Verifying Cross-Cutting Features as Open Systems:-

Harry Lit Shriram Krishnamurthi Kathi Fisler
Computer Science Computer Science Department of Computer
Department Department Science

Brown University
Providence, RI, 02912 USA

hcli@cs.brown.edu

ABSTRACT

Feature-oriented software designs capture many interesting
notions of cross-cutting, and offer a powerful method for
building product-line architectures. Each cross-cutting fea-
ture is an independent module that fundamentally yields
an open system from a verification perspective. We de-
scribe desiderata for verifying such modules through model
checking and find that existing work on the verification of
open systems fails to address most of the concerns that arise
from feature-oriented systems. We therefore provide a new
methodology for verifying such systems. To validate this
new methodology, we have implemented it and applied it to
a suite of modules that exhibit feature interaction problems.
Our model checker was able to automatically locate ten
problems previously found through a laborious simulation-
based effort.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques]: Modules and in-
terfaces; D.2.4 [Software/Program Verification]: Model
checking; D.2.11 [Software Architectures]: Languages;
F.3.1 [Specifying and Verifying and Reasoning about
Programs]: Specification Techniques

General Terms

Design, Verification

Keywords

Model checking, compositional reasoning, computer-aided
verification, software architecture, feature-oriented design,
aspect-oriented programming, feature interaction

*Research partially supported by NSF grants ESI-0010064,
ITR-0218973, and CCR-0132659 and by the Brown Univer-
sity UTRA program.

TCurrent affiliation: The University of Texas at Austin.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGSOFT 2002/FSE-10, November 18-22, 2002, Charleston, SC, USA.
Copyright 2002 ACM 1-58113-514-9/02/0011 ...$5.00.

Brown University
Providence, RI, 02912 USA

sk@cs.brown.edu

Worcester Polytechnic Institute
Worcester, MA, 01609 USA

kfisler@cs.wpi.edu

1. INTRODUCTION

Aspect-oriented programming promises to cleanly capture
cross-cutting concerns [30]. Designs based on cross-cutting
concerns offer many software engineering benefits, such as
separation of concerns, simplified design evolution, and ease
of maintenance [9, 10, 22, 37, 38]. Such approaches will not
yield a comprehensive development methodology, however,
without adequate support for verification at all levels.

A verification framework for cross-cutting designs should
support two activities: it must support first proving proper-
ties of individual features, and then that composition with
other features does not violate these properties. The latter
check, however, should be done compositionally, i.e., without
re-verifying them on the composed system. This problem is
challenging because cross-cutting fundamentally generates
open systems: ones whose components interact with vari-
ables defined in other components. Unfortunately, charac-
teristics of cross-cutting software designs render the existing
techniques for verifying open systems inadequate.

This paper presents a compositional methodology for ver-
ifying open systems arising from cross-cutting concerns. We
use the more structured form of cross-cutting proposed in
work by Batory [7] and Ossher and Tarr [37], amongst oth-
ers, and henceforth call these features. In particular, we
present a significant enhancement of our prior work on ver-
ifying feature-oriented designs [23] that handles the numer-
ous verification obstacles arising from open systems.

To motivate and validate our work, we present it in the
context of a specific problem: the verification of an email
product line application, with an emphasis on detecting
feature interaction problems. Robert Hall of AT&T Labs
designed and analyzed this suite [24]. His analysis was
simulation-based, and required substantial human interven-
tion. We attempted to reproduce ten feature interaction
errors from his study; our tool successfully detected all ten.
Of these, we located only three using the methods described
in our prior work. This paper focuses on the techniques that
enabled us to locate the other seven.

Section 2 outlines the email suite. Section 3 motivates
why feature-oriented designs yield open systems and ex-
plains why existing open systems approaches are inadequate.
Section 4 describes our enriched model. Section 6 uses the
new methodology to compositionally detect feature interac-
tions in the email suite. Section 7 summarizes our perspec-
tive and concerns about model checking as a viable tool for
compositional reasoning about features. Section 8 discusses
prior and related work, while Section 9 presents concluding
remarks and future directions.

= iy)= inoming) =g)
internal-mail
I

TG
-

received

. —~Compms)
! \ — (_encrypt-outgoing |
e \ encrypt e
— _ encrypt-mail
R

fwd-address-provisioned
Qo
Ifwd-address-provisioned = (_fwd-deliver) —/ Y

Figure 1: Three features: the base feature, encryp-
tion, and forwarding. Dashed states resolve with
concrete states during feature composition.

2. A MOTIVATING SCENARIO

We motivate features, their interactions, and why they
lead to open systems using an email application as a case
study. The example we present is originally due to Robert
Hall of AT&T Labs [24]. The application supports eight fea-
tures (Figure 1): message signature, forwarding, anonymous
remailing, encryption, decryption, signed message verifica-
tion, auto-response, and message filtering.

The following properties, elicited by Hall, should hold of a
system containing these features. The properties are stated
both in English and in the temporal logic CTL. CTL for-
mulas describe properties of states of a system. A CTL
operator consists of two designators: a path quantifier (A
for all paths or E for some path) and a temporal operator
(G for at all times, F for at some future time, U for until,
and R for release, the dual of until). Rather than reproduce
the formal semantics [20], we provide three examples of CTL
formulas and their English interpretations.

o AFp says “on all paths ¢ is true at some future state”.

e AGyp says “on all paths, ¢ is true in all states (i.e. ¢
is true in all reachable states).

e E[p U 9] says “there exists a path on which ¢ is true
in every state until ¢ becomes true (1) must be true in
some state along the path).

The properties refer to propositions deliver and retrieved
for sending mail. Deliver indicates a message that reaches
the current user, while retrieved indicates a message that was
mailed to an external user and reaches the recipient.

