
ChainLink: Indexing Big Time Series Data For
Long Subsequence Matching

Noura Alghamdi, Liang Zhang, Huayi Zhang, Elke A. Rundensteiner, Mohamed Y. Eltabakh
Worcester Polytechnic Institute
Worcester, MA 01609, USA

(nalghamdi, lzhang6, hzhang4, rundenst, meltabakh)@wpi.edu

Abstract—Scalable subsequence matching is critical for sup-
porting analytics on big time series from mining, prediction to
hypothesis testing. However, state-of-the-art subsequence match-
ing techniques do not scale well to TB-scale datasets. Not
only does index construction become prohibitively expensive,
but also the query response time deteriorates quickly as the
length of the query subsequence exceeds several 100s of data
points. Although Locality Sensitive Hashing (LSH) has emerged
as a promising solution for indexing long time series, it relies
on expensive hash functions that perform multiple passes over
the data and thus is impractical for big time series. In this
work, we propose a lightweight distributed indexing framework,
called ChainLink, that supports approximate kNN queries over
TB-scale time series data. As a foundation of ChainLink, we
design a novel hashing technique, called Single Pass Signature
(SPS), that successfully tackles the above problem. In particular,
we prove theoretically and demonstrate experimentally that the
similarity proximity of the indexed subsequences is preserved
by our proposed single-pass SPS scheme. Leveraging this SPS
innovation, Chainlink then adopts a three-step approach for
scalable index building: (1) in-place data re-organization within
each partition to enable efficient record-level random access to all
subsequences, (2) parallel building of hash-based local indices on
top of the re-organized data using our SPS scheme for efficient
search within each partition, and (3) efficient aggregation of the
local indices to construct a centralized yet highly compact global
index for effective pruning of irrelevant partitions during query
processing. ChainLink achieves the above three steps in one
single map-reduce process. Our experimental evaluation shows
that ChainLink indices are compact at less than 2% of dataset
size while state-of-the-art index sizes tend to be almost the same
size as the dataset. Better still, ChainLink is up to 2 orders
of magnitude faster in its index construction time compared to
state-of-the-art techniques, while improving both the final query
response time by up to 10 fold and the result accuracy by 15%.

I. INTRODUCTION

A. Background and Motivation

Time series data are ubiquitous and pervasive across almost
all human endeavors. Over the last decade, the explosion of new
technologies ranging from wearable sensors to social networks
has lead to an unprecedented growth of time series data. For
example, in Zhejiang Province of China, 20 million smart
meters have been deployed, producing around 20 million time
series per year each of length around 0.5 million readings [1].

As a consequence, scalable solutions for processing, querying
and mining long time series that leverage modern distributed
compute infrastructures become a necessity. Most time series
mining algorithms from query-by-content, anomaly detection,

classification to segmentation rely on subsequence similarity
search, e.g., kNN subsequence search, as a core subroutine.
Examples from real-world applications are highlighted below.

Motivating Example 1 (Neuroscience Applications):
Given a massive archive of Electroencephalography (EEG)
data, a neurologist may need to search for a certain number
(k) of epileptic spikes most similar to a given patient’s epileptic
spike to decide whether or not to classify him as an epilepsy
patient. The value k needs to be large to avoid the influence of
noise on the result, while still being appropriate for subsequent
human analysis. In this use case, the length of an epileptic
spike, here equal to the length of the matching query sequence,
typically reaches over 7000 data points [2].

Motivating Example 2 (Smart Grid Applications): In
smart grid applications, if a smart meter were to collect one
meter reading every minute, it would collect more than 0.5
million meter readings per year for each of its sensors [1]. A
business analyst may want to learn about comparative customer
electricity consumption behaviours by answering queries such
as: ‘find k households whose electricity consumption starting
at any period of time are approximately similar to a certain
given household Q”. Since we aim to identify similar behavior,
approximate match results suffice.

B. Common Problem Characteristics and Technical Challenges

The examples highlighted above, among many others,
share common characteristics that drive our research. First,
the kNN subsequence search is the core building block
operation for these queries. In fact, in the context of
time series applications−and high dimensional data in
general−approximate kNN tends to be the norm compared to
the exact kNN match [3], [4]. This is because: (1) Approximate
processing tend to be highly accurate and satisfactory for most
applications, and (2) This relaxation opens up opportunities
for substantial improvements in query response time and
preprocessing overheads involved in the developed solution.
Second, time series datasets can be in the order of 100s of
millions of time series (TBs of data). At such scale, the datasets
are stored and processed in distributed systems such as Hadoop
or Spark. Third, query subsequences in modern time series
applications tend to be very long, and in some cases reaching
thousands of readings [1]. Therefore, the focus of our work
is on supporting approximate kNN similarity search over long

(thousands-scale) time series subsequences in a distributed
environment, which has not yet been satisfactorily solved in
the literature.

The challenges in solving this problem include:
(1) High Dimensionality: Long subsequences are high

dimensional objects. Traditional indexing techniques such as
R-trees and their variations are known to perform poorly in
retrieval of such data [5]. Other state-of-the-art non-indexing
techniques, such as prune-and-bound [2], also suffer from a
degraded performance for such long subsequences because
the later lead to loose bounds and thus ineffective pruning as
confirmed in our experimental section (Section V-C).

(2) Significant Overlap: The enumeration of all possible
subsequences for indexing is prohibitively expensive in both
processing time and space as we will show experimentally
in (Section V-C) for existing technique that perform such
enumeration [6]. That is due to the significant overlap among
consecutive subsequences.

(3) Random Access: In subsequence search, there is no clear
criteria for re-partitioning and clustering the input time series
data to create clustered index based on a similarity function.
This is because two time series objects can be very similar with
respect to one subsequence, while at the same time, very distinct
with respect to another subsequence. Therefore, subsequence
queries are more likely to require record-level (i.e. object-level)
random access to retrieve time series objects from different
partitions. Nevertheless, modern distributed infrastructures,
such as Hadoop and Spark, are designed to support full scans
over the data partitions, which are inefficient and unfortunately
involve unnecessarily high overhead.

(4) Speed vs. Accuracy Trade-off: Typically, in approximate
matching, an algorithm’s speed and accuracy are contradictory
objectives. Unfortunately, with the big scale of modern time
series datasets, small blocks in an algorithm can magnify and
become a critical scalability bottleneck, and that is exactly what
we have observed in the state-of-art technique [7]. Therefore, a
key objective of our work is to design a strategy that achieves
high accuracy results for processing kNN matching queries
while making the algorithm bottleneck free.

C. Limitations of the State-of-the-Art

Existing distributed techniques fail to address one or more of
the aforementioned challenges, which hinders their scalability.
For example, a recent distributed indexing solution called KV-
Match [6], builds an index over all possible subsequences. Our
experimental study demonstrates that building such an index
over a few TBs of data takes days, while requiring storage in
the scale of the original data (refer to 2nd and 4th challenges
above). In contrast, the distributed indexing solution in [1]
does not solve the subsequence matching in its general form.
Instead, it supports a restricted type of queries that involve
prefix matching, e.g., users input the precise offset where the
search should starts in each time series as query parameter.

Further, these techniques [1], [6] use HBase as their underly-
ing storage layer for time series data because HBase internally
supports record-level random access (see 3rd challenge above).

Unfortunately, the subsequence index itself is then stored
as an Hbase table regardless of its structure, e.g., inverted
table or tree structure. This design decision leads to severe
disadvantages, including the limited query capability of HBase
(limited API) that requires a huge sequential access across the
Hbase table to retrieve the whole index structure to query, need
to having to maintain copies of the data also in other systems
such as Hadoop or Spark, and additional latency due to extra
communication between Hbase, HDFS and these systems [8].

In contrast to distributed systems, UCR Suite [2] is the state-
of-the-art centralized technique for time series subsequence
search. UCR is a prune-and-bound technique that does not
preprocess the dataset into an index. However, when we adopt
and adapt this UCR strategy into its distributed UCR variant
for processing datasets distributed across HDFS consisting of
millions of time series, the performance suffers notably due to
in part having to reset the search bounds frequently for each
time series. Moreover, as our experimental study in Section IV
shows, when the query length grows, the bounds become too
loose to produce effective pruning (See 1st challenge above).

