
Towards an Aspect Language for Bus Protocols

Kathi Fisler, Paul Freitas, Dan Bjorge

WPI Dept of Computer Science
Worcester, MA 01609

kfisler@cs.wpi.edu

Abstract
Hardware-level protocol specifications provide an interest-
ing case study for aspect-oriented programming. Bus proto-
cols are defined around events and values that hold between
events. Variables within the protocol synchronize around
events. Aspects must alter both events and values on multiple
variables while maintaining synchronization. In effect, these
are two-dimensional aspects, crosscutting both variables and
time. This paper explores and contrasts two styles of aspects
for capturing such protocols, using a widely-used bus pro-
tocol as a running example. Our main contribution lies in
raising questions about how AOP can support domains with
highly synchronized, two-dimensional aspects.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Design, Languages

Keywords bus protocols, synchronization in aspects, as-
pects for functional reactive programming

1. Introduction
Protocol-specification documents are often organized as a
series of behavioral extensions to a simple core protocol.
Formal models of protocols, however, rarely share this struc-
ture. This complicates tracing elements of the formal model
back to the specification, and makes it hard to quickly get a
formal model of only a subset of a protocol’s features. An
AOP framework for protocols could aid in both problems.

Protocols are typically described as sequences of events
on multiple signals. Events on one signal may trigger re-
sponses on another. Events and responses may need to be
synchronized, or at least ordered, across signals. Hardware-
level protocols require extensive synchronization across sig-
nals; many such protocols are more readily understood as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DSAL’12, March 27, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1128-1/12/03. . . $10.00

Figure 1. A basic transfer protocol (c© ARM)

two-dimensional sequences of windows with synchronized
endpoints over multiple signals. This tight synchronization
implies that extending the behavior of one signal may im-
plicitly extend another. As far as we know, the AOP litera-
ture does not discuss extending systems with this tight, inter-
dependent synchronization across multiple signals.

This paper uses a real, heavily-used, high-performance
bus protocol (Section 2) to explore two approaches to cre-
ating aspect-like mechanisms for this domain. One makes
synchronization windows the atomic unit of composition
and advising (Section 3); the other takes window-bounding
events as atomic (Section 4). Each effort leaves several
open questions (Section 5) about how to provide aspect-like
mechanisms for two-dimensional extensions.

2. A Sample Protocol and its Components
Bus protocols coordinate data transfers between devices.
The AMBATM protocols are among the most commonly
used in modern 32-bit processors, including those embed-
ded in many smartphones. This paper uses the AHB variant
of AMBA-2 [1].1 The full specification runs 230 pages and
covers three protocol variations with different performance
targets (the differences are beyond the scope of this work).

1 Unannotated figures reproduced with permission of ARM Limited.

Figure 2. Adding waitstates to the basic protocol (c© ARM)

Base Protocol Figure 1 shows the most basic AMBA-2 data
transfer (read or write). The HCLK signal is a standard system
clock. HADDR carries the address for the transfer. Control
specifies various parameters for the transfer that are irrel-
evant for this discussion. HWDATA and HRDATA contain the
data to be written to or read from memory, respectively (only
one of these would be active in any one instance of this pro-
tocol). HREADY indicates when the device is ready for the
next transfer request to be initiated. The [31:0] annotation
on a signal name indicates a 32-bit variable; un-annotated
signals carry only single-bit values (1 and 0, corresponding
to true and false, respectively). Shared names (such as “A”)
indicate identical data on different signals. Unshaded, unla-
beled polygons represent periods in which the signal must
hold a steady value, but the exact value is irrelevant. The
small shaded polygons indicate periods of instability in sig-
nals. This hardware issue is not relevant to this paper.

We have annotated the diagram with two boxes, one en-
closing the events and signals for the address phase and an-
other for the data phase (the phases are labeled at the top
of the diagram). Box edges capture synchronization points
across signals: all signals active in the address phase, for ex-
ample, hold their values over the same time window.