1. Once a message is signed, the sender field is not altered

until the message is delivered or retrieved: AG (sign-
msg — A[sender-unchanged U (deliver V received)])

o

When a message is ready to be remailed, it is never
mailed out with the sender’s identity exposed: AG
(wantsRemail — A[anonymous R —mail])

3. If one tries to verify a signature, then the message must
be verifiable: AG (try-verify — verifiable)

4. When a message is encrypted, it is never sent in the
clear: AG (encrypt — A[(deliver V received) R AG —(clear
A E[—encrypted U mail])])

5. If a message is to be remailed, it is formatted correctly
for the remailer to process it: AG (toRemailer — in-
remailer-format)

6. If an auto-response is generated, the response eventu-
ally is delivered or retrieved: AG (auto-response — AF
(deliver V received))

7. There is no loop where messages are infinitely mailed
back and forth: AG AF ready

%

If a message is forwarded, it is eventually delivered or
retrieved: AG (forward — AF(deliver V received))

The remainder of the paper refers to these features and
properties to illustrate our work.

3. OPEN SYSTEMSAND PRIOR WORK

Consider property 4 of the email application, which states
that once a message is encrypted, it is never sent out on
the network in the clear. This property holds of the en-
cryption feature. If we compose the encryption feature and
the forwarding feature, we will need to check that the for-
warding feature preserves this property. The standard CTL
model checking algorithm [19] is potentially unsound in this
case, however, because the forwarding feature’s state ma-
chine does not contain the proposition encrypted. This is
not a design error. Encryption is not part of forwarding, so
the forwarding feature should not contain references to the
message attributes associated with encryption. This separa-
tion of concerns, which underlies feature-oriented design, in-
herently yields verification tasks involving unknown propo-
sitions; unknown propositions lead to open systems.

The existing work in open systems addresses two forms of
openness: uncertainty in transitions and ignorance of propo-
sitions. Kupferman, Vardi, and Wolper address the for-
mer [31]. Their work considers cases in which properties fail
due to the values generated by an environment model; their
methodology reports a property true of a system only if that
property holds regardless of the environment. The work in
modal transition systems, similarly, deals with uncertainty
of transitions [25]. In contrast, we are concerned with prop-
erty preservation under specific compositions; most cases of
feature interaction arise in contexts where some composi-
tions violate properties and others do not. The Kupferman
et al. approach is therefore too restrictive for our work.

Bruns and Godefroid consider propositions whose value
is unknown; these propositions arise from partial Kripke
structures [14]. They employ a 3-valued logic to preserve
properties of the partial system in the complete structure.
Our work differs in the source of the unknown propositions.

In their work, the unknown propositions arise from consid-
ering only a portion of a full state space. In ours, the un-
known propositions arise from the properties that we wish to
verify; the features themselves are closed (by construction)
with respect to their propositions. Furthermore, their work
does not address a compositional methodology or other open
system concerns (such as refinement of propositions and dis-
tinctions between control and data propositions) that we
motivate in this paper. Our methodology does exploit their
algorithm for implementing a 3-valued CTL model checker
from an existing 2-valued one [15]. Chechik, Easterbrook,
and Devereaux’s multi-valued model checker [18] shares the
shortcomings of Bruns and Godefroid’s work in our context.
The differences between our view of open systems and
those in these previous works arise from the models of com-
position that each work employs. Features encapsulate re-
lated portions of a system and compose in a quasi-sequential
manner. Open systems in which unknown values arise in the
models (rather than from the properties) require another
module (the environment) running in parallel to supply the
unknown values; Kupferman et al.’s work operates in this
context. Bruns and Godefroid’s work also appears to as-
sume this because their unknown propositions may change
value anywhere within a state space (suggesting that the de-
cision of how and when values change is under the control of
an external, simultaneously executing entity). In our work,
the unknown propositions arise either from data attributes
controlled by other features, or from control variables that
are local to other features. These differences force us to
develop a new methodology for open system verification.
Many researchers have acknowledged the difficulty in de-
tecting feature interactions in the presence of unknown in-
formation, and have related this to the frame problem from
artificial intelligence [5, 6, 11, 12]. Jackson relates the frame

problem to views, which are similar in spirit to cross-cuts [26].

Like Bruns and Godefroid, these techniques all assume a
global view of the system, in which all propositions are
known in advance. Furthermore, none of their approaches
are compositional. Our approach supports the addition of
previously unidentified propositions (a higher-level notion of
openness) and compositional reasoning.

4. MODELING AND VERIFYING
FEATURESASCLOSED SYSTEMS

Our goal is to develop a compositional methodology for
verifying features as open systems. One especially beneficial
outcome of such a methodology would be the detection of
undesirable feature interactions. As an example, anonymous
remailing does not mask a sender’s identity if the sender key-
signed the message. Other interactions arise from the order
in which an application executes features. Although for-
warding does not inherently affect encryption, if a message
is decrypted prior to forwarding, then a message that had
been encrypted goes out on the network in the clear. Such
feature interactions are a widespread problem in telecom-
munications and many other applications, even giving rise
to a workshop series. In this paper, we view a feature inter-
action as undesirable if it violates a formal requirement of
either an individual feature or the entire system. We do not
discuss the problem of extracting these properties from the
requirements.

The main challenges in developing such a methodology are

determining what information needs to be included in a fea-
ture’s interface to support compositional reasoning, and de-
vising techniques to perform these checks. In previous work,
we proposed a compositional verification methodology for
features that interacted only through sequential transfer of
control. The email application involves richer interactions.
This section describes our previous model and methodology
(for features as closed systems). Section 5 motivates and
describes our enriched model and methodology through the
email application. A companion paper [34] focuses on the
interfaces that support the enriched methodology.

We view a feature as a state machine and feature compo-
sition as connecting state machines via transitions specified
through interfaces. A state machine model provides a sim-
ple and clean abstraction from which to explore verification
questions. Each feature (or composition thereof) specifies
interfaces (states) where additional features can attach. The
following formal definitions from our earlier paper [23] make
our model of feature-oriented designs precise. The defini-
tions match the intuition in the figures, so a casual reader
may wish to skip the formal definition.

Definition 1. A state machine is a tuple (S, X, A, so, R, L),
where S is a set of states, ¥ is the input alphabet, A is the
output alphabet, so € S is the initial state, R C Sx PL(X) x
S is the transition relation (where PL(X) denotes the set of
propositional logic expressions over X), and L : S — 28
indicates which output symbols are true in each state.