D. Proposed Approach: ChainLink

In this paper, we propose a distributed indexing framework
over time series data called “ChainLink”. ChainLink adopts
the duality-based approach [9] for subsequence generation,
which avoids the enumeration of all possible subsequences in
the dataset and hence achieves a compact index size. Given
our target of approximate kNN search, we utilize the popular
Locality Sensitive Hashing (LSH) [10]–[12] as the base of
our index. One key property of LSH is its ability to preserve
the similarity among high-dimensional objects upon hashing
with a high probability [10]–[12]. Unfortunately, the state-of-
art techniques in LSH for indexing time series data, e.g., the
SSH algorithm [7], suffer from scalability limitations as they
inherently rely on very expensive multi-pass hash functions.

To overcome this scalability limitation, we propose a novel
hashing technique, called Single Pass Signature (SPS). SPS
achieves around 200x speedup compared to state-of-the-art
techniques. In addition, our theoretical analysis of the SPS
scheme guarantees that the similarity proximity between
subsequences is preserved after hashing without sacrificing
the accuracy for kNN query results.

To enable efficient search, we design ChainLink as a two-
layer distributed index composed of a centralized global index
(CL-Global) to direct the search to specific partition(s), and
multiple distributed local indices spread across the worker
nodes. Within each partition, the time series data are first re-
organized locally and then the compact local ChainLink index
(CL-Local) is built.

The key contributions of this paper include:
• We address the four core technical challenges highlighted

in Section I.B by the design of a cohesive framework,
namely ChainLink. To address the 1st challenge, we
utilize hash-based approach containing our novel SPS that
reduces the dimensionality while preserving the similarity
of the hashed subsequences. For the 2nd challenge,

ChainLink leverages the duality-based method to generate
disjoint subsequences and thus minimize the index size.

• We design a two-layered distributed index structure that
leverages a partition-level data re-organization to achieve
fast search and efficient random access operations (the
3rd challenge).

• We propose a novel hashing technique called Single Pass
Signature (SPS) that hashes the subsequences in a single
pass achieving ≈ 200 speedups compared to the standard
technique adopted in existing system [7] while maintaining
excellent result accuracy, thus tackling the 4th challenge.

• We conduct an extensive experimental study on benchmark
datasets. The results show significant improvement in
index construction time (up to two orders of magnitude
speedup), index size compactness (the local index size is
less than 2% of dataset size while the global index size is
only few MBs for TB-Scale dataset), and query response
time (which is 10 fold faster than the state-of-the-art
technique [2]).

The rest of the paper is organized as follows. Section II
introduces preliminaries for our work. We then describe the
ChainLink framework and its innovations in Section III. Section
IV introduces the ChainLink query processing strategy, while
Section V presents our experimental results. Finally, we discuss
related work in Section VI and conclude in Section VII.

II. PRELIMINARIES

A. Key Concepts of Time Series

Definition 1. [Time Series Dataset] A time series dataset
D = {X1, X2, · · · , XM} is a collection of M time series
objects Xi, each with an arbitrary length denoted as |Xi|.

Definition 2. [Time Series] A time series X =
〈x1, x2, · · · , xm〉, xi ∈ R where 1 ≤ i ≤ m is an ordered
sequence of m real-valued variables. Without lost of generality,
we assume that the readings arrive at fixed time granularities,
and hence timestamps are implicit. For simplicity, we thus do
not store timestamps.

Definition 3. [Subsequence of Time Series] A subsequence
X

(j,l)
i of object Xi is a time series of length l starting at

position j in Xi, namely, X(j,l)
i =< xsub1 , xsub2 , ..., xsubl >

such that xsub1+u = xj+u where u = [0, l − 1].

Definition 4. [Euclidean Distance (ED)] Given two sub-
sequences of equal length l, X = 〈x1, x2, · · · , xl〉 and
Y = 〈y1, y2, · · · , yl〉, Euclidean Distance (ED) is defined as:

ED(X,Y) =

√√√√ l∑
i=1

(xi − yi)2 (1)

Definition 5. [kNN Approximate Query] Given a query
subsequence Q = 〈q1, q2, · · · , ql〉, a time series dataset
D = {X1, X2, · · · , XM} and an integer k, the query returns
a set R of k subsequences such that R = {X(j,l)

i ∈ D, ∀ i, j}
with |R| = k subject to the approximation accuracy measured

by the error ratio (err) = 1
k

k∑
i=1

ED(X
(j,l)
i ,Q) ∀Xi∈R

ED(Yi,Q) ∀Yi∈T , where

T = {Y1, Y2, · · · , Yk} corresponds to the exact kNN answer
set of Q on D.

The error ratio (err) in Def. 5, is a standard metric used
in the LSH-related literature [11], [13], measures the distance
between the returned approximate knn set and the exact knn
set. The smaller the error err, the closer the approximation
and with err = 1 denoting the exact solution.

B. Background on LSH

With locality sensitive hashing (LSH) [10] a core component
of our proposed indexing technique, we overview the main idea
of LSH below. LSH is a widely adopted technique for searching
nearest neighbors in high-dimensional spaces. LSH provides a
high probability guarantee that it will return the correct answer
or a very close one [10]–[12]. For each object in the dataset D,
LSH performs a dimensionality reduction operation to extract
random features among the high-dimensional features, and then
hashes each object based on these extracted features. The key
principle here is that the hashing step is repeated multiple times,
with at each time, different random features being selected
and each object being hashed to a different hash table. The
intuition is that similar objects are highly probable to collide
and thus to go into the same bucket in at least one of the hash
tables.

Weighted Minwise Hashing (WMH). Several techniques
of the LSH family have been proposed in the literature to
handle different similarity functions. They differ in the random
function that extracts the features and the manipulation of the
features before hashing. A popular LSH variant, Weighted
Minwise Hashing (WMH) [14]–[16] estimates the Jaccard
similarity on weighted sets. Weighted sets means that the
algorithm not only keeps track of the features (exist or not),
but also their weights, i.e., the frequency of their presence. The
definition of the Jaccard similarity is given next in Def. 6.

Definition 6. [Jaccard similarity (JS)] Given two weighted
sets S1 and S2, each a vector in the D-dimensional space
of integer values, i.e., S1 =< s11, ..., s1i, s1D >,S2 =<
s21, ..., s2i, s2D > such that s1i, s2i ∈ Z, the JS is defined
as:

JS(S1, S2) =

D∑
i=1

min(s1i, s2i)

D∑
i=1

max(s1i, s2i)

(2)

WMH generates randomized hash values such that the
probability of a hash collision of a pair of sets S1 and S2

is given by Eq. 3 [14]:

Pr[WMH(S1) = WMH(S2)] = JS(S1, S2). (3)

Equation 3 is an important property of WMH because it
enables us to compare the hashing signatures of two weighted
sets and estimate their Jaccard similarity without the need to
actually retrieve the raw time series data [12].

To generate a weighted minhash signature for a weighted
set Si, it is passed g times to apply g randomly picked hash
functions on it, where g is a fixed integer parameter resulting
in a signature (sig) of length g.

Consistent Weighted Sampling (CWS) [15] is a popular
technique adopted for hashing weighted sets. CWS samples
from some well-tailored distribution to avoid replication. This
scheme computes the exact distribution of minwise sampling
with time complexity O(d), where d corresponds to the number
of non-zeros. However, this computation has to be performed
g times, and thus the total complexity becomes O(d× g). As
pointed out in [14] and confirmed by our experiments (Section
V-B), this operation, which most sophisticated, can still be quite
expensive resulting in a major bottleneck, especially when the
datasets are big and g is large [14].

Observation. To overcome these scalability limitations of
CWS, a new hashing technique has been proposed [14]. It offers
remarkable speedup over CWS but only under the constraint
that the weighted set vectors are relatively dense, i.e., most
entries are non-zeros.

However, unfortunately, the time series data we work with
does not meet this assumption. That is, although in itself it is
not sparse, meaning there are no necessarily missing values,
the weighted set vectors generated (as will be explained later
in III-B, Step 3) are typically very sparse (See our exp. in
Section V-A). This can be explained by the fact that time series
data do not involve drastic fluctuations nor variations across
its values – in contrast to other dataset types such as text or
image data (more details in III-B, Step 4). For this reason, this
state-of-the-art technique [14] is not effective in our context.

