Closure Properties of Context-Free languages

Union

Context-free languages are closed under: Union

 L_1 is context free $L_1 \cup L_2$ L_2 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Union

$$L = \{a^n b^n\} \cup \{ww^R\}$$

$$S \rightarrow S_1 \mid S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the union $L_1 \cup L_2$ has new start variable S and additional production $S \to S_1 \mid S_2$

Concatenation

Context-free languages are closed under: Concatenation

 L_1 is context free L_1L_2 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Concatenation

$$L = \{a^n b^n\} \{ww^R\}$$

$$S \rightarrow S_1 S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the concatenation L_1L_2 has new start variable S and additional production $S \to S_1S_2$

Star Operation

Context-free languages are closed under: Star-operation

L is context free $\stackrel{*}{\bigsqcup}$ L^* is context-free

Example

Language

Grammar

$$L = \{a^n b^n\}$$

$$S \rightarrow aSb \mid \lambda$$

Star Operation

$$L = \{a^n b^n\}^*$$

$$S_1 \rightarrow SS_1 \mid \lambda$$

In general:

For context-free language L with context-free grammar G and start variable S

The grammar of the star operation L^* has new start variable S_1 and additional production $S_1 \to SS_1 \mid \lambda$

Summer 2004 COMP 335

Negative Properties of Context-Free Languages

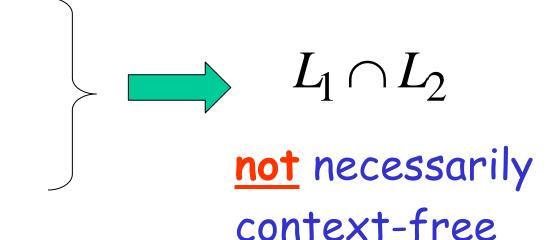
Intersection

Context-free languages are **not** closed under:

intersection

 $L_{\!1}$ is context free

 L_2 is context free



Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Intersection

$$L_1 \cap L_2 = \{a^n b^n c^n\}$$
 NOT context-free

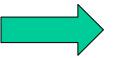
Summer 2004 COMP 335

Complement

Context-free languages are **not** closed under:

complement

L is context free \longrightarrow L



not necessarily context-free

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Complement

$$\overline{L_1 \cup L_2} = L_1 \cap L_2 = \{a^n b^n c^n\}$$

NOT context-free

Intersection of Context-free languages and Regular Languages

$$L_1$$
 context free $L_1 \cap L_2$ L_2 regular context-free

Machine M_1

NPDA for $L_{\!1}$ context-free

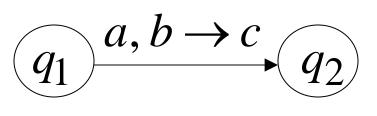
Machine M_2

DFA for L_2 regular

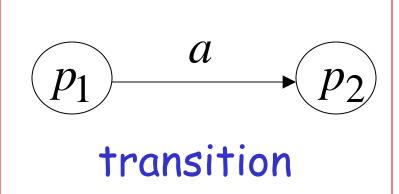
Construct a new NPDA machine M that accepts $L_1 \cap L_2$

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

DFA M_2



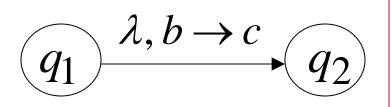
transition



NPDA M

$$\begin{array}{c}
 q_1, p_1 \\
 \hline
 a, b \rightarrow c \\
 \hline
 q_2, p_2
\end{array}$$
transition

DFA M_2



 (p_1)

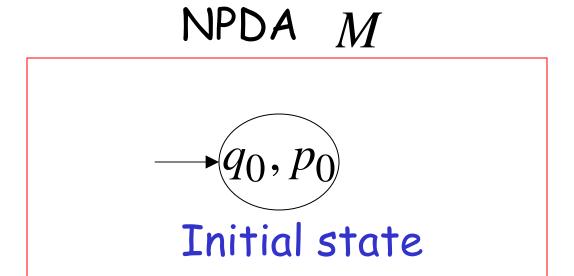
transition

NPDA M

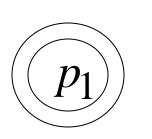
$$\overbrace{q_1, p_1} \xrightarrow{\lambda, b \to c} \overbrace{q_2, p_1}$$

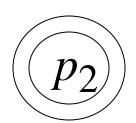
transition

$\begin{array}{c|c} \text{NPDA} & M_1 \\ \hline \rightarrow q_0 \\ \text{initial state} \\ \hline \end{array}$



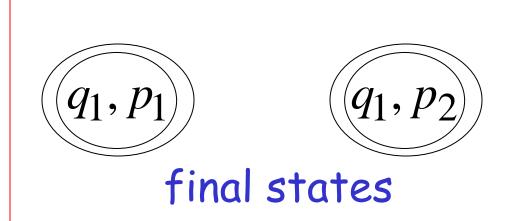
final state





final states

NPDA M



Example:

context-free

$$L_1 = \{w_1w_2 : |w_1| = |w_2|, w_1 \in \{a,b\}^*, w_2 \in \{c,d\}^*\}$$

NPDA M_1

$$a, \lambda \to 1 \qquad c, 1 \to \lambda$$

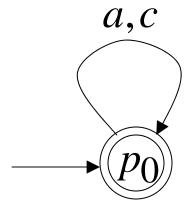
$$b, \lambda \to 1 \qquad d, 1 \to \lambda$$

$$\downarrow q_1 \qquad \lambda, \lambda \to \lambda \qquad \downarrow q_2 \qquad \lambda, \$ \to \lambda \qquad q_3$$