Definition 2. A base system is a tuple (Mi,..., M) of
state machines and a set of interfaces. We denote the ele-
ments of machine M; as (S, Xami, Anti, Sy, Bty Lais).
An interface ({ewiti,reentryi),..., (exity, reentryg)) con-
tains a sequence of pairs of states, where each exit; and
reentry; is a state in machine M,;. State exit; is a state from
which control can enter another feature, and reentry; is a
state from which control returns to the base system. Inter-
faces also contain a set of properties and other information
which are derived from the features during verification (as
motivated throughout the paper).

Definition 8. A feature is a tuple (F1,...,Ey,) of state
machines. Each F; must induce a connected graph, must
have a single initial state with in-degree zero, and must have
some state with out-degree zero. For each E;, we call the ini-
tial state ¢n; and the states with out-degree zero outstates.
These states serve as placeholders for the states to which
the feature will connect at composition time. None of these
states is in the domain of the labeling function L;.

Given a base system B, one of its interfaces I, and a fea-
ture E, we compose them into a new system by connecting
the machines in E to those in B through the states in I,
as shown in Figure 2. Definition 4 formalizes our notion of
composition; composed designs can serve as subsequent base
systems by creating additional interfaces as necessary. This
supports the notion of compound components that is funda-
mental in most definitions of component-based systems [39].

Definition 4. Composing base system B = (M, ..., My)
and feature extension E = (Fi,...,FE) via an interface
I={{exit1, reentry), ..., (exity, reentryy)) yields state ma-
chines <Cl, e Ck>. Each C; = <SCi7 Yoi, Aci, S0c, > Rei, LCi>
combines each M; = (Swri, Xari, Ansi, Sopgq s B, L) and

Figure 2: Features, interfaces, and composition

Ei = <S}317 EEi7 AEi7 SOE,” .REi7 LEz> as fOHOWS: SCi = SA{iU
Sei—{ini,outi}; soo; = S0y, ; Rei is formed by replacing all
references to in; and out; in Rg; with exit; and reentry;, re-
spectively, and unioning it with Rpaz;. All other components
are the union of the corresponding pieces from M; and F;.

Our methodology for verifying properties against individ-
ual features can be summarized as follows (full details ap-
pear in our prior paper [23]). The methodology currently
supports:

1. Proving a CTL property of atomic or composite fea-
tures (the verification step).

2. Deriving preservation constraints on the interface states
of a feature that are sufficient to preserve each prop-
erty after composition.

3. Proving that a feature satisfies the preservation con-
straints of another feature (the preservation step). We
establish preservation by analyzing only the new fea-
ture, not the composition of the two features.

The first activity is challenging when features cross-cut mul-
tiple actors, as is standard in practice; the challenge lies
in constructing a single state machine corresponding to the
feature. The second activity involves recording some infor-
mation during the CTL model checking process. The third
involves mostly routine CTL model checking, with an initial
seeding of labels on certain states of a design. We use CTL
rather than LTL because the CTL semantics supports the
state labelings that we need for our methodology; adapting
our methodology to LTL is an open problem.

Having constructed a single state machine for a feature,
we use the standard CTL model checking algorithm [19]
to verify properties of single features. Proving that com-
position preserves properties is the next challenge. This is
where feature-oriented verification diverges from standard
approaches to modular verification. Under parallel compo-
sition, modular verification techniques assume that compo-
sition does not add new behaviors to a module. This is a
reasonable assumption since the states of two modules inter-
act only through a cross-product construction. In contrast,
composing features adds transitions, and thus behaviors, to
states in a given module. These extensions are a natural
and important part of feature-oriented designs. This char-
acteristic, however, inhibits the use of modular verification
techniques based on parallel composition.

Fortunately, modular feature verification reduces to a form
of sequential verification. We presented our algorithm in de-
tail in earlier work [23]; Laster and Grumberg proposed a
similar algorithm [32]. We summarize the algorithm here
in terms of the verification and preservation steps. When

e

. e mail, lanonymous, !wantsRemail?,

B em\‘] twantsRemal V !E[!anonymous U mail],

\\\ L \ !'E[TRUE U !(!wantsRemail V !E[!anonymous U mail])]
e

E[!anonymous U mail |

!mail, lanonymous, !wantsRemail

IwantsRemal V !E[lanonymous U mail],

!'E[TRUE U !(!wantsRemail V !E[!anonymous U mail])]

Figure 3: An example of the methodology. The de-
picted state machine fragment is the filter feature.
The dashed states are placeholders for the interface
states to which the feature attaches in a larger sys-
tem. The formulas next to the “re-enter” state are
the seeded labels; these labels were copied from a
feature with which we composed the filter feature.
CTL model checking determines labels on the “exit”
state based on the seeded labels.

model checking a property against a feature, we record the
labels that the CTL model checking algorithm assigns to the
interface states (this is version 1 of the verification step).
For the preservation step, when we attach a new feature to
those states, we check that the new feature will not invali-
date any of those labels. We perform this step by attaching
two dummy states to the new feature (one each for exit
and re-entry), seeding the dummy re-entry state with the
saved interface labels, and using the CTL model checking
algorithm to derive labels on the dummy exit state (see Fig-
ure 3). If the derived labels are consistent with the recorded
labels, the composition preserves the property of the original
feature.

5. MODELINGANDVERIFYINGFEATURES
ASOPEN SYSTEMS

We have used our previous methodology to verify [33] a
feature-oriented application called FSATS [8]. The email ap-
plication that we study in this paper is different from FSATS
in several ways:

1. We did not need to model much data in FSATS because
the properties concerned control decisions. In contrast,
properties in the email example refer to, and crucially
depend on, data attributes of the messages.

2. FSATS features are independent, in that they interact
only at state transitions, not through shared data.

3. New features in FSATS always attached to the same
states in the base system, and never connected to one
another. The email application has more of a pipe-
and-filter architecture in which features may connect
to one another in various orders.

Point 3 doesn’t require changes to our prior methodology.
Points 1 and 2, however, require enhancements to the method-
ology, and ultimately our model, for compositional feature
verification. Fundamentally, the addition of data attributes
leads to interpreting features as open systems. The next two
sections explain how this revised interpretation of features
affects their verification.