III. OUR PROPOSED CHAINLINK INDEX

A. ChainLink Overview

We now introduce ChainLink, a distributed indexing frame-
work for time series datasets. The overall work flow of
ChainLink is illustrated in Figure 1. ChainLink builds a local
index (CL-Local) respectively over all time series stored in each
partition managed by a cluster machine and then aggregates
these local indices to construct a global index (CL-Global).

The data are stored in distributed files that can be either
disk-based, e.g., Hadoop HDFS files, or memory-based, e.g.,
Spark RDDs. In either case, each file is divided into several
partitions stored across cluster machines. Since our system is
implemented using Spark, in the rest of the paper, and without
loss of generality, we use the Spark RDD terminology. Each
RDD partition consists of a set of time series objects {X1,
X2, ...}, where each Xi is as defined in Def. 2. Each Xi is
represented within the partition as a single record.

B. ChainLink Local Indices (CL-Local)

The CL-Local building process is composed of four steps:
1) Record Organization: the raw time series objects are re-
organized within each partition into an array structure to
enable efficient random access. 2) Chunk Generation: each
time series is divided into non-overlapping equal length chunks.
3) Chunk Feature Extraction: each chunk is transformed into

RDD

𝑃"
.

Chunk
Generator Sketch n-gram

Generator Hash

Local
Index

Partition#:
P2

.+ +

Indexed Partition IP2

Global
Index

𝑃#
𝑃$

𝑃%

…
…

𝐼𝑃"
𝐼𝑃#
𝐼𝑃$

𝐼𝑃%
…
…

Unorganized
TS Block

Array-organized TS block

Fig. 1. Two-level Indexing Strategy in ChainLink.

a low-dimensionality feature vector by sketching the chunk
followed by generating n-grams of the sketches along with their
frequencies as weights to form a weighted set. 4) Hashing: our
proposed SPS scheme is applied on the generated weighted set
to hash each into a lower-dimension signature. The intuition
of this step is that given two weighted set vectors Si and Sj

corresponding to base chunks Xi and Y j , the similarity of Si

and Sj should capture the similarity of their underlying chunks.
However, calculating set similarity is excessively expensive
especially for massive scale datasets (refer to Def. 6). For this
reason, we instead propose a new hashing scheme that maps
Si and Sj into lower-dimension signatures which preserve the
proximity of the weighted sets. Lastly, we hash those signatures
into hash tables which collectively serve as the local index.
Finally, the local index is stored along with the arranged array
time series data in the same partition.

Step 1 (Record Organization): The first challenge in
indexing time series objects is that RDDs are primarily
designed for sequential scans. Thus random access to a specific
subsequence within a partition tends to be very expensive.
Worse yet, a subsequence query may match with few time series
objects in many distinct partitions. Thus, we need to design
an efficient record look-up mechanism within each partition to
avoid unnecessary full scans, where each record corresponds
to a time series object. To achieve this, we arrange the time
series records within every partition into an array structure as
illustrated in Figure 1. A time series in partition p and array
slot t gets assigned a new physical id pid = (p, t) that is used
in all subsequent computations during the index construction.
These ids are subsequently used to locate a particular time
series efficiently within each partition in O(1) cost.

Step 2 (Chunk Generation): Duality-based [9] approach
has been explored in literature for chunk generation. It divides
time series objects into disjoint chunks using a disjoint jumping
window mechanism, while the query sequence is divided into
overlapping chunks using a one-step sliding window.

In ChainLink, we aim to keep the size of the index compact.
We thus adopt the duality-based approach as it significantly
reduces the number of the generated chunks at data level during
index construction. Therefore, for a given time series object
X with physical id (p, t), we generate its disjoint chunks of
length w, each with a unique id (p, t, i), where i denotes the
chunk number (0 ≤ i ≤ (|X|/w − 1)). Since local indices are
at the granularity of a single partition p, the value p is implicit
and need not be physically stored within the local index. In
the rest of the paper, we refer to the ith chunk of X by Xi.

…….

…….

…….

1

0

0 0 ……. 1

X

!"#

δ=	2

!$

=

r
≥ 0

< 0

'"#

…

Fig. 2. Generating a sketch B10 capturing the pattern of chunk X10.

As studied in [9], the determination of the window size w is
based on the query workload and the minimum query length
parameter that is to be supported. Typically, if the minimum
length of a query sequence is minLen, then the maximum
window size should be at most b(minLen+1)/2c. The authors
in [9] provide a theoretical analysis that if these bounds are
honored, then it is guaranteed no patterns in the time series
will be missed under this slicing scheme. ChainLink inherits
these guarantees under these same assumptions.

Step 3 (Chunk Feature Extraction): In this step, each
chunk is transformed into a low-dimensionality feature vector.
This vector will later form the weighted set vector on which
SPS is applied. Similar to the technique proposed in [7], the
feature extraction in ChainLink consists of two procedures,
namely sketching and n-gram generation. We opt for these two
procedures since they bring the following benefits. First, they
reduce the dimensionality of the possibly long chunks. Second,
they convert the continuous domain of the time series readings
into a discrete domain on which hashing can be applied. Third,
they capture the trends in each chunk using the fine-grained
n-gram elements such that the more similar two chunks are
the more n-grams they are likely to share.

Sketching: The sketching procedure converts each chunk
of continuous values into a sequence of discrete binary values,
which also capture the overall trend of the chunk [17].

Given a chunk Xi, a random vector r of length |r|, where
each component of r is selected from a normal distribution
N(0, 1) and a sketching step size δ, the extracted sketch Bi

then corresponds to : Bi = (b1, b2, . . . , b|Bi|), where |Bi| =
|Xi|−|r|

δ . Let bz be the zth component of Bi, where 1 ≤ z ≤
|Bi|, bz is calculated as follows :

bz =

{
1 if r ·Xz ≥ 0

0 if r ·Xz < 0
(4)

where z = i∗δ, therefore Xz = {Xz, Xz+1, . . . , Xz+|r|−1}
is the subseries of length |r| within the chunk Xi.

Example 1. Assume we sketch the chunk X10 starting at
position 10 within its time series X and |X10| = 20. Given
a random filter r of length 6, and a sketching δ set to 2.
As shown in Fig. 2, the random filter r slides over X10 to
extract subseries of length 6 by calculating the dot product.
This product generates a bit (0 or 1) indicating the sign of the
output. The generated sketch B10 is of length |B10|=7, i.e.,
the dimensionality is reduced from 20 to 7 in this example.

The following lemma states that if two chunks are very
similar to each other, then their binary sketches will also be
very similar.

0 0 0 0 1 0 1

0 0 0 0 1 0 1

0 0 0 0 1 0 1

2
1

0

0 0 0
0 0 1

1 1 1

…
..

…
.

.

n-gram Weight

…

B10 S10

Fig. 3. Generating n-grams from sketch B10 outputs a weighted set S10.

Lemma 1. If the Euclidean norm between two similar chunks
Xi and Y j is close to 0, i.e.,

∥∥Xi − Y j
∥∥ < Ω, where Ω is

close to 0, then the probability that their respective sketches Bi

and Bj will share the same value for each of the dimensions
is close to 1.

Proof: The fact that ‖Xz − Y z‖ < ‖Xi − Y j‖ < Ω,
implies:

‖Xz − Y z‖ < Ω (5)

where Xz and Y z are the zth subseries of length |r| of Xi and
Y j , respectively. Since in practice Xz and Y z are large vectors
of length around 60 or larger, the Euclidean Norm of these
vectors is very close. Hence, we assume that ‖Xz‖ = ‖Y z‖.
Here we can assume that they are equal to 1. Hence, by [12]
the cosine similarity between these vectors is:

‖Xz − Y z‖2 = ‖Xz‖2 + ‖Y z‖2 − cosα‖Xz‖‖Y z‖
‖Xz − Y z‖2 = 2− 2 cosα

(6)

where α is the angle between the vectors Xz and Y z .
From Equations 5 and 6:

cosα > 1− Ω

2
. (7)

The hash function used in sketching (refer to Eq. 4) is known
to preserve the cosine similarity between vectors. Thus, the
probability that their two sketches share same hash value is
high, namely, by [18] it is:

p = 1− arccos
α

π
. (8)

Combining Eq. 7 and Eq. 8, we get:

p > 1− arccos
2π − 2Ω

π
. (9)

By plugging Ω which is close to 0 (see Lemma 1) in Eq. 9, p
becomes close to 1. Lemma 1 is thus proven.

