possible world semantic.

• Experimental study on real-world datasets shows the
significant improvement of Chameleon over Rep-An.

II. PROBLEM DEFINITION

A. Uncertain Graph

According to the possible-world semantics [3], an uncertain
graph G = (V,E, p) essentially represents a probability
distribution over all of the certain graphs G in the forms of
which the uncertain graph may actually exist. The probability
of observing any possible world Gi = (V,EGi) is 1

Pr[Gi] =
∏

e∈EGi

p(e)
∏

e∈E\EGi

(1− p(e))

B. Reliability Discrepancy

Prior works show the connectivity model is able to yield a
better graph representation than degree sequence model [10].
Besides, connectivity discrepancy was proven to be a proper
utility-loss metric in graph anonymization works. Inspired
by these works, we use its generalized version – Reliability
Discrepancy (RD) as the utility-loss metric in the uncertain
scenario. Reliability Ru,v(G) captures the probability that two
given (sets of) nodes are reachable over all possible worlds of
the uncertain graph as follows:

Ru,v(G) =
∑

G∈W (G)

IG(u, v)Pr[G]

where IG(u, v) is 1 iff u and v are connected in G, and 0
otherwise. Naturally, reliability discrepancy of a anonymized
uncertain graph G̃ w.r.t. the original one G, is defined as the
sum of the reliability deviation over all node pairs.

∆(G̃) =
∑

(u,v)∈VG

|Ru,v(G)−Ru,v(G̃)|

1In this work, we assume that the existence probabilities of edges are
mutually independent. Different uncertainty models will be considered later.

C. Privacy Policy

We adopt the (k, ε)-obf privacy model introduced by Boldi
et al. [1], where k ≥ 1 is a desired level of obfuscation and ε ≥
0 is a tolerance parameter. Analogous to k−anonymity, k−obf
requires blending every node with other fuzzy match nodes.
The level of fuzzy matching is quantified by the entropy over
posterior probabilities. The stochastic nature makes it a good
fit in the uncertain graph context. Moreover, the introduction
of tolerance parameter ε makes it suitable for real practice.2

Definition 1. (k, ε)-obf Let P be a vertex property (i.e., vertex
degree in our work), an sanitized uncertain graph G̃ is said to
k-obfuscate a given vertex v ∈ G w.r.t P if the entropy H() of
the distribution YP (v) over the nodes of the original uncertain
graph is greater than or equals to log2 k:

H(YP (v)) ≥ log2 k.

The uncertain graph G̃ is (k, ε)-obf w.r.t vertex property P if
it k-obfuscates at least (1− ε)|V | nodes in G.

D. Problem Statement

Given the above foundation, we can now formulate our goal.

Problem 1. Given an uncertain graph G and desired
anonymization parameters k and ε, the objective is to find
a (k, ε)-obf one G̃ = (V,E, p̃) with minimal ∆(G̃) as

argmin
G̃

∆(G̃)

Subject to G̃ is (k, ε)− obf

III. UNCERTAIN GRAPH ANONYMIZATION

A. Benchmark Solution

Inspired by the methodology “uncertain graph processing
through representative instances”, we propose the benchmark
solution Rep-An: a given uncertain graph G is approximated
as a single representative (deterministic) graph Grep, then
outputs the anonymized result of Grep as the final result.
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Figure 2: Overview of Rep-An.
By this way, the state-of-art methods can be applied on

uncertain graphs, regardless of the inherent uncertainty. It
is the first time to combine isolated works (representative
extraction [13] and graph anonymization [1]) together for
uncertain graph anonymization.

However, this approach is problematic. First, the input edge
uncertainties (probabilities) are no longer integrated into the
anonymization process since they are detached in the first step.
Second, since the two phases are isolated from each other,
different phases might be optimized for different metrics. As
the result, Rep-An might introduce a high level of noise and
consequently deteriorate the overall data utility.

2There might be extreme unique nodes, e.g., Trump in a Twitter network,
whose obfuscation is almost impossible.



B. The Chameleon Algorithm
Instead of detaching edge uncertainty from the anonymiza-

tion phase, we shift the state-of-art method [1] by integrating
uncertainty semantics into its core steps, namely Chameleon. It
enables a unifying and grained control over the noise injected
to uncertain graphs, then provides enough privacy guarantee
with better utility.

Problem Transformation Anonymization is done via alter-
ing the probabilities of sampled edges. For each sampled edge
e, it is assigned a probability deviation re, where re ← R(σ)3.
As the standard deviation σ decreases, a greater mass of Rσ
will concentrate near re = 0, then the amount of injected
noise and consequent structural deviation will be smaller. It
enables us to transform the graph anonymization problem into
the minimization of structural noise need to be (k, ε)-obf . The
computation of the later one can be achieved via a binary
search on the value of standard deviation σ.