5.1 Unknown Propositions

Using the preservation check on property 4 in the forward-
ing feature as an example, Section 3 motivated the need to
treat features as open systems: to perform this check, we
must add the encrypted proposition to the forwarding fea-
ture. This proposition captures a data attribute of a mail
message that forwarding preserves as it processes the mes-
sage. Our algorithm cannot assume a concrete truth value
for this proposition and remain sound; instead, we must
treat this proposition as having unknown value during the
check. As 2-valued model checkers treat values as explicitly
true or false, we instead use Bruns and Godefroid’s 3-valued
model checking algorithm [15] for this task.

In 3-valued model checking, propositions can have values
{true, false, unknown}. Supporting this requires changes
to both the models and the model checker. In the model
checker, interpretations of the logical operators change to
handle unknown values in a straightforward manner. In the
models, the labeling function changes from mapping propo-
sitions to {true, false} in each state to mapping propositions
to {true, false, unknown} in each state. Accordingly, we aug-
ment our definition of a state machine (Defn 1) to contain
two labeling functions: one for true propositions and one for
false propositions. Propositions not labeled with either true
or false in a state are interpreted as unknown.

Definition 5. A state machine M = (S,%, A, s0, R, T, F)
is a tuple where S is a set of states, ¥ and A are sets of
input and output atomic propositions, so € S is the initial
state, R C Sx PL(X) x.S is the transition relation, T': S —
22 indicates which propositions are true in each state, and
F : S — 22 indicates which propositions are false in each
state (Vs € S,T(s) N F(s) =0).

A 3-valued model checker can return true, false, or un-
known as the value of a property in a structure. From a
verification perspective, the unknown result is less useful
than a true or false result. Techniques for determining con-
crete truth values in the presence of unknowns are therefore
extremely useful. When no proposition maps to unknown
in any state, 3-valued model checking reduces to 2-valued
model checking and returns either true or false; models with
no unknowns are called complete. Bruns and Godefroid’s al-
gorithm checks each property in two complete models: one
in which all unknowns are replaced with true (the optimistic
model) and one in which all unknowns are replaced with
false (the pessimistic model). A property is guaranteed to
be false if it evaluates to false in the optimistic model, and
guaranteed to be true if it evaluates to true in the pessimistic
model. If neither of these guarantees hold, their algorithm
reports the property as having unknown value.

Our methodology could treat all propositions that arise
in the property but are not in the model as unknown during
preservation checks, but that is too conservative. Consider
property 2, which refers to proposition wantsRemail. This
proposition does not capture a data attribute of a message.
Rather, it is a control proposition: it determines control-
flow within a feature. Control propositions of one feature
are never true in another feature because features do not
execute simultaneously. This lets us set the control propo-
sitions from other features to false during model checking.
Thus, when the designer can partition the propositions into
control and data subsets, our technique can exploit this de-
sign information.

! remail-wantsRemail) —

\ ' — (_ remail-outgoing / R
remail-anonymize
remail-mail

remail-anonymize

Figure 4: The remail feature.

Given this distinction, we reduce feature-oriented verifi-
cation to 3-valued model checking as follows:

Verification step, version 2: Given a property and a
feature (state machine), consider all propositions that are
in the property but not in the feature. For each of these
propositions, if it is a control proposition, set it to false in
all states of the feature; otherwise, set it to unknown in all
states. Use 3-valued model checking to verify the property
against the augmented state machine.

We also enhance the preservation step to recognize our use
of 3-valued model checking in the verification step. Preser-
vation checks confirm that true properties remain true upon
composition. The 3-valued model checking framework re-
ports a property as true only if it evaluated to true in the
pessimistic model. Our methodology therefore needs to con-
firm that the labels generated during the pessimistic check
are preserved; the labels generated during the optimistic
check are irrelevant. During the verification step, we there-
fore store the state labelings on the interface states from the
pessimistic check in the feature’s interface.

Preservation step, version 2: Verifying that a feature
F preserves a property ¢ of a feature F; upon composition
of I, and F5 entails the following steps:

e As in the original preservation step, extend F> with
dummy states representing the interface states of 3.

e Copy the pessimistic labels from the in-states of Fi
to the dummy ending states of F> and copy the pes-
simistic atomic propositions from the out-states of F
to the dummy starting states of F> (as in Figure 3).

e Set all of the control propositions of F; to false (rather
than unknown) in every state of F; set data proposi-
tion of Fi to unknown in every state of Fb.

e Use 2-valued model checking to verify that all pes-
simistic CTL labels on the out state of I hold in the
dummy starting state of Fs.

5.2 Evolving Propositions

Propositions with unknown values enable the preservation
checks required in feature-oriented verification, but are in-
sufficient to enable compositional feature verification. Com-
positional verification requires that once we verify a prop-
erty of a feature, we should not need to traverse that fea-
ture again during the preservation checks for that property.
Feature-oriented systems sometimes require the interpreta-
tion of propositions to evolve upon composition; this in turn
complicates compositional reasoning. The key point of this
section is that open systems arise not only from abstraction

and decomposition (the conventional contexts for open sys-
tem verification research), but also from system evolution.
Consider property 2, which says that messages passing
through the anonymizing remailer cannot reveal informa-
tion that identifies the sender. How is anonymous defined in
this property? From the perspective of the remailer feature
alone (Figure 4), anonymous is the same as the proposition
remail-anonymize from the remailer. Once we add the sign-
ing feature, however, a message also needs to be unsigned in
order to be considered anonymous. In other words, adding
the signing feature changes the property statement from

AG (wantsRemail — A[remail-anonymize R —mail]) to

AG (wantsRemail — A[(remail-anonymize A—signed) R —mail]).

How can we verify this property against the remail feature
compositionally, when the property might change in unex-
pected ways upon composition?

We present the approach intuitively before providing the
formal details. In our concrete example, evolution logically
strengthened anonymous: we replaced remail-anonymize with
remail-anonymize A-signed. We can reasonably expect the
evolution of propositions to logically strengthen or weaken
their previous interpretations (otherwise, one feature would
completely override another, which lies outside the scope
of our current model). Strengthening and weakening are
defined as follows: if expr and expr’ refer to the original and
evolved interpretations of a proposition, expr’ strengthens
expr if expr’ = expr A augment, and expr’ weakens expr if
expr’ = expr V augment, for some expression augment.