N-Gram Generation: For a chunk Xi, a weighted set Si

is generated by extracting all grams of length n (i.e., n-grams)
from the corresponding sketch Bi along with the frequencies
of each n-gram as its weights. Thus corresponds to:

Si = {(sj , fj)|sj = {Bij , Bij+1, ..., B
i
j+n−1}, 1 ≤ j < |Bi| − n}

(10)
where sj denotes the jth n-gram and fj denotes its correspond-
ing weight, i.e., frequency of its occurrence in Bi.

Example 2. Given the sketch B10 generated in Ex. 1, we slide
a window of length 3, over the sketch to extract the 3-grams
along with their frequencies in B10 as their weights in Fig. 3.
The weighted set S10 of B10 is represented as a vector of these
23 = 8 grams. We keep the grams sorted based on their binary

Algorithm 1: SPS: Single Pass Signature

Input : Weighted Set Vector Sj , Signature Length g
Output : Signatue sig

1 Initialize sig[] = 0
2 Declare:
3 P & Z : Large primes where Z ≤ P
4 a and f : random Integer numbers
5 r = |Sj |

g

6 foreach i=1 to |Sj | do
7 band ← minimum((i)/r, g − 1)
8 Sig[band] ← Sig[band] + (a ∗ S(i) + f)
9 Sig[band] ← Sig[band] mod P mod Z

10 end
11 return Sig

representation. Thus, the binary representation is implicit and
we only need to maintain the weights vector.

The distances between two weighted set vectors can be
measured using the Hamming Distance metric as in Def. 7.

Definition 7. [Hamming Distance (HD)] Given two vectors
V1 and V2 of equal length in the D-dimensional space of
integer values, the hamming distance HD(V1, V2) is defined
as the number of places where V1 and V2 differ [12].

Lemma 2. If two sketches Bi and Bj are similar, i.e. , differ
in few places (refer to Def. 7), then their weighted sets Si and
Sj are also similar, i.e., differ in few places (refer to Def. 7).

Proof: To prove the correctness of this lemma, we pick the
case where two sketches differ in one position, i.e., HD(Bi,
Bj) = 1, then prove that HD(Si, Sj) ≤ 2n. Given that the
n-gram size is n and the step size to generate n-grams is 1, then
Si and Sj will differ in at most 2n grams due to the mismatch
existing in one single position in their sketches. Note that the
set size, i.e., total possible n-grams is 2n. The ratio of the
n-gram size to the total number of possible n-grams is n : 2n.
Thus, the weighted sets differ in very few places. In addition,
as the size of n-grams n increases, the number of mismatches
increases linearly in 2n and the number of matched n-grams
grows exponentially, i.e., (2n-2n). The rest of the cases can
be proven in a similar manner. Lemma 2 is thus proven.

Step 4 (Hashing): In practice, due to the use of n-grams,
the resulted vectors tend to be extremely long and sparse,
especially with large n [16]. Although sketching [17] uses a
binary alphabet, describing a sketch using n-grams illustrates
the fact that even for a small size alphabet and a relatively
large n-gram size (i.e., n ≥ 15, to meaningfully represent time
series sketches [7]), one often has to deal with large very sparse
vectors, e.g., 215 = 32, 768.

The sparsity results from the fact that usually time series
have a limited pattern compared to other data. This is also
confirmed by our experiments in Section V-A where sparsity

0
4
0
0

0
0

1
0
0
0

0
0

0
0
0
0

0
2

0
0
3
1

0
0

0
0
0
3

0
0

0
0
0
0

3
0

0
0
0
0

0
1

0
0
0
0

2
0

1
0
0
0

0
2

0
0
0
0

0
4

0
0
0
0

0
3

0
0
0
0

2
0

2
0
0
0

0
1

1
0
0
0

0
0

0
0
0
0

2
0

0
3
0
0

0
0

SPS 3.07
7.93
3.07
7.93
3.07
4.69
3.07
6.31

9.83
3.07
4.69
3.07
3.07
6.31
7.93
4.69

3.07
7.93
3.07
9.55
3.07
7.93
3.07
6.31

3.07
9.83
4.69
3.07
3.07
6.31
7.93
3.07

ht1 ht2 ht3 ht4

Sig() Sig() Sig() Sig()

𝑆"##=					,𝑆$##=						,	 𝑆%##=	 , 𝑆&##=	Weighted Sets:

H
S

Hashing

Fig. 4. Hashing Weighted Sets Using Algorithm 1 Single Pass Signature
(SPS) Followed by Hashing Signatures (HS) using Algorithm 2.

is measured using the following equation:

Sparsity(%) =
number of zeros in Si

|Si|
× 100. (11)

Unfortunately, to the best of our knowledge, no existing
hashing algorithm tailored for extremely sparse weighted sets
has been proposed to date in the literature. Therefore, we
propose a new hashing technique, called Single Pass Signature
(SPS), which overcomes the drawbacks of existing techniques.

Single Pass Signature (SPS). Given a weighted set Si, our
proposed solution SPS generates a signature of length g in a
single pass such that g <<< |Si|. To generate a signature,
SPS breaks the weighted set vector into g disjoint bins, followed
by mapping the weights in each bin into a single value using
some hashing function H (See Algorithm 1) with the number
of non-zeros weights being very small due to the sparsity of
the vector. In our work, we select H to be 2-universal hashing
function [19] since it achieves a low number of collisions,
however, other hash functions could equally be plugged in.

Given that the weights of features as explained above (i.e.,
n-grams), the vector is sparse and consequently bins are sparse,
we hash entire bin weights into a single integer number. The
result g non-zero hashes are then concatenated as SPS signature.

Example 3. Referring to Fig. 4, suppose we have 4 sparse
weighted sets S100, S200, S300 and S400. Then to hash them
using the SPS technique, we pick a hashing function H; a 2-
universal hashing in our case. The simplest strategy for H is to
pick two large prime numbers P and Z where P ≥ Z, sample
two random numbers a, f and compute [19]: H(x) = (((ax+f)
mod P) mod Z). In this example, a=1.62, f=4.69, P=101
and Z=11 . For ease of presentation, sets are represented as
circles where similar colors of the circles indicate the similarity
of their corresponding sets. Each set is of length 24 and the
degree of sparsity is ≈ 83% (Eq. 11). g is set to 8. Thus, the
weighted sets will divided into 8 bins of size 24/8 = 3. Then
to generate a signature, each bin will be hashed using the hash
function H as in Algorithm 1.

Algorithm 2: HS: Hashing Signatures into Hash Tables

Input : Signature sig, number of bands b and rows r
Output : mapping sig to a bucket in each of b hash

tables
1 Initialize:
2 hashes[b] = 0
3 hts bkts[b] = 0
4 Declare:
5 P : Large prime
6 foreach i=1 to g do
7 Band ← minimum((i)/r, b− 1)
8 hashes[Band] ← (hashes[Band] + sig(i)) mod P
9 end

10 foreach m=1 to b do
11 hts bkts.add ((m, hashes(m)))
12 end
13 return hts bkts

This generates a lower-dimensional signature sig of length
g (g <<< |Si|). Next, to index the chunks, we build hash
tables and index their weighted set signatures. We construct
the hash tables by applying the well-known LSH approach
known as Banding Technique [12]. Given a signature of length
g, the signature would be broke down into b bands, each of
size r. The choice of parameters r and b corresponds to a
trade-off between speed and accuracy, the smaller r, the more
accurate the result to answer the query, but the slower the
response time [12]. Besides, the choices of r and b also decide
how similar a pair of signatures needs to be to share a bucket
in at least one hash table. This similarity (JS) (See Def. 6)
approximately corresponds to s = (1

b)1/r [12]. This similarity
(JS) as a parameter is passed along with the signature sig to
Algorithm 2, which maps the signature into b hash tables.

Example 4. Following Example 3 referring to Fig. 4, suppose
that we want signatures that are ≥ 50% similar to share a
bucket in at least a single hash table hti, then s is set to 0.50.
As a result we got r = 2, b = 4. Each of the 4 bands will be
hashed into 4 hash tables as shown in Figure 4. In Algorithm
2, we use the mod hash function with in this example P = 7.