Protocol Extensions Figure 2 illustrates the base proto-
col execution extended with new behavior. If the device
handling the data transfer is busy, it may not respond with
the data immediately after the address has been issued. In
this case, the protocol inserts a sequence of wait states (en-
closed in dashes) into the data phase. During a wait state, the
HREADY signal remains low (indicating that the device is not
ready to start a new transfer); if the requested transfer was
for a write, the data value must hold during the wait states
(until the device is ready to grab the data). The boxes illus-
trate that waitstates correspond to a cohesive block that gets
inserted into the data phase of the basic transfer protocol.

Figure 3 shows an extension to pipelined protocol exe-
cutions to handle so-called burst transfers. Bursts consist of
several consecutive requests to adjacent memory addresses
(as seen in the consecutive address values on HADDR). The

Figure 3. A sequence of burst transfers (c© ARM)

dashed box shows the newly-added behavior: the HBURST
signal, whose value spans several pipelined instances of the
basic protocol. We will ignore the HTRANS signal, which
comes from an extension not described in this paper.

Language Requirements These examples illustrate sev-
eral kinds of extensions that arise in bus protocols:

1. Extend existing phases, effectively changing their end-
points (wait states, Figure 2)

2. Add new phases into existing protocols (not shown).

3. Add new signals that may span existing windows (burst
controls, Figure 3)

4. Execute windows from different protocol instances in
parallel (pipelining, Figure 3)

3. A Window-Centered Approach
The diagrams in Section 2 suggest viewing protocols as se-
quences of windows, with aspects inserting new windows
into existing sequences. We have fully formalized such a lan-
guage [6], including joinpoints, pointcuts, and modules for
individual extensions. Due to space limitations, we present
only the key ideas here.

3.1 The Basic Protocol

A block defines a window of behavior over a set of sig-
nals. Atomic blocks assign a value to a signal. Compound
blocks compose other blocks both sequentially and in paral-
lel. When blocks are composed in parallel, the events at each
edge of the blocks are synchronized across all their signals;
events internal to the blocks are unordered. The following
compound block sequentially composes a block for a basic
address phase (haddrctrl) with one for a basic data phase
(data) to define the transfer from Figure 1.

block simpletrans(value addr[31:0],

value wdata[31:0],

signal rdata[31:0],block control) {

haddrctrl(addr[31:0],control),

data(wdata[31:0],rdata[31:0]);

}

3.2 Aspects over Blocks

Pointcut specifications and advice for this language are also
defined in terms of blocks. We illustrate our language using
the waitstates extension from Figure 2.

Joinpoints Advice inserts new blocks around, or inserts
new data into, existing blocks. Accordingly, pointcuts iden-
tify blocks, rather than points within blocks. Patterns over
block names and parameter values identify blocks; given a
pattern, the pointcut indicates whether to select blocks that
either match the pattern or precede, follow, or are nested
within a block that matches the pattern.

Advice Advice blocks may compose sequentially (as in
waitstates) or concurrently (as in bursts) with existing blocks.
Sequential compositions raise a question: after composition,
should the new block be considered part of the advised block
(within its start and end points)? Capturing this variation
yields a total of five advice types: append and prepend for
sequential composition that augments the advised block, be-
fore and after for sequential composition adjacent to the
advised block, and concurrent for parallel composition with
the advised block (the new and advised blocks will form a
new block with synchronized start and end points).

Aspects To support extensions that introduce several pieces
of advice, our language provides a construct that encapsu-
lated related advice into a single aspect. Additional details
are not relevant to this paper.

3.3 Limitation of the Blocks-based Approach

Blocks attempt to structure increments of protocol behavior
and where increments compose to form full protocols. They
nicely capture individual protocol instances, but not the con-
ditions that trigger different protocol instances. In the basic
transfer (Figure 1), for example, only one of HWDATA and
HRDATA (the data for a write or read transfer, respectively)
would actually hold relevant data in a single protocol in-
stance. A read/write flag in the Control signal logic indi-
cates the transfer type. Other AMBA-2 features abound with
similar control decisions.