Search Flow The binary search flow is determined by the
GenObf function. For the given standard deviation σ, Genobf
either returns the best found (k, ε)-obf instance or indicates
failure. The anonymization algorithm starts with an initial
guess of an upper bound σu which is iteratively doubled until
a (k, ε)-obf graph is found. Then, the binary-search process
is performed using σl = 0 as the lower bound, and the found
upper bound σu. The binary search terminates when the search
interval is sufficiently short. It outputs the best (k, ε)-obf found
(i.e., the last one that was successfully generated).

GenObf To find a (k, ε)-obf of the input uncertain graph
G using a given standard deviation σ, Genobf performs t
randomized attempts (In our experiment, we used t = 5). Iff
all t attempts fail, Genobf returns failure signal. Otherwise, it
returns the (k, ε)-obf with minimal ε. Each attempt begins by
selecting a subset Ec, which will be subjected to alteration 4.
Next, we distribute the deviation among selected edges and
alter their edge probabilities. For more detail of the search,
we refer interested readers to the state-of-art work [1] since
Chameleon ensembles it except the design of heuristic and the
edge perturbation scheme.

C. Heuristic Search inside Chameleon
Since the number of possible anonymized graphs is expo-

nentially large, finding the optimal one is NP-hard. Thus, the
heuristic search is commonly employed to find a reasonably
good one [1, 12].

Deterministic Uniqueness In previous work [1], the pertur-
bation re for each edge e = (u, v) is assigned according to the
uniqueness score of the vertices u and v. Intuitively, a larger
perturbation is assigned around more distinctive vertices w.r.t
vertex property P . More specifically, the commonness (the
inverse of uniqueness) is used to measure the typical level of
the property value P (v). It amounts to the weighted average
distance among all other property values. Note that, all the
property values are scalar. While the heuristic has been proved

3Following [1], the distribution R(σ) is a truncated normal distribution
with mean 0 and variance σ2, but could in principle be any distribution.

4The set Ec, whose target size is |Ec| = c|E|

to be successful, it heavily tailored towards deterministic
graphs and implicitly assumes that uniform edge relevance.

Stochastic Uniqueness We extend the preliminary version
of uniqueness score for handing stochastic cases. Most notably,
we represent the vertex property value ρ as a parameterized
probability distribution and use KL-divergence to measure the
distance between two probability distributions. The stochastic
commonness SC (the inverse of stochastic uniqueness SU) of
a given property value ρv = P (v) is given by

SC(ρv) =
∑

u∈V
Φ0,θ(DKL(ρv||ρu))

where the weight decays exponentially as a function of the
distance between ρv and ρu and the parameter θ determines
the decay rate. We set θ = σ as the injected noise blurs the
meta distribution of property values.

Edge Reliability Relevance Alteration over a single edge
would produce structural change and send ripples through
the rest of the graph. We observe that the same amount of
deviation re assigned over different edges will incur signifi-
cantly different structural changes. Clearly, the uniform edge
relevance assumption does not hold. Instead of penalizing
edge alteration uniformly, we should penalize it according
to edge relevance. Therefore, edge relevance (ER) needs to
be measured. There are many potential ways to measure it.
Importantly, this measure must be fitted to the problem.

In this work, we measure the introduced structural deviation
by a unit re, edge reliability relevance (ERR(e)), as

ERR(e) = lim
re→0

∆(G + re)

re
=
∑
u,v

|Ru,v(G + re)−Ru,v(G)|
re

where the factorization lemma [6] indicates
Ru,v(G + re)−Ru,v(G) = re ·

[
Ru,v(Ge)−Ru,v(Gê)

]
ERR(e) =

∑
u,v

Ru,v(Ge)−
∑
u,v

Ru,v(Gē)

Clearly, ERR(e) amounts to the number difference of con-
nected node pairs between two neighbor uncertain graphs Ge
and Gē, where Ge and Gē are identical to G with the exception
that p(e) = 1 in the former and p(e) = 0 in the later.

Intuitively, ERR generalizes the concept of the cut-edge
by quantifying the stochastic impact of edge alteration over
the connectivity of all the possible worlds. We also show
its computation can be achieved via Monte-Carlo sampling
with an acceptable time complexity O(N · T ), where N is
the number of samples and T is time complexity for the
employed connected component detection algorithm. 5 The
key idea is to memorize the calculated result (# of connected
node pairs) over samples. For each edge e, we group then
aggregate results of samples according to edge existence. And,
the vertex reliability relevance VRR amounts to the weighted
sum of ERR values.

Combination We believe that the combination of stochastic
uniqueness SU and reliability relevance RR heuristic would
introduce cumulative benefit in heuristic search since they are

5The union-and-find method is used in this work.