Lemma 3. If two weighted set vectors Si and Sj share the
majority of positions, e.g., HD(Si, Sj) ≤ 2n (where |Si| =
|Sj | = 2n), then ChainLink guarantees that by generating an
SPS signature of lengths 2n+1 and hash it, vectors will collide
in at least a single hash table.

Proof: By Lemma 2, assuming that the weighted sets
Si and Sj have 2n dissimilar grams, and given that SPS
breaks the weighted sets Si and Sj into equal length bins, the
worst case scenario of the distribution of the dissimilar 2n
grams within the set is to have a single affected gram in each
bin. Given that, to guarantee that the signatures will share at
least a single bit, then the number of bins, i.e., the length of
signature g should be > 2n. Notice that n is in the order of

1_4	

1_7	

2_1	

2_4	

2_6	

3_1	

…
…
.	

…
…
.	

Local Index

+

Indexed Partition IP2

ArrayTS

Multiple Hash Tables

…
…
	

.	
.	

.	
.	

…
...	

.
.	

ht1 ht2 ht3 ht4

Fig. 5. Indexed Partition (IP2). Consists of: Local Index, Array-Organized
Time Series and Partition Number (p = 2).

few tens while signatures can range from a few hundreds to
a few thousands, i.e., the majority of the signatures will be
identical for both sets. However, assuming the worst case, we
set g to 2n+ 1, then to hash the signatures and guarantee that
they will collide in at least a single hash table, we set r to 1
and b to 2n+ 1, i.e., 2n+ 1 hash tables. Lemma 3 is proven.

Based on Lemmas 1, 2, and 3, the following important
theorem can now be formulated that ChainLink index preserves
the similarity of the original chunks that were indeed similar.

Theorem 1. Given two similar chunks Xi and Y j , i.e., ED(Xi,
Y j) close to 0, it is guaranteed that Xi and Y j will collide in
at least a single hash table by constructing ChainLink index.

Proof: This Theorem is proved using Lemma 1, 2 and 3.

C. ChainLink Global Index : CL-Global

Lastly, we design the global index CL-Global to correspond a
centralized yet highly compact index used for effective pruning
of irrelevant partitions during query processing. CL-Global,
which resides in the cluster’s master node is constructed by
summarizing and aggregating the local indices. To build the
global index, the master node retrieves from each indexed
partition p the keys of its compact CL-Local hash map (only the
keys which constitute the hash table ids and bucket numbers).
All results are then grouped by the key, and the partition ids
are combined together. In short, the global index (CL-Global)
format is a centralized hash map, where the key field is a
concatenation of a hash table id and a bucket number, and the
value field is a list of partition ids.

To further compress the global index, the list of partition ids
are compressed either using range compression, i.e., contiguous
ids are compressed by keeping only the first and last ids
as a range, or bitmap compression, i.e., the partition ids are
represented as a bit vector and only the present ones are set
to 1. Each entry in the global index is compressed using the
more effective method between these two compression types.

Overall Index Construction: Following the map-reduce
distributed paradigm, the entire ChainLink index, both the
local index and the global one, is built in a single map-
combine-reduce job. First, the mappers process each partition
and create the corresponding indexed partition as in Figure 5.
The combiners, one per each worker machine, combine the

Master
Worker

Query
(Q)

Extract Chunks

Sketch n-gram Hash

(Q, chunk, offset)

Set of :
{hti_ bkti} à Offset

Global
Index

{hti_ bkti} à p - Load : Partitions (p)
into Workers.

- Broadcast Q.
- Broadcast Set of :

{hti_ bkti} à Offset.

Find local kNN

Result:
Global
kNN

Fig. 6. ChainLink Query Processing.

hash-map keys from all partitions within each machine, to
create a partial intermediate global index, and then a single
centralized reducer combines these partial indexes to form the
final global index. As will be confirmed by the experimental
evaluation in Section V-B, the creation of the entire index is
an efficient operation that involves minimal data shuffling and
distribution among the cluster machines.

IV. CHAINLINK QUERY PROCESSING

The strategy of answering an approximate kNN query Q
using ChainLink index is as follows (see Figure 6). Assume an
input query sequence Q and a user-defined parameter k. The
master node divides Q into chunks using a sliding window
of length w, where w is the window size used for building
the ChainLink index. These chunks, which can be many for
long query sequences, are distributed randomly across the
worker nodes. Each chunk is processed by sketching, n-gram
generation and hashing into multiple hash tables using our
proposed SPS technique (See Section III-B).

The hashing results, which are a collection of entries with
a key of {hash table id (hti), bucket id (bkti)} (Algorithm
2), and a value of a chunk offset within Q, are shipped back
to the master node as in Figure 6. The master node accesses
the corresponding entries (having the same key) in the global
index CL-Global, and retrieves their respective partition ids.
The worker nodes holding these partitions start to perform the
local processing. The worker nodes receive the broadcasted
Q and its hashing results. Each worker node accesses the
corresponding entries in the CL-Local (the entries having the
same key), and retrieves the matching time series ids and
their chunk ids. From these ids, the actual time series data are
retrieved in O(1) time complexity due to the array organization.

Finally, the collected time series chunks represent the
candidate set within which the search for the best local kNN
is performed using Euclidean Distance (Def. 4). The best kNN
from each worker are then collected by the master node for
producing the final results.

V. EXPERIMENTAL EVALUATION

A. Experimental Methodology and Setup

Cluster Setup. All experiments were conducted on a cluster
consisting of 2 nodes each composed of 56 Intel@Xeon CPU
E5-2690 2.60GHz processors, 500GB RAM, 3.5 TB HDD.
Each node is connected to a Gigabyte Ethernet switch and runs
Ubuntu 16.04.3 LTS with Spark-2.0.2 and Hbase-1.4.7.

Baseline Indexing Solutions. To show the effectiveness of
our novel SPS hashing algorithm designed for ChainLink, we
have created two variations of ChainLink. In one variation we

use SPS, referred to as CL-SPS, and in the other we use CWS
[15], referred to as CL-CWS.

Given long subsequence matching as our target, we also
compare ChainLink with UCR Suite [2]. We develop a
distributed variant of UCR-ED that leverages the full compute
power of distributed workers to assure we conduct a fair
comparison. We refer to this solution as UCR-ED. Lastly,
we also consider KV-match [6] as a baseline for indexing
subsequences in a distributed system, referred to as KVM.

Although the work in [14] is relevant, it is excluded from
our comparison because: (1) The construction of their red-
green map structure requires not only multiple passes over the
weighted sets but also mandates materializing them on disk,
which is prohibitively expensive for TB scale data, and (2) The
sampling time to generate the hashing signatures is inversely
proportional to the density of the weighted set vectors, and thus
for very sparse data the sampling time becomes impractical.

datasets. We use two benchmark datasets. RandomWalk
(RW) has been used extensively as the benchmark for time
series indexing in other projects [2], [5], [7]. This dataset is
generated for 108 time series each with 2 ∗ 104 data points
(i.e. 1012 ≈ 3.5 TB). DNA [20] contains an assembly of the
human genome collected in (2000-2013). Each DNA string is
converted into time series. We then concatenate them and use
a sliding window of length 104 to generate a 200 GB dataset.

Parameter Settings. For this study, two ChainLink indices
are built, one with a window of length 1, 000 and another of
length 2, 0001. For the parameter selection, the choice of the
length of the random filter R is data dependent. Even though,
a 1-bit sketch with a large R would be non-informative while
it would be noisy with a very small R. When |R| ∈ [40 - 80]
for RW and |R| ∈ [30, 60] for DNA, query results are returned
with an acceptable error ratio ∈ [0.2 - 0.9] for different k values.
When |R| > 80 for RW and |R| > 60 for DNA, the error ratio
increases. The effect of decreasing |R| on the processing speed
is negligible, just a few minutes.

