CS503 Homework \#7

Solutions

\#1. Page 321, \#8 a,b
Design machines that compute the following relations. You may use the macros and machines constructed in Sections 9.2 through 9.4 and the machines constructed in Exercise 5.
a) $g t(n, m)=\{1$ if $\mathrm{n}>\mathrm{m}, 0$ otherwise
$g t(n, m)=\{1$ if $\mathrm{n}>\mathrm{m}, 0$ otherwise $=1$ in unary
$g t(n, m)$

1. Compute monus(m,n)
2. if result $=0$, halt
3. otherwise
i. erase m
ii. erase n
iii. write a 1
b) $\operatorname{persq}(n)=\{1$ if n is a perfect square, 0 otherwise
persq(n)
4. create a new variable on the tape, $k=0$
5. run mult (k, k)
6. if the result of the mult $<n$
i. run successor function on k
ii. go back to \#2
7. if result of mult $=n$
i. erase $n, k, \operatorname{mult}(k, k)$
ii. write a 1
8. if result of mult $>n$
i. erase $n, k, \operatorname{mult}(k, k)$
ii. write a 0
\#2. Page 321, \#9 a, b, c
Trace the actions of the machine MULT for computations with input
a) $\mathrm{n}=0, \mathrm{~m}=4$

MULT 0, $4 \quad \mathrm{q}_{0} \mathrm{~B} 1 \mathrm{~B} 11111 \mathrm{~B}$

- read the $1^{\text {st " }} 1$ ", and move right
- \quad erase m
- move left 1 unary number
- halt
b) $\mathrm{n}=1, \mathrm{~m}=0$

MULT 1, $0 \quad \mathrm{q}_{0}$ B11B1B

- read the $1^{\text {st " }} 1$ ", and move right
- replace the next " 1 " with an " X ", and move right
- move right
- add 0,0
- replace " X " from before with a " B "
- erase all the 0 's after the $1^{\text {st }}$ one
- go back to the beginning
- halt
c) $\mathrm{n}=2, \mathrm{~m}=2$.

MULT 2, $2 \quad \mathrm{q}_{0}$ B111B111B

- read the $1^{\text {st " }} 1$ " - mark 1 iteration
- copy unary " 2 " to the end
- mark 1 iteration
- add 2,2
- erase all trailing unary 2 's
- go back to the beginning
\#3. Page 321, \#10 a-d
Describe the mapping defines by each of the following composite functions:
a) add ${ }^{\circ}$ (mult ${ }^{\circ}$ (id, id), add ${ }^{\circ}$ (id, id))
- add ${ }^{\circ}$ (mult ${ }^{\circ}$ (id, id), add ${ }^{\circ}$ (id, id))
$=$ add ${ }^{\circ}$ (id \cdot id, add $\left.\mathrm{o}(i d, i d)\right)$
$=$ add ${ }^{\circ}(i d \cdot i d, i d+i d)$
$=i d \cdot i d+i d+i d$
b) $p_{1}^{(2)}$ o $\left(s^{\circ} p_{1}^{(2)}, e^{\mathrm{o}} p_{2}^{(2)}\right)$ Strictly speaking, this is undefined because e is undefined - see definition of composition. But I accepted:

$$
\begin{aligned}
& \text { - } p_{1}^{(2)} \text { o }\left(s^{\circ} p_{1}^{(2)}, \text { o o } p_{2}^{(2)}\right)\left(n_{1}, n_{2}\right) \\
& =p_{1}^{(2)} \text { o }\left(n_{2}+1, e^{\mathrm{o}} p_{2}^{(2)}\right) \\
& =n_{2}+1
\end{aligned}
$$

c) multo $\left(c_{2}^{(3)}\right.$, add o $\left(p_{1}^{(3)}, s\right.$ o $\left.\left.p_{2}^{(3)}\right)\right)$