Using blocks as joinpoints demands that any potential
extension point in a protocol be encapsulated in a block.
This leads to a deep nesting hierarchy of blocks. While
this hierarchy nicely captures the interplay of sequential
and parallel composition within a protocol, it also exposes
complexity. For example, if advice needs to add parameters
to a block, all blocks from the root of the hierarchy to the
advised block must be updated.

These observations taken together suggest exploring
finer-grained approaches to aspectualizing bus protocols that
also account for control logic.

4. A Finer-Grained Approach Using FRP
Functional Reactive Programming (FRP) is a declarative,
stream-based, dataflow-inspired, event-driven programming

model. Section 4.1 argues by example that FRP seems a
natural fit for capturing bus protocols: events capture syn-
chronization points, while other standard operators capture
window contents between events. FRP also supports basic
control operators. Aspects for FRP have not been studied,
however. Our question then is whether we could aspectual-
ize FRP to capture the design increments of bus protocols.
We used the FrTime [3] FRP language for this project.

4.1 Windows and Boundaries in FRP

Streams of values or events are the atomic units of FRP
programs. In a bus protocol, each clock transition would
yield an event, as would each change in value on the HADDR
signal (indicating that a new transfer should begin). Streams
of events are called event streams. Streams of values defined
based on events are called behaviors. The contents of the
data signals in a bus protocols are examples of behaviors.

Operators in FRP languages combine streams, filter dat-
apoints on streams, or build new streams based on other be-
haviors or event streams. New address phases begin, for ex-
ample, when a rising event on a clock stream coincides with
a change-of-value event on the HADDR stream. To define win-
dow contents, we use a FrTime operator called hold that cre-
ates a behavior out of an event stream: whenever the argu-
ment stream to hold has an event, the resulting behavior has
the value of that event until the next event on the argument
stream. The streams val-events and hold(val-events)
in the following diagram illustrate this operator:

events e1 e2 e3 e2

val-events a b c b

hold(val-events) a a a a b b b c c c c b

Windows in protocols typically have different values
from those of their triggering events; this is evident when
the same triggering event defines a window over several
signals. Capturing AMBA-2 therefore requires translating a
triggering event to desired window values. FrTime’s map-e
operation, analogous to a map operation in many program-
ming languages, translates each event to a new event while
maintaining the event-stream structure. The previous dia-
gram also illustrates a stream events that is mapped into the
stream val-events (whose values are subsequently held to
define window contents).

Combining hold and map-e in the spirit of the previous
diagram yield a template for defining an individual bus-
protocol signal using FrTime:

(define <SIGNAME>

(hold

(map-e (lambda (event)

(cond [(eq? event <BOUNDARY1>) <VAL1>]

[(eq? event <BOUNDARY2>) <VAL2>]

...))

(merge-e <BOUNDARY1> <BOUNDARY2> ...))))

This template references streams of events that initiate new
protocol windows (<BOUNDARYx>). The template merges

these individual events into a single event stream (using
merge-e). The function argument to map-e (the lambda
expression) translates each boundary event into its corre-
sponding value event (VALx). Applying hold to these value
events yields the desired window contents.

The template code suggests that this approach synchro-
nizes signals that share boundary events. Thus, two signals
that are synchronized would share the same merge-e ar-
guments. Signals that are partly synchronized would share
some, but not all, merge-e arguments. Having window
boundaries easily identifiable in the code enables us to rea-
son about some relationships between signals.

The following expression uses the template to capture
HADDR from the basic protocol (Figure 1). The expression
assumes an event stream clock-rise defining clock tran-
sitions and a function gen-addr that generates the memory
address to put on the bus:

(define haddr

(hold

(map-e (lambda (event)

(cond [(eq? event true) (gen-addr)]))

(merge-e clock-rise))))

4.2 Aspects in FrTime

To explore joinpoints and advice in FRP, we consider how
the waitstate and burst extensions would alter the definition
of haddr. Under the waitstates extension, a new address
phase begins on a rising clock when the HREADY signal
has value true. There are two candidate places to add the
HREADY constraint to the current definition of haddr:

1. In the generation of window-bounding events (within the
call to merge-e).

2. In the test position of the cond statement that checks the
event to decide whether to generate a new address.

The first approach maintains a clear separation between win-
dow boundaries (in merge-e) and window contents (in the
cond). This in turn makes it easier to see which signals are
synchronized within the overall protocol. Under waitstates,
the merge-e expression in haddr would look like:

(merge-e (filter-e

(lambda (e) (value-now hready))

clock-rise))

Adding burst transfers (Figure 3) alters the values within
windows, rather than the triggering events. This modification
must happen within the cond, at the point where gen-addr
is called. Whether a new address should be generated is de-
termined by the value on a new hburst signal (not shown).
The revised cond clause within haddr would be:

(cond [(eq? event true)

(cond [(eq? hburst ’incr) next-addr]

[else (gen-addr e)])])

where next-addr contains consecutive memory addresses.

4.3 The Notion of Advice in FrTime

Our limited example raises some interesting questions about
the nature of advice in an FRP-based approach. Modifying
window boundaries may involve adding, deleting, or mod-
ifying existing boundary events. Semantically, the FrTime
operators merge-e, filter-e, and map-e perform these
transformations (where filter-e removes events that fail
a given predicate, analogous to the standard filter oper-
ator in functional languages). This suggests that advice on
window boundaries should take the form of a transformation
function that is applied to the current event stream.

Modifying window contents may involve adding or delet-
ing entire cond clauses or modifying the answer compo-
nents of existing clauses. For protocols, we have not seen
the need to modify the cond test conditions (which im-
plies that the content of an event, rather than its existence,
changed). Adding clauses is straightforward as events are
distinct (which makes the order of the clauses irrelevant
within the cond). Advice that modifies the values within
cond answers is trickier because the value expressions can
be arbitrary code with minimal structure to guide identifi-
cation of joinpoints. In our work on AMBA-2 to date, we
have found that aspects alter the entire existing value within
a window; this allows advice to be a function that transforms
the value, rather than a syntactic operation on the code that
computes the value. Whether this approach suffices for a
large range of protocols remains open for future work.

There are two key insights here. First, traditional advice
types such as before and after are not relevant to model-
ing bus protocols with FRP. Ordering arises among events;
FRP operators such as merge-e manage ordering automat-
ically. This enables a much simpler model of advice as a
transformation function on event streams. Second, advising
events and window contents are separate activities over code
with different structure. It therefore makes more sense to de-
sign separate advising languages for these two components,
while retaining a way to use both languages to define a single
aspect for a particular extension.

5. Lessons Learned
This paper explores the nature of aspect languages for cap-
turing bus protocols, a domain characterized by deeply
nested sequential and parallel compositions with synchro-
nized boundaries across signals. We explored the tradeoffs
between two high-level approaches: one that explicitly mod-
els windows synchronized across multiple signals (blocks),
and one that makes synchronization implicit around com-
mon events on individual signals (FRP). Several issues in-
form the future design of languages for this domain:

Adding windows Advising a protocol with a new window
over multiple signals is conceptually simpler when windows
are explicit (as with blocks). If signals are independent (as
in FRP), the aspect must separately advise every signal in-
volved in the window. A language built atop FRP should pro-

vide domain-specific constructs for advising multiple signals
with a single command to support this extension.

Adding signals spanning a sequence of windows The
burst transfer added a new window containing a signal INCR.
This window synchronizes in parallel with a sequence of
blocks for instances of the basic protocol. This sequence
is interesting because the number of instances (consecutive
addresses) in the burst is specified dynamically within the
Control signal. Our current blocks-based approach does
not support these dynamic conditions. The FRP approach
does, but exposes another issue: the triggering event for the
first instance in the sequence of burst transfers needs two in-
terpretations: a normal event for starting a transfer (to trigger
the appropriate behavior on haddr and other signals), and
an event designating a burst sequence (for synchronizing
with the INCR signal). Since FRP leaves windows implicit
through events, it would need an explicit mechanism to man-
ages these two interpretations, both within the code and for
a human trying to understand the protocol from the code.