Regarding the step size δ, we found that the best range to pick
from for δ is [0 - 10] to limit the error ratio from exceeding
0.9. The effect on the processing speed by decreasing δ is
negligible, only few minutes. For n-gram generation, the size
of n is set to be in [15-20] to assure that the error ratio wont
exceeds 0.9. For RW, we chose the following: |R| = 60, δ = 5,
n = 15, where we chose |R| = 50, δ = 3, n = 15 for DNA.
For the hashing parameters, we choose the length of signature
to be sig = 256, the number of rows and bands are r = 8 and
b = 32 respectively. LSH applications require the hash table
to have a large number of buckets, like 500.

Degree of Sparsity. A sample is taken, sketched, a weighted
set is generated using n-grams generation and then Eq.11 is
applied on each weighted set and the results are averaged. The
degree of sparsity of RW is about 99.92%, meaning that only
2, 621 out of 32, 768 are non-zero values whereas it is about
99.80% containing ≈ 6, 554 non-zeros for DNA.

1Additional experiments on shorter window sizes can be found in [21].

284

3
14

2,459

13
257

21,583

132
2,640

189,525

442

27,350
1

1

1

1

17

12

124

118

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

CL
-C
W
S

CL
-S
PS

KV
M

CL
-C
W
S

CL
-S
PS

KV
M

CL
-C
W
S

CL
-S
PS

KV
M

CL
-C
W
S

CL
-S
PS

KV
M

10⁹ 10¹⁰ 10¹¹ 10¹²

M
in
ut
es
	[L
og
	S
ca
le
]

Dataset	Size

Local	Index Global	Index

21,583

132
2,640

16,113

99
1,971

17

12

19

20

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

CL
-C
W
S

CL
-S
PS

KV
M

CL
-C
W
S

CL
-S
PS

KV
M

10¹¹-RW DNA

M
in
ut
es
	[L
og
	S
ca
le
]

Dataset

Local	Index Global	Index

(a) Index Construction Time (RW) (c) Datasets Comparison(b) Index Size (RW)

0 0

4 3 2

36 14 12

360
73 64

3,600

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

CL
-C
W
S

CL
-S
PS

KV
M

CL
-C
W
S

CL
-S
PS

KV
M

CL
-C
W
S

CL
-S
PS

KV
M

CL
-C
W
S

CL
-S
PS

KV
M

10⁹ 10¹⁰ 10¹¹ 10¹²

G
ig
ab
yt
e	
[L
og
	S
ca
le
]

Dataset	Size

Local	Index Global	Index

Fig. 7. Index Construction Analysis [Log Scale].

B. Evaluation of Index Construction

Index Construction Time. The ChainLink index construc-
tion time is dominated by the CL-local construction time.
Comparing CL-SPS to CL-CWS, CL-local construction time
demonstrates the speedup obtained using SPS. CL-SPS CL-
local construction time is two orders of magnitude faster than
CL-CWS as shown in Figure 7 (a). Better yet, CL-SPS is more
than an order of magnitude faster than KVM. Note that those
numbers refer to the process of building the two indices.

Figure 7 (c) shows the difference between two datasets with
the same size, 1011-RW and 1011-DNA. There is no huge
difference between them, CL-SPS takes a total of 144 minutes
for RW while it takes 119 for DNA. The difference is due
to the data dependent parameters used for sketching. Different
datasets have different patterns. Hence, different parameters
for sketching are needed to capture the trends. Despite that,
CL-SPS continuous to be superior by achieving two order
of magnitude and one order of magnitude faster speed than
CL-CWS and KVM, respectively.

Index Size. The size of the CL-local index is affected by
the number of buckets for each hash table, the length of the
signature and as a consequence r and b (i.e., number of hash
tables). Since we use the same parameters for both CL-SPS
and CL-CWS, the size of their indices are comparable. That is,
the former is somewhat smaller than the latter. For instance,
for 1012-RW, the size of CL-local generated by CL-SPS equals
to 63.9 GB (≈ 1.78% of dataset size) whereas it is about 72.7
GB (≈ 2.03% of dataset size) for that generated by CL-CWS.
On the other hand, the KVM index size is prohibitively large
in size, namely, the size of the index equals almost the size of
the dataset.

While CL-global is affected by the aforementioned parame-
ters and the number of partitions, the compression technique
described in Section III-C overcomes the effect of these
parameters. For 1012-RW, the size of CL-global generated
by CL-SPS is about 6 MB whereas it is about 7 MB for that
generated by CL-CWS. This lightweight index size enables
ChainLink to persist CL-global in the master node’s RAM to
process consecutive queries.

C. Evaluation of Query Processing

We measure the query performance by taking the average
of over 50 distinct subsequence queries.

We study the query response time and the quality of the kNN-
approximate answer under a rich variety of parameter settings.
The quality of the kNN-approximate answer is measured by the
error ratio and recall metrics that are standard metrics in the
context of high-dimension nearest neighbor queries [5], [11],
[13]. Given a query Q, we denote the set of exact k nearest
neighbors as G(Q) = {g1, · · · , gk}, and the actual query result
as R(Q) = {r1, · · · , rk}. Then the error ratio ≥ 1 is defined
as:

error ratio =
1

k

k∑
j=1

ED(Q, rj)

ED(Q, gj)
(12)

where 1.0 is the best score and it indicates an exact match
between sets G and R, and the closer to 1.0 the better the
quality of the results.

On the other hand, recall ∈ [0, 1] is defined as:

recall =
|G(q) ∩R(q)|
|G(q)|

(13)

In the ideal case, the recall score is 1.0, which means all k
nearest neighbor are returned, and the closer to 1.0 the better
the match with the exact answer set.

Since we compare CL-SPS against three systems with
different characteristics (CL-CWS, distributed UCR-ED and
KVM), we evaluate its query processing against each solution
separately to achieve a fair comparison. Below, we first study
the effect of varying the dataset size and the k value for
different query lengths on the response time and, error ratio
and recall for CL-SPS.

Impact of Varying Parameters on Query Performance
for CL-SPS. On the left hand side of Fig. 8, we study the effect
of varing the dataset size. In Fig.8 (a), the query response time
for different query lengths (|Q| ∈ {2000, 3000, 4000, 5000})
under different dataset sizes follows the same pattern. That is,
the time for different lengths is almost the same on the same
dataset size. The increase in time for a given query length on
different datasets is linear in the size of the dataset, e.g., the
response time for |Q| = 5, 000 on (109, 1010, 1011 & 1012) is
respectively (0.9, 2.4, 12.5, 100.5) minutes.

In Figure 8 (c), we study the error ratio for different query
lengths under various dataset sizes. We observe that it again
follows the same pattern, i.e., as the size of the dataset increases,
the error ratio decreases for all query lengths. Also the error
ratio of the approximate answer approaches 1, i.e., it is very

10

11

12

13

14

50 100 500 1,000 3,000 5,000

M
in
ut
es

K	Value

|Q|: 2,000 3,000
4,000 5,0000

1

4

16

64

10⁹ 10¹⁰ 10¹¹ 10¹²

M
in
ut
es

Dataset	Size

|Q|: 2,000 3,000
4,000 5,000

(a) Query Response Time (K=50). (b) Query Response Time (10¹¹-RW).

(c) Error Ratio (K=50). (d) Error Ratio (10¹¹-RW).

1.2

1.4

1.6

1.8

2.0

2.2

10⁹ 10¹⁰ 10¹¹ 10¹²

Er
ro
r	R

at
io

Dataset	Size

|Q|:	 2000 3000
4000 5000

1.0

1.2

1.4

1.6

1.8

50 100 500 1,000 3,000 5,000

Er
ro
r	R

at
io

K	Value

|Q|: 2000 3000
4000 5000

(e) Recall (K=50). (f) Recall (10¹¹-RW).

0.20

0.25

0.30

0.35

10⁹ 10¹⁰ 10¹¹ 10¹²

Re
ca
ll

Dataset	Size

|Q|:
2000 3000
4000 5000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

50 100 500 1000 3,000 5,000

Re
ca
ll

K	Value

|Q|:	 2,000 3,000
4,000 5,000

Fig. 8. Impact on Query Response Time, Error Ratio & Recall. Left: Varying
dataset Sizes. Right: Varying K Values.

similar to exact answer. As shown, it is decreasing from about
1.7 to about 1.5 for |Q| = 2000 as the dataset size increases
from 109 to 1012. This proves the efficiency of answering
near-exact kNN using LSH approaches for TB-scale datasets.