Suppose we had verified the original property in the remail
feature, then needed a preservation check for this property
in the signing feature. What labels would we copy from the
remail feature to the dummy states of the signing feature?
Since the sign feature changes the property, we cannot as-
sume that the labels from the original verification remain
valid. When propositions evolve, therefore, our technique
from the previous section is not applicable.

Assume for the moment that we had anticipated that a
future feature might place additional restrictions on (i.e.
strengthen) anonymity. We could have verified the prop-
erty AG (wantsRemail — A[(remail-anonymize A augment) R
—mail]) against the remail feature. The labels stored in re-
mail for a preservation check would therefore be valid for
any extension that strengthened the definition of anonymity.
To verify the formula containing augment against the re-
mail feature, however, would require 3-valued model check-
ing since the interpretation of augment is unknown inside
the remailer (by construction). This example outlines our
proposed methodology for handling evolving propositions.
We will verify properties under the assumption that certain
propositions may be strengthened or weakened, then use the
labels arising from those assumptions to perform preserva-
tion checks. While this approach will not let us perform all
composition checks compositionally, it should let us perform
many checks in that manner.

This proposal raises several concerns. Does a user need to
know all the features and propositions before beginning verifi-
cation? No, our technique is designed to support design evo-
lution, including the addition of unexpected features. If an
extension re-interprets a proposition that the designer had
not expected to evolve, some existing features may need to
be re-verified. Does failure of an augmented property in the

verification step yield useful feedback? Our algorithm actu-
ally verifies each property in both its original and augmented
forms to help identify the actual conditions under which
a property fails. Wouldn’t multiple augmented propositions
in one property greatly reduce the likelihood of meaningful
verification results? Yes, but we have not seen that case
frequently in practice; furthermore, our approach is anal-
ogous to Bruns and Godefroid’s optimistic and pessimistic
interpretations on this point. In short, we believe the full al-
gorithm, which we now present, adequately addresses these
concerns within the limits of software engineering practice.

Both the verification step and the preservation step must
change to handle evolving propositions. First, we need to
distinguish between propositions whose interpretations may
evolve (henceforth called evolving propositions) and those
whose interpretation will remain fixed. We leave this dis-
tinction to the modeler. We extend the model checker with
an additional input, a re-mapping function R from evolv-
ing propositions to boolean expressions over non-evolving
propositions. When the model checker encounters an evolv-
ing proposition p, it evaluates R(p); non-evolving proposi-
tions are evaluated directly. We now present the revised
verification and preservation steps.

Verification step, version 3: Given a property ¢ to ver-
ify of a feature F} under a re-mapping R, verify ¢ under
three interpretations, storing the labels arising from each
check separately in F}’s interface:

1. The standard 3-valued check of ¢ using R.

2. A strengthening check in which each evolving proposi-
tion p in ¢ is strengthened to R(p) Aaugment for some
new proposition augment.

3. A weakening check in which each evolving proposition
p in ¢ is weakened to R(p) V augment for some new
proposition augment.

Given a feature F> that must preserve property ¢ already
proven of feature Fi, we must choose one of these three
sets of labels to use in the preservation check. The choice
depends on whether the interpretation of evolving proposi-
tions in F» strengthens or weakens those in Fi, as detailed
in the following algorithm.

Preservation step, version 3: Let Ri be the re-mapping
used to verify ¢ in Fy and let R2 be the new re-mapping
associated with Fs.

o If R>(p) strengthens R, (p) for all evolving propositions
p in ¢, check whether the pessimistic strengthened case
held in Fi. If so, extend F> with dummy interface
states as described in Section 5.1, but copy/confirm
the pessimistic interface labels that arose under the
strengthened interpretation. If not, there is no need
to proceed with verification of F> because F} already
violates the property.

e If Ry(p) weakens Ri(p) for all evolving propositions p
in ¢, follow the previous case using pessimistic weak-
ened in place of pessimistic strengthened.

o If Ry (p) is logically equivalent to Ri(p) for all evolving
propositions p in ¢, extend F» with dummy interface
states as described in Section 5.1, but copy/confirm
the pessimistic interface labels that arose under inter-
pretation Rj.

e In all other cases, re-verify ¢ against I} using Rz, then
apply version 2 of the preservation algorithm to check
preservation in Fb.

5.3 Soundness

The soundness of this methodology arises from a combi-
nation of the soundness of the methodology for verifying fea-
tures as closed systems, the soundness of Bruns and Gode-
froid’s 3-valued checking with optimistic and pessimistic in-
terpretations, and the logic of strengthening and weakening.
Due to lack of space, we defer the formal soundness proof
to a full version of the paper.

6. EMAIL CLIENT CASE STUDY

To evaluate the effectiveness of our interfaces and method-
ology for compositionally verifying feature-oriented systems,
we searched for feature interactions in the email application
described in Section 2 (which Hall’s work showed to be rich
in feature interactions [24]). We wanted to determine

e whether we could detect feature interactions composi-
tionally given our interfaces and methodology,

e the extent to which each enrichment to our methodol-
ogy contributed to detecting actual interactions, and

e whether interactions can be detected through combin-
ing small numbers of features.

The last point is important because the number of features
involved in an interaction points to the overhead that our
methodology would incur from the compositional preserva-
tion tests. We have not proposed techniques for identify-
ing likely interactions; this is an important and difficult,
yet orthogonal, problem. In this case study, we are more
concerned with the potential overhead of our methodology
with respect to the amount of interface information needed
to perform the preservation tests compositionally.

The email features as shown in this paper do not appear to
cross-cut the system, since we describe each feature through
a single state machine (cross-cutting arises in our framework
from the separate machines for individual actors in Defn. 2).
The full email system does involve multiple actors (the users
and the network, for example). We use single actor versions
in this case study because the distinction between single and
multi-actor features is irrelevant for the study of interfaces
that we undertake here.