Summer 2004 COMP 335 23

regular
$$L_2 = \{a, c\}^*$$

DFA M_2



context-free

Automaton for:
$$L_1 \cap L_2 = \{a^n c^n : n \ge 0\}$$

NPDA M

In General:

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

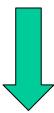
M accepts string w if and only if

 M_1 accepts string w and M_2 accepts string w

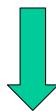
$$L(M) = L(M_1) \cap L(M_2)$$

Therefore:

M is NPDA



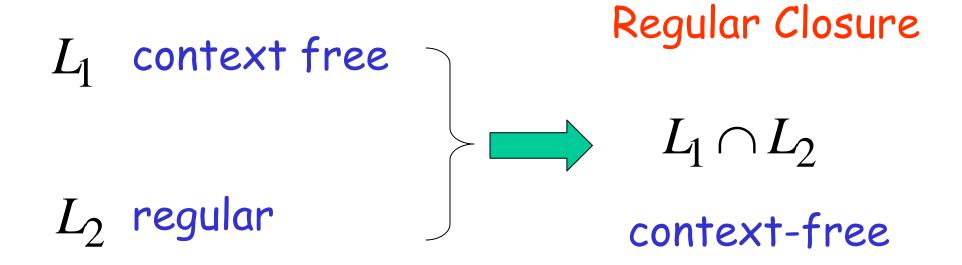
 $L(M_1) \cap L(M_2)$ is context-free



 $L_1 \cap L_2$ is context-free

Applications of Regular Closure

The intersection of a context-free language and a regular language is a context-free language



An Application of Regular Closure

Prove that:
$$L = \{a^n b^n : n \neq 100, n \geq 0\}$$

is context-free

We know:

$$\{a^nb^n:n\geq 0\}$$
 is context-free

We also know:

$$L_1 = \{a^{100}b^{100}\}$$
 is regular

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$
 is regular

$$\{a^nb^n\}$$

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$

context-free

regular

(regular closure) $\{a^nb^n\}\cap \overline{L_1}$

context-free

$$\{a^n b^n\} \cap \overline{L_1} = \{a^n b^n : n \neq 100, n \geq 0\} = L$$

is context-free

Another Application of Regular Closure

Prove that:
$$L = \{w: n_a = n_b = n_c\}$$

is not context-free

If
$$L = \{w: n_a = n_b = n_c\}$$
 is context-free

(regular closure)

Then
$$L \cap \{a*b*c*\} = \{a^nb^nc^n\}$$
context-free regular context-free Impossible!!!

Therefore, L is not context free

Summer 2004 COMP 335

Decidable Properties of Context-Free Languages

Membership Question:

for context-free grammar G find if string $w \in L(G)$

Membership Algorithms: Parsers

- · Exhaustive search parser
- · CYK parsing algorithm

Empty Language Question:

for context-free grammar
$$G$$
 find if $L(G) = \emptyset$

Algorithm:

1. Remove useless variables

2. Check if start variable S is useless

Infinite Language Question:

for context-free grammar $\,G\,$ find if $\,L(G)\,$ is infinite

Algorithm:

- 1. Remove useless variables
- 2. Remove unit and λ productions
- 3. Create dependency graph for variables
- 4. If there is a loop in the dependency graph then the language is infinite

Example:
$$S \rightarrow AB$$

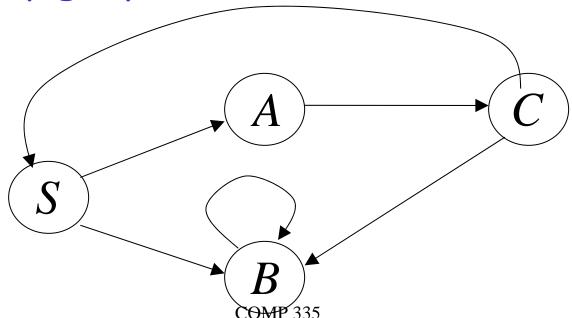
$$A \rightarrow aCb \mid a$$

$$B \rightarrow bB \mid bb$$

$$C \rightarrow cBS$$

Dependency graph

Infinite language



Summer 2004

$$S \rightarrow AB$$
 $A \rightarrow aCb \mid a$
 $B \rightarrow bB \mid bb$
 $C \rightarrow cBS$

$$S \Rightarrow AB \Rightarrow aCbB \Rightarrow acBSbB \Rightarrow acbbSbbb$$

$$S \stackrel{*}{\Rightarrow} acbbSbbb \stackrel{*}{\Rightarrow} (acbb)^{2} S(bbb)^{2}$$

$$\stackrel{*}{\Rightarrow} (acbb)^{i} S(bbb)^{i}$$

Summer 2004 COMP 335 41