Name_____

Homework 8

Worked with: _____

Consulted: _____

#1. Show the following are decidable or undecidable

- a) $L = \{ (M,w) | M \text{ is a dfa and on input } w \text{ visits each one of its states} \}$
- b) $L = \{ (M,w) | M \text{ is a TM and on input } w \text{ makes an odd number of transitions} \}$
- c) L= { n | n is prime}

#2. Given 2 dfa's M1 and M2, Consider the question EQ_{dfa}: "Is L(M1) = L(M2)?"

- a) State this as a language problem
- b) Show EQ_{dfa} is decidable or undecidable

#3. Prove or disprove: Given a grammar in CNF and a string w ε L(G) with derivation tree T, *if depth*(T) = n, *then* $|w| \le 2n-1$

#4. Given an arbitrary turing machine, M, and an arbitrary state q e M, show that it is undecidable whether M ever enters state q. Do not use Rice's Theorem.

#5. A property, P, of re languages is a mapping:

P: {re languages over S^* } \rightarrow {T,F}

A property P is *trivial* if it is true of *all* re languages or *no* re language

- a) Name a non-trivial property of re languages
- b) Name a trivial property of re languages

(Note: You may research this: just say where you got your answer from)