
Name____________________
CS503

Homework #7
Solutions

#1. Page 321, #8 a,b

 Design machines that compute the following relations. You may use the macros
and machines constructed in Sections 9.2 through 9.4 and the machines constructed in
Exercise 5.

a) gt(n, m) = { 1 if n > m, 0 otherwise

gt(n, m) = { 1 if n > m, 0 otherwise = 1 in unary

gt(n, m)

1. Compute monus(m,n)

2. if result = 0, halt

3. otherwise

i. erase m

ii. erase n

iii. write a 1

b) persq(n) = { 1 if n is a perfect square, 0 otherwise

persq(n)
1. create a new variable on the tape, k = 0
2. run mult(k, k)
3. if the result of the mult < n

i. run successor function on k
ii. go back to #2

4. if result of mult = n
i. erase n, k, mult(k, k)

ii. write a 1
5. if result of mult > n

i. erase n, k, mult(k, k)
ii. write a 0

#2. Page 321, #9 a, b, c

 Trace the actions of the machine MULT for computations with input

a) n = 0, m = 4

MULT 0, 4 q0B1B11111B

• read the 1st “1”, and move right
• erase m
• move left 1 unary number
• halt

b) n = 1, m = 0

MULT 1, 0 q0B11B1B

• read the 1st “1”, and move right
• replace the next “1” with an “X”, and move right
• move right
• add 0, 0
• replace “X” from before with a “B”
• erase all the 0’s after the 1st one
• go back to the beginning
• halt

c) n = 2, m = 2.

MULT 2, 2 q0B111B111B

• read the 1st “1” – mark 1 iteration
• copy unary “2” to the end
• mark 1 iteration
• add 2, 2
• erase all trailing unary 2’s
• go back to the beginning

#3. Page 321, #10 a-d

 Describe the mapping defines by each of the following composite functions:

a) add º (mult º (id, id), add º (id, id))

• add º (mult º (id, id), add º (id, id))

= add º (id · id, add º (id, id))

= add º (id · id, id + id)

= id · id + id + id

b) p(2
1

) º (s º p(2
1

), e º p(2
2

)) Strictly speaking, this is undefined because e is
undefined – see definition of composition. But I accepted:

• p(2
1

) º (s º p(2
1

), e º p(2
2

)) (n1 ,n2)

= p(2
1

) º (n2 + 1, e º p(2
2

))
= n2 + 1

c) mult º (c(3
2

), add º (p(3
1

), s º p(3
2

)))

• mult º (c(3
2

), add º (p(3
1

), s º p(3
2

))) (n1 ,n2)

= mult º (2, add º (n1, n2
 + 1))

= mult º (2, n1+ n2
 + 1)

= 2n1+ 2n2
 + 2

d) mult º (mult º (p(1
1.

), p(1
1.

)), p(1
1.

)).

= mult º (mult º (p(1
1.

), p(1
1.

)), p(1
1.

)) (n1 ,n2)

= mult º (n1 · n1, n1)

= n1 · n1· n1

#4. Page 322, #11 a,b

 Give examples of total unary number-theoretic functions that satisfy the following
conditions:

a) g is not id and h is not id but g º h = id. Using domain = N:
• g = pred

• h = successor

• g º h = id

b) g is not a constant function and h is not a constant function but g º h is a
constant function. Using domain = N

• g = s

• h = z

• g º h = c1

#5. a) Page 339, #4 a-d
 Prove that the recursively enumerable languages are closed under the following
operations:

a) union
 Suppose we have L, G are re languages.

L and G have TMs ML and MG, respectively.
Create a new TM, T.

L(T) = L U G

b) intersection
If L, H are re languages, they have TMs ML and MH respectively.
Construct a new TM, T such that

q0 q1
ML

MG

B/B L

B/B R

B/B R
accepts

accepts

L(T) = L ∩ H, and L(T) is a re language because it has a TM that accepts

 c) concatenation

If L, H are re languages, they have TMs ML and MH respectively.
Construct a new TM, T:

L(T) = L · H, and L(T) is a re language because it has a TM

c) Kleene star
L is a re language
L* is {λ U L

n
 | n > 0}

 b) Do the same for recursive languages

d) union
Given the recursive languages L1, L2 with the always-halt TMs M1, M2

L3 = L1 U L2 can be represented with the following TM:

ML MH
accept accept

ML MH
T

accept accept

*

L2 is a recursive language because it has an always-halt TM.

M1

M2

accept

*

reject accept

reject

e) intersection
If L1, L2 are recursive languages, they have always-halt TMs T1, T2

L3 = L1 ∩ L2 is a recursive language because it has the following always-halt
TM:

 c) concatenation

If L1, L2 are recursive languages, they have always-halt TMs T1, T2

L3 = L1 · L2 is a recursive language because it has the following always-halt TM:

f) Kleene star
Similar to above.

T1
accept

reject reject

T2
accept

T1
accept

*

reject reject

T2
accept

c) Show re languages are not closed under complement.

Let L be a re language.
Assume ~L is a re language.
Then L is recursive by Theorem
But, because not all recursive languages are re languages,
(we’ve shown there are uncountably many languages and countably many Turing
Machines), we have a contradiction.
So ~L is necessarily a re language.
Therefore, re languages are not closed under compliment.