Revising Window Contents The FRP approach needs an
explicit language for advising block contents, as the con-
tents of an individual block get specified within the code for
an individual signal. The block approach, in contrast, avoids
this need by taking block contents as a parameter. Relying
on parameters to modify block contents, however, can break
obliviousness if an extension must modify contents that are
not already parameterized: adding a parameter to one block
requires adding that parameter to every block containing it
in the nesting hierarchy. A block-based protocol language
needs scoping rules and mechanisms for less invasive modi-
fication to deeply nested block contents.

Overall Assessment Overall, the shortcomings of the FRP
language appear more cosmetic, amenable to careful de-
sign of a domain-specific language for bus protocols. The
shortcomings in the blocks approach feel more systemic:
the model is simply too rigid for incremental protocol de-
velopment. Moving forward, we would like to investigate
a blocks-inspired DSL atop FRP that exposes the window-
bounding events through joinpoints. Before doing so, we
need to figure out how to handle extensions in which one
run of a protocol is suspended while another executes. This
has proven tricky to capture because the pending transfer re-
sumes only in a specific context, rather than under a general
triggering condition. Trace-based aspects [4] might help,
though these are generally rare in bus protocols.

6. Related Work
Despite our emphasis on events, our domain does not re-
quire event-based aspects (which focus on dynamic, rather
than static, joinpoints). Our joinpoints on events primarily
support synchronized concurrent behavior across protocol
signals. Nùñez and Noyé [7] use coordinating processes to
model concurrent execution of aspects in Java. Their advice

language is not, however, tailored to the distinctions needed
to advise contents of windows within protocols.

Several systems propose multiple aspect languages in the
context of the same problem. Bockisch et al. [2] advocate
separating the language of events that trigger advice from
the language being advised, but do not support advising the
event specifications themselves. Tanter and Noyé [8] pro-
pose a kernel and architecture for integrating aspect lan-
guages for different high-level concerns, whereas our do-
main requires different languages for fine-grained concerns
that interact. Tarr et al.’s work on multi-dimensional separa-
tion of concerns [9] supports different abstractions (require-
ments, object hierarchies, code) that form a single feature.
Our domain extends one artifact—the protocol behavior—
that has rich constraints in two dimensions: synchronization
across signals, and behaviors of individual signals within
new features. Each of our blocks and FRP approaches em-
phasizes one of these two dimensions, which illustrates the
dominant decomposition problem in Tarr et al’s work.

França et al. [5] model the increments that comprise bus
protocols, but do not propose techniques to actually compose
protocols from these increments.

References
[1] ARM Limited. AMBA specification (rev 2.0).

http://www.arm.com/products/solutions/amba2overview.html,
May 1999.

[2] C. Bockisch, S. Malakuti, M. Akşit, and S. Katz. Making as-
pects natural: Events and composition. In Proceedings of the
International Conference on Aspect-Oriented Software Devel-
opment, Modularity Visions Track, 2011.

[3] G. H. Cooper and S. Krishnamurthi. Embedding dynamic
dataflow in a call-by-value language. In European Symposium
on Programming, Mar. 2006.

[4] R. Douence, D. L. Botlan, J. Noyé, and M. Südholt. Trace-
based aspects. In Aspect-oriented Software Development, pages
141–150. Addison-Wesley, 2004.

[5] R. B. França, J. Farines, J.-P. Bodeveix, L. B. Becker, and M. F.
Amine. Modeling a bus protocol: An incremental approach. In
Workshop on Real-Time Systems, 2007.

[6] P. M. Freitas. Feature-oriented specification of hardware bus
protocols. Master’s thesis, WPI Department of Computer Sci-
ence, 2008.

[7] A. Núñez and J. Noyé. Baton: A domain-specific language for
coordinating concurrent aspects in java. In Journée Franco-
phone sur le Développement de Logiciels Par Aspects, 2007.

[8] E. Tanter and J. Noyé. A versatile kernel for multilan-
guage AOP. In Proceedings of the 4th International Confer-
ence on Generative Programming and Component Engineering
(GPCE), pages 173–188, 2005.

[9] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N de-
grees of separation: multi-dimensional separation of concerns.
In Proceedings of the International Conference on Software en-
gineering, ICSE ’99, pages 107–119, 1999. ACM.