Table I: Characteristics of the datasets and privacy parameters
Graph Content Nodes Edges Edge Prob ε
PPI Protein-Protein Interaction 12K 397K 0.29 10−2

BK Location-based OSN 58K 214K 0.29 10−3

DBLP Co-authorship Network 824K 5M 0.46 10−4

complementary to each other. The resulting search heuristic
is their convex combination: SU − β · VRR. In practice,
we found that β = 1 worked best. Intuitively, we prioritize
the perturbation over more distinctive nodes and penalize the
perturbation over “structural relevant” nodes.
D. Stochastic Controlled Perturbation inside Chameleon

For each sampled edge e with the distributed standard devi-
ation σe, we select probability deviation re from the random
distribution R(σe). Thus, we are left asking the question, how
can we safely alter edge probability for higher anonymity? It
is quite straightforward in the deterministic scenario [1]:

ρ̃(e) :=

{
1− re ρ(e) = 1

re ρ(e) = 0

Following the possible world semantics, we propose the gen-
eral version as ρ̃(e) := ρ(e) ·

[
1 − re

]
+ (1 − ρ(e)) ·

[
re
]
.

It enables stochastic control SC over the amount of injected
noise and limits the range of the probability value ρ̃(e) to the
range [ρ(e), 1 − ρ(e)] instead of the wider one [0, 1]. And,
we theoretically show it follows a likelihood gradient which
maximizes the overall entropy (disorder), an approximation of
anonymity of the input uncertain graph G.

IV. EXPERIMENTS
A. Settings

We compare our proposed scheme Chameleon with three
baselines. The first one is Rep-An which anonymizes an un-
certain graph through the representative instance. The second
is its variant (-RR) which ignores edge reliability relevance in
heuristic search. The third is another variant (-SC) without the
use of stochastic controlled edge perturbation strategy.

We test them on three uncertain graphs: PPI, BrightKite
(BK) and DBLP as described in Table I. We consider the
obfuscation level k in the range [100, 300], and possible
tolerance value ε to explore their performance differences.

For every obfuscated graph, we sampled 1000 possible
worlds to compute its statistics of interest: average node
degree, degree distribution, average distance, graph diameter,
reliability, and clustering coefficient. Here, we report their
reliability discrepancies (RD) against the original one. The
smaller RD, the better uncertain graph structure preserving.
B. Results

Chameleon vs. Rep-An Figure 3 shows the performance
of Chameleon is always much better than Rep-An. As the
size of graph increases (PPI→ DBLP), the performance gap
becomes larger and larger. Even in the case k = 100 (weak
privacy guarantee with little noise requirement), Rep-An still
introduces considerable structural distortion. We believe that
structural distortion can be largely attributed to the detachment
of edge uncertainty. The representative instance extraction step
might introduce too much noise. It also results in cumulative
errors in the anonymization step. Consequently, the generated
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Figure 3: Comparison of different anonymization algorithms.

anonymized outputs are significantly different from the origi-
nal uncertain graph, as witnessed by Figure 3.

Chameleon vs. Variants In all the cases, Chameleon
outperforms its variants. When we increase the strength of
privacy guarantee k, the introduced RD (structural distor-
tion) progressively increases. While the RD introduced by
Chameleon increases relatively slowly, within 10%. Thus, we
can safely conclude that RR and SC both contribute to the
fine-grained control of noise, and lead to better data utility.

V. CONCLUSIONS AND FUTURE WORK

In this work, we first identify the overlooked prob-
lem–uncertain graph anonymization. Then, we develop a new
scheme, Chameleon, which seamlessly integrates edge uncer-
tainty into the core of the anonymization process such as the
evaluation of privacy risk, utility loss, and judicious stochastic
modifications. Experiments on three real-world datasets ver-
ify its effectiveness. In real-world graphs, edge probabilities
sometimes are not independent, but dependent. Thus, we
plan to extend our scheme to handle uncertain graphs with
dependent probabilities. It is also interesting to investigate
sharing uncertain graphs in the differentially private manner.

REFERENCES
[1] P. Boldi, F. Bonchi, A. Gionis, and T. Tassa. Injecting uncertainty in graphs for

identity obfuscation. VLDB, 2012.
[2] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement

in location-based social networks. KDD, 2011.
[3] Colbourn and Colbourn. The combinatorics of network reliability. 1987.
[4] W.-Y. Day, N. Li, and M. Lyu. Publishing graph degree distribution with node

differential privacy. SIGMOD, 2016.
[5] S. Hartung and N. Talmon. The complexity of degree anonymization by graph

contractions. TAMC, 2015.
[6] R. Jin, L. Liu, B. Ding, and H. Wang. Distance-constraint reachability computation

in uncertain graphs. VLDB, 2011.
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