Our experiments use a model checker that we built specif-
ically for handling our feature-oriented verification method-
ology. The checker supports the methodologies presented in
this paper and in our previous work. We do not present per-
formance figures here because the state machines for these
models are too small to generate meaningful performance
figures. As the goal of this case study is to test the utility
of our models and methodology for detecting feature inter-
actions, we view performance as an orthogonal problem for
this paper. Future papers will consider larger case studies
designed to test our theory for performance.

Each of the properties from Section 2 held when veri-
fied against the feature that was mainly responsible for im-
plementing it, but failed upon composition with other fea-
tures.® Furthermore, all evolving propositions were strictly

IFor the rest of this section, we will implicitly assume that
features are composed with the email base (Figure 1) prior to
verification, which defines the propositions mail and deliver.

either weakened or strengthened during re-mapping; we never
needed to re-verify a property already proven of a feature
after re-mapping.

Table 6 summarizes the feature interactions that we de-
tected using our modeling and verification methodology. The
table summarizes the property whose violation led to the
undesired interaction, the (ordered) composition of features
with which we detected the interaction, a description of the
undesirable interaction, and an indication of what part of
our verification methodology detected the interaction. The
table shows some interesting results: first, our original (Sec-
tion 4) methodology (with no re-mapping or 3-valued model
checking) detected only three of the interactions. This sug-
gests that while the overhead and additional verification ex-
pense of our richer model is not always needed for detecting
feature interactions, the richer methodology is crucial for
many interactions.

The feature interactions arising from property 4 are unique
because they required a minimum of three interacting fea-
tures composed in a certain order. Fewer features yielded
no interaction: the property holds of the encryption feature
alone, the property holds when composing decryption with
encryption because the decryption feature doesn’t mail mes-
sages, and the property holds of both encryption-autorespond
and encryption-forward because the message stays encrypted.
Different compositions of all three features, however, expose
the undesirable interaction arising from this property:

e The property doesn’t hold when autorespond or for-
ward is composed onto the encryption-decryption com-
pound feature because this composition introduces a
path from a state where the message is clear (and stays
clear) to mail. A 3-valued check exposes this.

e The property doesn’t hold when decryption follows
encrypt-autorespond or encrypt-forward. The propo-
sition clear is weakened from false to false V decrypt-
successful. A pessimistic weakened check on encrypt-
autorespond or encrypt-forward exposes this.

Checking property 4 requires 3-value checks because en-
crypted and decrypt-successful are data propositions. Af-
ter composition with forwarding, for example, the property
still optimistically holds (because it assumes a message is
encrypted before it gets forwarded). Under a pessimistic
check, however, encrypted is false throughout the forward-
ing feature, which violates the property.

7. PERSPECTIVE ON VERIFICATION

Identifying verification techniques that provide good sup-
port for feature-oriented verification is an interesting and
important open problem. Both our previous work and the
work reported here use model checking as the underlying
verification technology. Model checking is a reasonable first
choice: its automated nature allows us to prototype method-
ologies quickly and easily, and its low-level nature has forced
us to identify fine-grained details about the feature interfaces
needed to support compositional verification. Although model
checking is not necessarily a natural choice for software ver-
ification, many research efforts are now exploring how well
it applies to this domain.

Our choice of model checking has clearly affected our
models of features and their interfaces: in particular, inter-
faces would likely not associate labels with states were we

Property | Features Composed | Yields Problem Under Re-Mappings Verification
(in execution order) Techniques
1 sien. forward Sender field changes if message is | re-map sender-unchanged from | Evolving
g, signed and then forwarded true to —forward Propqsitions
1 sign, remail the remailer changes the sender field re-map sender-ur?changed from Evolvu?g'
true to manonymize Propositions
.. . . re-map anonymous from .
9 sign, remail signing a message gives away the iden- anonymize to anonymize Pessimistic
’ tity even if the sender is changed A —signed Strengthened
encrypting a signed message hinders o .
3 encrypt, verify sign-verification. Attempts to decrypt re-map verifiable from true to | Pessimistic
. . . . trueA—encrypted Strengthened
after sign-verification may also fail.
4 encrypt, decrypt, a message can be encrypted, mailed, | re-map clear from false to | 3-valued
forward decrypted, and forwarded in the clear —decrypt-successful check
a message can be decrypted and au-
4 encrypt, decrypt, ded wh h re-map clear from false to | 3-valued
autorespond tolrespon ed where t © response con- —decrypt-successful check
tains the body of the original message.
5 encrvt. remail the remailer cannot decipher encrypted | strengthen in-remailer-format | Pessimistic
yph, messages to determine the recipients. from true to true A —encrypt Strengthened
the filter feature can potentially dis-
6 autorepond, filter card messages generated by the auto- Previous
response feature
forwarding from a to his
7 forward, remail pseudonym creates an infinite cy- Previous
cle of mailings.
8 forward, filter filter can discard forwarded messages Previous

Table 1: Summary of undesirable feature interactions and the modeling and verification techniques needed
to detect them. Numbers in the property column refer to the numbered descriptions of the properties from

Section 2.

not using state machine models and CTL model checking.
Nonetheless, our experiences using model checking in the
context encourage us to reflect on how viable model check-
ing will be as a foundation for feature-oriented verification.

First, the amount of interface information that compo-
sitional model checking of features seems to require is an
immediate concern. We currently store labels on several in-
terface states for checks under both strengthening and weak-
ening of evolving propositions. This information becomes
less useful as the number of evolving propositions in a prop-
erty increases. We also store partitions into control and data
variables. Multi-actor features require even more interface
information [23]. Although the interface information has
not proven excessive in this study, it could become so in a
larger application that contains hundreds of features span-
ning multiple actors. Additional case studies are required
to determine when the overhead of our interfaces outweighs
the benefits of compositional feature verification.

Next, features interact implicitly through data. A viable
model of feature interaction therefore must support model-
ing and reasoning about data. Model checkers’ limitations
in reasoning about data are well known: the main problem
is the combinatorial explosion in propositions needed to en-
code data values as booleans. Many model checking efforts
handle this problem through a combination of abstraction
and cone-of-influence reduction. Given the deep co-mingling
of control and data in both the models and properties of
some feature-oriented systems, we are unsure whether these
approaches will be useful in this context. In many cases, the
design methodology inherently performs a partial abstrac-
tion because a feature only contains the propositions that
are relevant to it.