In Figure 8 (e), we study the recall for different query lengths
under various dataset sizes. As shown in the figure, the recall
is within the range of 30% to 25%. As expected, the recall gets
decreased as the dataset size increases since more approximate
matches become possible. On the right hand side of Figure
8, we study the effect of varying the number of neighbors k.
In Figure 8 (b), as the value of k increases (50 to 5, 000), the
response time slightly increases (in seconds). In Figure 8 (d),
the error ratio for different query lengths follows a similar
pattern. The error ratio for a given query length decreases as
k increases because the search space gets larger and objects
very similar to the query object are found. For large k, e.g.,
k ∈ [500 − 5, 000], the error ratio becomes constant since a
larger set of values are averaged according to Eq. 12. In Figure
8 (f), the recall value over small k is around 25%, and it gets
smaller as k increases.

Although the recall value when analyzed in isolation seems
low, it is crucial to combine the recall results with the error
ratio results for better interpretation. More collective analysis
over Figures 8 (c) & (e), and (d) & (f) indicates that for
big datasets there is a very good chance to find very close
high-quality approximate matches to your query object even if
they are not identical to the exact answer set. Moreover, this
chance increases as the dataset size and k increase, which is
aligned with our main assumption that approximate processing
is more suitable for big data applications.

10

12

14

16

18

20

2,000 3,000 4,000 5,000

M
in
ut
es

Query	Length

10¹¹-RW	

CL-SPS
CL-CWS

10

15

20

25

30

35

2,000 3,000 4,000 5,000

M
in
ut
es

Query	Length

DNA	

CL-SPS

CL-CWS

(a) Query Response Time (RW) (b) Query Response Time (DNA)

(c) Error Ratio (RW) (d) Error Ratio (DNA)

1.20

1.30

1.40

1.50

1.60

1.70

50 100 500 1,000 3,000 5,000

Er
ro
r	R

at
io

K	Value

10¹¹-RW

CL-SPS
CL-CWS

1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

50 100 500 1,000 3,000 5,000

Er
ro
r	R

at
io

K	Value

DNA
CL-SPS
CL-CWS

(e) Recall (RW) (f) Recall (DNA)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

50	 100	 500 1000 3,000	 5,000	

Re
ca
ll

K	Value

DNA
CL-SPS
CL-CWS

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

50 100 500 1000 3,000 5,000

Re
ca
ll

K	Value

10¹¹-RW
CL-SPS
CL-CWS

Fig. 9. Query Evaluation (CL-SPS vs. CL-CWS).

ChainLink Query Evaluation using Different Hashing
Schemes CL-SPS vs. CL-CWS. In Figure 9, we evaluate the
query response time, error ratio and recall for two different
datasets, namely, 1011-RW and DNA. In Figures 9 (a) and (b),
the query response time of our CL-SPS method is up to 33%
faster than CL-CWS for both 1011-RW and DNA for all query
lengths where k = 50.

For the error ratio (Figures 9 (c) & (d)) and the recall (in 9
(e) & (f)), the behavior is very similar to that in Figure 8. The
CL-SPS algorithm shows better error ratio and recall than CL-
CWS because the proposed SPS hashing mechanism preserves
the proximity among the time series subsequences better.

Query Evaluation of ChainLink CL-SPS vs. UCR-ED.
UCR-ED employs branch and bound algorithms to safely
prune the search space without building an index beforehand.
Although it is said to support long subseqences better than
existing systems, as the query length grows, we notice that the
bounds become looser causing decrease in the query response
time as our experimental study demonstrates.

We study query response time for different query lengths
where k = 5, 000 while varying dataset sizes. We also study
how many queries need to be executed by both UCR-ED and
CL-SPS before the overcome of first building the CL-SPS
respective indices before utilizing them for query processing.
This is calculated as follows:

Number of Queries =
idxT ime− Saving
UCR response time

(14)

where idxTime = CL-SPS total index construction time and
saving = UCR-ED response time - CL-SPS response time.

Generally, as shown in Figures 10 (a-e), the query response
time for both UCR-ED and CL-SPS follows the same pattern

0

1

2

3

2,000 3,000 4,000 5,000

M
in
ut
es

Query	Length

10⁹-RW

CL-SPS
UCR-ED

0

5

10

15

20

2,000 3,000 4,000 5,000

M
in
ut
es

Query	Length

10¹⁰-RW

CL-SPS
UCR-ED

0

40

80

120

160

2,000 3,000 4,000 5,000

M
in
ut
es

Query	Length

10¹¹-RW	

CL-SPS
UCR-ED

0

300

600

900

1,200

2,000 3,000 4,000 5,000

M
in
ut
es

Query	Length

10¹²-RW

CL-SPS
UCR-ED

0

1

2

10⁹ 10¹⁰ 10¹¹ 10¹²

N
um

be
r	o

f	Q
ue
rie

s

Dataset	Size

0

40

80

120

2,000 3,000 4,000 5,000

M
in
ut
es

Query	Length

10¹¹-DNA	

CL-SPS
UCR-ED

(a) Dataset: 10#-RW (b) Dataset: 10$% -RW

(c) Dataset: 10$$ -RW (d) Dataset: 10$$ -DNA

(e) Dataset: 10$& -RW (f) Cost of Building Index

Fig. 10. Query Evaluation (CL-SPS vs. UCR-ED).

across different datasets sizes. As the query lengths grow, CL-
SPS almost remains constant while the UCR-ED response time
increases linearly. In Fig. 10 (a) & (b), CL-SPS is 85% to
600% faster than UCR-ED on 109-RW & 1010-RW. As can
be seen, the larger the dataset the faster the query excution
performed by CL-SPS becomes compared to UCR-ED.

In Fig. 10 (c) & (d), the query response time is studied
for different datasets with the same size, 1011-RW and DNA.
For the former dataset, CL-SPS is 500%− 1000% faster than
UCR-ED whereas for the latter it is faster by 240%− 500%.

In Fig. 10 (e), CL-SPS records its fastest response on the
largest dataset in our study, namely, 1012-RW. It is 500% −
1019% faster than UCR-ED.

To evaluate CL-SPS more thoroughly, we consider not only
the query processing time but we also incorporate the time
consumed for first building the index. As explained above,
the metric in Equation 14 determines the number of queries
executed until the cost of building indices is amortized. This
number is calculated for each dataset size, given that CL-SPS
supports arbitrary query lengths, the query length selected for
this study corresponds to the mid-point of all the different
query lengths considered in this study, namely, 3, 500. As a
consequence, the query response time for both CL-SPS and
UCR-ED corresponds to that of query length |Q| = 3, 500.

It is important to observe, as shown in Fig. 10 (f), that
our ChainLink CL-SPS solution starts to pay back the costs
of index construction time already after approximately two
queries for 109-RW and after a single query for both 1010-RW
and 1011-RW. Moreover, for the largest dataset of size ≈ 3.5
TB, i.e., size 1012, there is no cost to pay back. In fact, the
index construction time for this dataset is smaller than the
query response time of UCR-ED.

2.9
9.0

24.4

78.1

7.1
14.0

38.2

103.1

0

20

40

60

80

100

120

10⁹ 10¹⁰ 10¹¹ 10¹²

Se
co
nd
s

Dataset	Size

CL-SPS KVM

21.9
24.4

34.3
38.2

0

10

20

30

40

50

DNA RW-10¹¹

Se
co
nd
s

Datasets

CL-SPS KVM

(b) Datasets Comparison(a) Index Probing Time (RW)

Fig. 11. Query Evaluation (CL-SPS vs. KVM).

Query Evaluation of ChainLink CL-SPS vs. KVM.
Although KVM is the state-of-the-art distributed index for
subsequence matching, it only supports range queries (i.e., ε-
queries) instead of the more complex kNN queries we target.
To overcome this discrepancy in functionality, we adopt the
following commonly-adopted strategy for realizing the kNN
functionality by leveraging a range query. Namely, the index
is queried with different ε values until the number of results
retrieved is ≥ k. The procedure selects a specific value like
ε = 20 to start with, and then tracks the number of retrieved
answers. If it is less than k then epsilon is doubled (i.e.,
ε = 40) recursively until the number of retrieved results
becomes ≥ k. A second challenge in this comparison is
that KVM is implemented on top of HBase, where the time
series objects and the index entries themselves are all stored in
Hbase tables. Thus a metric that is infrastructure-independent
is needed, because the query response time for KVM also
includes the time for fetching consecutive rows from the HBase
index tables and HBase time series tables multiple times from
disk to memory whereas the CL-SPS query response time
includes loading partitions that contain candidate matches into
workers’ memory. Since both systems support the indexing
of subsequences, we measure the quality of the index by
calculating the index probing time (i.e., the time needed to
visit the index to get candidate matches).