- multo $\left(c_{2}^{(3)}, \operatorname{add} \circ\left(p_{1}^{(3)}, \operatorname{soo}_{2}^{(3)}\right)\right)\left(n_{1}, n_{2}\right)$
$=$ mult ${ }^{\mathrm{o}}\left(2\right.$, add $\left.{ }^{\mathrm{o}}\left(n_{1}, n_{2}+1\right)\right)$
$=$ mult ${ }^{\mathrm{o}}\left(2, n_{1}+n_{2}+1\right)$
$=2 n_{1}+2 n_{2}+2$
d) mult ${ }^{\mathrm{o}}\left(\right.$ mult $\left.{ }^{\mathrm{o}}\left(p_{1}^{(1)}, p_{1}^{(1)}\right), p_{1}^{(1)}\right)$.

$$
\begin{aligned}
& =\text { mult } 0\left(\text { mult } 0\left(p_{1}^{(1)}, p_{1}^{(1)}\right), p_{1}^{(1)}\right)\left(n_{1}, n_{2}\right) \\
& =\text { mult } 0\left(n_{1} \cdot n_{1}, n_{1}\right) \\
& =n_{1} \cdot n_{1} \cdot n_{1}
\end{aligned}
$$

Give examples of total unary number-theoretic functions that satisfy the following conditions:
a) g is not id and h is not id but $g{ }^{\circ} h=i d$. Using domain $=\mathcal{N}$:

- $g=$ pred
- $h=$ successor
- $g \circ h=i d$
b) g is not a constant function and h is not a constant function but $g{ }^{o} h$ is a constant function. Using domain $=\mathcal{N}$
- $g=s$
- $h=z$
- $g o h=c_{1}$
\#5. a) Page 339, \#4 a-d
Prove that the recursively enumerable languages are closed under the following operations:
a) union

Suppose we have L, G are re languages.
L and G have $\mathrm{TMs} \mathrm{M}_{\mathrm{L}}$ and M_{G}, respectively.
Create a new TM, T.

$\mathrm{L}(\mathrm{T})=\mathrm{L} \mathrm{UG}$
b) intersection

If L, H are re languages, they have $\mathrm{TMs} \mathrm{M}_{\mathrm{L}}$ and M_{H} respectively.
Construct a new TM, T such that

$\mathrm{L}(\mathrm{T})=\mathrm{L} \cap \mathrm{H}$, and $\mathrm{L}(\mathrm{T})$ is a re language because it has a TM that accepts
c) concatenation

If L, H are re languages, they have $\mathrm{TMs} \mathrm{M}_{\mathrm{L}}$ and M_{H} respectively.
Construct a new TM, T:

$\mathrm{L}(\mathrm{T})=\mathrm{L} \cdot \mathrm{H}$, and $\mathrm{L}(\mathrm{T})$ is a re language because it has a TM
c) Kleene star

L is a re language
L^{*} is $\left\{\lambda U L^{n} \mid n>0\right\}$

b) Do the same for recursive languages
d) union

Given the recursive languages $\mathrm{L}_{1}, \mathrm{~L}_{2}$ with the always-halt $\mathrm{TMs} \mathrm{M}_{1}, \mathrm{M}_{2}$ $\mathrm{L}_{3}=\mathrm{L}_{1} \mathrm{U}_{2}$ can be represented with the following TM:

L_{2} is a recursive language because it has an always-halt TM.
e) intersection

If L_{1}, L_{2} are recursive languages, they have always-halt $T M s T_{1}, T_{2}$
$\mathrm{L}_{3}=\mathrm{L}_{1} \cap \mathrm{~L}_{2}$ is a recursive language because it has the following always-halt TM:

c) concatenation

If $\mathrm{L}_{1}, \mathrm{~L}_{2}$ are recursive languages, they have always-halt $\mathrm{TMs} \mathrm{T}_{1}, \mathrm{~T}_{2}$
$\mathrm{L}_{3}=\mathrm{L}_{1} \cdot \mathrm{~L}_{2}$ is a recursive language because it has the following always-halt TM:

f) Kleene star

Similar to above.
c) Show re languages are not closed under complement.

Let L be a re language.
Assume $\sim \mathrm{L}$ is a re language.
Then L is recursive by Theorem
But, because not all recursive languages are re languages, (we've shown there are uncountably many languages and countably many Turing Machines), we have a contradiction.
So $\sim \mathrm{L}$ is necessarily a re language.
Therefore, re languages are not closed under compliment.