We believe that the real problem lies in the need to ar-

guably overspecify data in most state-based specifications.
For data-intensive domains such as this one, declarative
specifications (as employed by Alloy [27]) are likely more
viable in the long term. Effective integration of declarative
specifications into model checking or other feature-oriented
verification techniques remains an open problem.

Finally, our work on feature-based verification suggests
that CTL is a more viable logic than LTL for compositional
reasoning about features. This contradicts the conventional
wisdom which cites LTL as better suited to compositional
reasoning [41]. This departure reflects the difference in com-
position semantics between our work, which supports a form
of sequential composition, and most compositional model
checking, which supports parallel composition.

8. RELATED WORK

Numerous pipe-and-filter style models of feature compo-
sition have been proposed, with Zave and Jackson’s Dis-
tributed Feature Composition [28] being one of the most
notable. Our models of features and their interactions have
arisen from our goal to support compositional verification of
feature-oriented designs. To the best of our knowledge, other
models of feature composition have not been designed with
associated verification methodologies. Furthermore, our full
methodology supports features over multiple actors, which
distinguishes our work from other pipe-and-filter style ap-
proaches, including Zave and Jackson’s.

Other verification researchers have discussed methodolo-
gies for reasoning under sequential composition [1, 2, 21,
32]. These efforts differ from ours in many ways: none
handle open systems, none were created towards support-
ing cross-cutting design methodologies, and none support
coordination of multiple actors.

This paper has presented a form of detection for feature
interaction problems, which have received substantial at-
tention in the software engineering literature [29, 42]. Our
detection of feature interactions through compositional rea-
soning and our handling of multiple actors distinguish our
work from other approaches to modeling or detecting fea-
ture interaction through model checking [3, 4, 13, 28, 29];
Section 3 discussed other work on features as open systems.

Several recent efforts have applied model checking to rea-
soning about aspect-like constructs. Chechik and Easter-
brook reason about compositions of concerns using multi-
valued model checking [17]. Their framework helps identify
which concern (feature) is responsible for property violations
when checking composed systems; it does not address how
to prove properties through compositional reasoning on in-
dividual concerns. Ubayashi and Tamai propose a method
of applying model checking to programs written using As-
pectJ [40]. Their verification methodology, however, is sim-
ply to weave the program together and verify the result.
They leave any notion of compositional verification to fu-
ture work. Nelson, Cowan and Alencar [36] perform a case
study on reasoning about cross-cutting concerns. They em-
ploy two tools, Alloy and the LTS checker, to reason about
both component and emergent properties. They too, how-
ever, compose the concerns into a single global specification
in lieu of defining a compositional verification model. Lin
and Lin also present a temporal logic-based approach to rea-
soning about feature interactions, but their approach is not
compositional [35].

9. CONCLUSIONSAND FUTURE WORK

Verification methodologies for cross-cutting constructs are
an important open problem in software engineering. In-
deed, by increasing the expressive power of programming
notations, these constructs generate an even greater need
for verification, and as such cannot be considered mature
development idioms in the absence of verification methods.
We present a methodology that supports compositional rea-
soning about features and their interactions. Our features
span multiple actors, support shared data across features,
and provide a realistic preliminary model for verifying sys-
tems of cross-cutting concerns.

Compositional feature verification inherently requires rea-
soning about open systems. We show that existing ap-
proaches to open systems in verification are based on as-
sumptions that do not apply in the context of feature-oriented
design. We then build a verification methodology for fea-
tures as open systems using three-valued model checking as
an underlying verification technology. In order to be both
compositional and useful for detecting feature interactions
in practice, our methodology requires separation of propo-
sitions into control and data variables and a notion of re-
defining propositions within properties as new features are
added to a system. Three-valued model checking is instru-
mental in supporting both of these requirements.

Using our methodology, we have analyzed an email ap-
plication that is rich in feature interaction problems. We
attempted to uncover ten known feature interactions using
our methodology; we detected them all reasoning composi-
tionally (rather than reasoning about the entire composed
system which contained the undesirable interactions), using
all of the modeling and verification techniques that comprise
our approach. This validates our derived feature interfaces

as useful for supporting compositional feature interaction
detection.

In future work, we plan to look into verification method-
ologies other than model checking that might offer better
support for reasoning about unknown data values; we are
specifically interested in exploring declarative specifications
in this context. We also plan to conduct further case stud-
ies on different designs known to display feature interactions,
such as the Bellcore Benchmark [16].

Acknowl edgments. We thank Robert Hall for generously
providing detailed help with his email suite and the anony-
mous reviewers for their extensive comments.

10. REFERENCES

[1] R. Alur, R. Grosu, and M. McDougall. Efficient
reachability analysis of hierarchic reactive machines.
In International Conference on Computer-Aided
Verification, volume 1855 of Lecture Notes in
Computer Science, pages 280—295. Springer-Verlag,
2000.

[2] R. Alur and M. Yannakakis. Model checking of
hierarchical state machines. In Symposium on the
Foundations of Software Engineering, pages 175-188,
1998.

[3] C. Areces, W. Bouma, and M. de Rijke. Description
logics and feature interaction. In P. Lambrix,

A. Borgida, M. Lenzerini, R. Méller, and

P. Patel-Schneider, editors, Proceedings of the
International Workshop on Description Logics, pages
28-32, 1999.

[4] C. Areces, W. Bouma, and M. de Rijke. Feature
interaction as a satisfiability problem. In M. Calder
and E. Magill, editors, Feature Interactions in
Telecommunications Systems. 10S Press, 2000.

[5] E. Astesiano and G. Reggio. A discipline for handling
feature interaction. In Requirements Targeting
Software and Systems Engineering, number 1526 in
Lecture Notes in Computer Science, pages 95-119.
Springer-Verlag, 1998.

[6] P. Au and J. M. Atlee. Evaluation of a state-based
model of feature interactions. In Feature Interactions
in Telecommunications Systems, pages 153-167. 10S
Press, 1997.

[7] D. Batory. Product-line architectures. In Smalltalk
and Java Conference, Oct. 1998.