As illustrated in Figure 11 (a), the index probing time for
both systems CL-SPS and KVM increases linearly in the dataset
size. However, our CL-SPS solution is 32%−144% faster than
KVM. In Figure 11 (b), CL-SPS is 57% faster than KVM
on both datasets 1011-RW and DNA, meaning that the index
probing time is almost the same on different dataset sizes.

ChainLink Scale-out Performance. Figure 12 displays
results from an experiment where we fix all parameters and
vary the number of executers in the cluster over {20, 40, 60,
80, 100, 112}. We measure both critical metrics of the index
construction time and the query response time, while other
metrics are not highly sensitive to the cluster configuration. The
results in Fig. 12(a) show that ChainLink scales up very well
as the degree of parallelization increases. This is because the
index construction process is a single map-reduce job with no
hidden communication, synchronization, or bottleneck. Thus
it is expected to scale-up very nicely as more resources are
added to the cluster. Moreover, Fig. 12(b) shows that the query
response time is constant. This is because the global index
of ChainLink typically assures that very few partitions are
accessed, which then can be performed in parallel all at once.

0

5

10

15

20 40 60 80 100 112

M
in
ut
es

Number	of	Executers.

|Q|=2000,	K=50

Query	Response	Time

(a) Index Construction Time (10¹¹-RW). (b) Query Response Time (10¹¹-RW).

0

50

100

150

20 40 60 80 100 112

M
in
ut
es

Number	of	Executers.

CL-Local
CL-Global

Fig. 12. Scalability with Increasing Number of Executers.

VI. RELATED WORK

Although the literature on time series topics is vast; little
work exists to date in distributed systems for tackling massive
sets of such time series data for similarity exploration. Some
work focuses on the simple problem of complete time series
matching, i.e., whole sequence matching. In such whole
sequence matching, it is assumed that the time series objects
to be indexed and compared have the same length [22]. Two
recently proposed systems [23] and [5] address the problem of
whole sequence matching, which is a fundamentally different
problem from subsequence matching.

In addition, few systems focus on the more general sub-
sequence matching. The work in [24] and [25] support
long subsequences, however they are designed for centralized
processing. Therefore, these systems [24], [25] and our system
target different infrastructures, different scale of data, and
consequently different challenges and design decisions. For
example, it is reported in [24] that building the index over
750 GBs dataset takes around 41 hours. In contrast, our system,
as a distributed solution, takes 9 hours to build the index over
3 TB dataset.

Wang et al. [1] propose a distributed system which constructs
a vertical inverted table and horizontal segment trees based
on the PAA summarization of time series data. This system
only supports a simplified subsequence matching, namely, to
match prefixes on a fixed offset location of the time series
specified by the user in the query. Moreover, the authors state
that for large k > 50, their kNN query performance degrades
quickly and converges to the brute force search [1]. In contrast,
ChainLink is scalable for k in the thousands. KV-Match [6],
focusing on distributed range query support instead of the more
complex kNN queries, implements a file-based structure on
HBase tables. As our experiments in Section V-C confirm, KV-
Match has serious scalability issues regarding the index size in
the same scale of the original dataset and in index construction
time. In contrast, as shown by our experiments, our ChainLink
is an order of magnitude faster in index construction time.

VII. CONCLUSION

In this work, we demonstrated that the combination of big
time series data, distributed processing, long query sequences,
and approximate kNN similarity search, introduces real chal-
lenges to many modern applications that to date has not yet been
addressed properly. To address these challenges, we proposed
ChainLink, a scalable distributed indexing framework for big
time series data. ChainLink introduces an integrated solution
including data re-organization for efficient record-level accesses,
scalable indexing structure for approximate similarity search,
and a novel hashing technique (SPS) as a core building block of

the index. Our experiments over an extensive set of parameter
settings and datasets show the superiority of ChainLink over
existing technique by orders of magnitudes in terms of index
construction overheads and query processing while maintaining
excellent result accuracy.

REFERENCES

[1] X. Wang, Z. Fang, P. Wang, R. Zhu, and W. Wang, “A distributed
multi-level composite index for knn processing on long time series,” in
DASFAA. Springer, 2017, pp. 215–230.

[2] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, and E. Keogh, “Searching and mining trillions of
time series subsequences under dynamic time warping,” in SIGKDD.
ACM, 2012, pp. 262–270.

[3] S. Har-Peled, P. Indyk, and R. Motwani, “Approximate nearest neighbor:
Towards removing the curse of dimensionality,” Theory of computing,
vol. 8, no. 1, pp. 321–350, 2012.

[4] T. Liu, A. W. Moore, K. Yang, and A. G. Gray, “An investigation of
practical approximate nearest neighbor algorithms,” in Advances in neural
information processing systems, 2005, pp. 825–832.

[5] L. Zhang, N. Alghamdi, M. Y. Eltabakh, and E. A. Rundensteiner,
“TARDIS: Distributed indexing framework for big time series data,” in
ICDE. IEEE, 2019.

[6] J. Wu, P. Wang, C. Wang, W. Wang, and J. Wang, “KV-Match: An
efficient subsequence matching approach for large scale time series,”
2017.

[7] C. Luo and A. Shrivastava, “SSH (sketch, shingle, & hash) for indexing
massive-scale time series,” in NIPS, 2017, pp. 38–58.

[8] Z. A. Neseeba P.B, “Performance analysis of hbase,” International
Journal of Latest Technology in Engineering, Management & Applied
Science, vol. 8, no. 10, pp. 84–89, 2017.

[9] Y.-S. Moon, K.-Y. Whang, and W.-K. Loh, “Duality-based subsequence
matching in time-series databases,” in ICDE. IEEE, 2001, pp. 263–272.

[10] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity search:
A survey,” arXiv preprint arXiv:1408.2927, 2014.

[11] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in Vldb, vol. 99, 1999, pp. 518–529.

[12] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of massive datasets.
Cambridge university press, 2014.

[13] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe
lsh: efficient indexing for high-dimensional similarity search.” VLDB,
2007, pp. 950–961.

[14] A. Shrivastava, “Simple and efficient weighted minwise hashing,” in
NIPS, 2016, pp. 1498–1506.

[15] S. Ioffe, “Improved consistent sampling, weighted minhash and l1
sketching,” in ICDM. IEEE, 2010, pp. 246–255.

[16] A. Shrivastava and P. Li, “Densifying one permutation hashing via
rotation for fast near neighbor search,” in ICML. IMLS, 2014, pp.
557–565.

[17] P. Indyk, N. Koudas, and S. Muthukrishnan, “Identifying representative
trends in massive time series data sets using sketches,” in VLDB, 2000,
pp. 363–372.

[18] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt,
“Practical and optimal lsh for angular distance,” ser. NIPS’15. MIT
Press, 2015, pp. 1225–1233.

[19] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
in JCSC. Elsevier, 1979, pp. 143–154.

[20] UCSC, https://genome.ucsc.edu/.
[21] WPI Dept of Computer Science Technical Re-

port Number WPI-CS-TR-19-05. [Online]. Available:
https://web.cs.wpi.edu/cs/resources/technical.html

[22] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, Fast subsequence
matching in time-series databases. ACM, 1994, vol. 23.

[23] D.-E. Yagoubi, R. Akbarinia, F. Masseglia, and T. Palpanas, “Dpisax:
Massively distributed partitioned isax,” in ICDM, 2017, pp. 1–6.

[24] M. Linardi and T. Palpanas, “Scalable, variable-length similarity search
in data series: The ulisse approach,” vol. 11, no. 13. VLDB, 2018, pp.
2236–2248.

[25] K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Benbrahim, “The
lernaean hydra of data series similarity search: An experimental evaluation
of the state of the art,” Proc. VLDB Endow., vol. 12, 2018.