[8] D. Batory, C. Johnson, B. MacDonald, and D. von
Heeder. Achieving extensibility through product-lines
and domain-specific languages: A case study. In
International Conference on Software Reuse, June
2000.

[9] D. Batory and S. O’Malley. The design and
implementation of hierarchical software systems with
reusable components. ACM Transactions on Software
Engineering and Methodology, 1(4):355-398, Oct.
1992.

[10] L. Bergmans and M. Aksit. Composing crosscutting
concerns using composition filters. Communications of
the ACM, Oct. 2001.

[11] J. Blom, R. Bol, and L. Kempe. Automatic detection
of feature interactions in temporal logic. Technical
Report DoCS 95/61, Department of Computer

20]

(21]

Systems, Uppsala University, 1995.

A. Borgida, J. Mylopoulos, and R. Reiter. On the
frame problem in procedure specifications. IEFE
Transactions on Software Engineering,
21(10):785-798, 1995.

K. Braithwaite and J. Atlee. Towards automated
detection of feature interactions. In Feature
Interactions in Telecommunications Systems, pages
36-59. IOS Press, 1994.

G. Bruns and P. Godefroid. Model checking partial
state spaces with 3-valued temporal logics. In
International Conference on Computer-Aided
Verification, number 1633 in Lecture Notes in
Computer Science, pages 274—287. Springer-Verlag,
1999.

G. Bruns and P. Godefroid. Generalized model
checking: Reasoning about partial state spaces. In
International Conference on Concurrency Theory,
number 877 in Lecture Notes in Computer Science,
pages 168—182. Springer-Verlag, 2000.

E. Cameron, N. Griffeth, Y. Lin, M. Nilson,

W. Schnure, and H. Velthuijsen. A feature interaction
benchmark for IN and beyond. In Feature Interactions
in Telecommunications Systems, pages 1-23. I0S
Press, 1994.

M. Chechik and S. Easterbrook. Reasoning about
compositions of concerns. In Proceedings of the ICSE
Workshop on Advanced Separation of Concerns, May
2001.

M. Chechik, S. M. Easterbrook, and B. Devereux.
Model checking with multivalued temporal logics. In
Proceedings of the International Symposium on
Multiple Valued Logics, 2001.

E. Clarke, E. Emerson, and A. Sistla. Automatic
verification of finite-state concurrent systems using
temporal logic specifications. ACM Transactions on
Programming Languages and Systems, 8(2):244-263,
1986.

E. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 2000.

E. M. Clarke and W. Heinle. Modular translation of
Statecharts to SMV. Technical Report
CMU-CS-00-XXX, Carnegie Mellon University School
of Computer Science, August 2000.

R. B. Findler and M. Flatt. Modular object-oriented
programming with units and mixins. In ACM
SIGPLAN International Conference on Functional
Programming, pages 94-104, 1998.

K. Fisler and S. Krishnamurthi. Modular verification
of collaboration-based software designs. In Symposium
on the Foundations of Software Engineering, Sept.
2001.

R. J. Hall. Feature interactions in electronic mail. In
Feature Interactions in Telecommunications Systems.
10OS Press, 2000.

M. Huth, R. Jagadeesan, and D. Schmidt. Modal
transition systems: a foundation for three-valued
program analysis. In European Symposium on
Programming, 2001.

D. Jackson. Structuring Z specifications with views.
ACM Transactions on Software Engineering and
Methodology, 4(4), Oct. 1995.

27]

(28]

(31]

(32]

33]

34]

(35]

39]

(40]

D. Jackson. Alloy: a lightweight object modelling
notation. Technical Report 797, MIT Laboratory for
Computer Science, Feb. 2000.

M. Jackson and P. Zave. Distributed feature
composition: A virtual architecture for
telecommunications services. IEEE Transactions on
Software Engineering, 24(10):831-847, Oct. 1998.

D. O. Keck and P. J. Kuehn. The feature and service
interaction problem in telecommunications systems: A
survey. IEEE Transactions on Software Engineering,
24(10):779-796, Oct. 1998.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Furopean
Conference on Object-Oriented Programming, June
1997.

O. Kupferman, M. Vardi, and P. Wolper. Module
checking. In International Conference on
Computer-Aided Verification, number 1102 in Lecture
Notes in Computer Science, pages 75—86.
Springer-Verlag, 1998.

K. Laster and O. Grumberg. Modular model checking
of software. In Conference on Tools and Algorithms
for the Construction and Analysis of Systems, 1998.
H. Li, K. Fisler, and S. Krishnamurthi. The influence
of software module systems on modular verification. In
9th International SPIN Workshop on Model Checking
of Software, number 2318 in Lecture Notes in
Computer Science, pages 60-78. Springer-Verlag, 2002.
H. Li, S. Krishnamurthi, and K. Fisler. Interfaces for
modular feature verification. In IEEE International
Symposium on Automated Software Engineering, 2002.
F. J. Lin and Y.-J. Lin. A building block approach to
detecting and resolving feature interactions. In Feature
Interactions in Telecommunications Systems, pages
86-109. IOS Press, 1994.

T. Nelson, D. D. Cowan, and P. S. C. Alencar.
Supporting formal verification of crosscutting
concerns. In Reflection, pages 153-169, 2001.

H. Ossher and P. Tarr. Multi-dimensional separation
of concerns in hyperspace. Technical Report RC
21452(96717), IBM, Apr. 1999.

C. Prehofer. Feature-oriented programming: A fresh
look at objects. In Furopean Conference on
Object-Oriented Programming, number 1241 in Lecture
Notes in Computer Science. Springer-Verlag, 1997.

C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley/ACM
Press, 1998.

N. Ubayashi and T. Tamai. Aspect oriented
programming with model checking. In International
Conference on Aspect-Oriented Software Development,
Apr. 2002.

M. Y. Vardi. Branching vs. linear time: Final
showdown. Invited talk, European Symposium on the
Theory and Practice of Software (ETAPS). Available at
http://www.cs.rice.edu/ " vardi/papers/index.html,
2001.

P. Zave. Calls considered harmful and other
observations: A tutorial on telephony. In T. Margaria,
editor, Second International Workshop on Advanced
Intelligent Networks, 1997.

