Name

CS503
Homework #7
Solutions

#1. Page 321, #8 a,b

Design machines that compute the following relations. You may use the macros
and machines constructed in Sections 9.2 through 9.4 and the machines constructed in
Exercise 5.

a) gt(n, m)={ 1ifn>m, 0 otherwise

gt(n, m) = { I if n > m, 0 otherwise = 1 in unary

gt(n, m)
1. Compute monus(m,n)
2. ifresult =0, halt
3. otherwise
i. erasem
il. erasen
1. writea 1
b) persq(n) = { 1 if n is a perfect square, 0 otherwise

persq(n)
1. create a new variable on the tape, k=0
2. run mult(k, k)
3. if the result of the mult <n
1. run successor function on k
1. go back to #2
4. ifresult of mult=n
i. erase n, k, mult(k, k)
1. writeal
5. ifresult of mult>n
i. erase n, k, mult(k, k)
1. writea0

#2. Page 321,#9 a, b, c

Trace the actions of the machine MULT for computations with input

a) n=0,m=4
MULT 0, 4 q,BIB11111B
e read the 1* “1”, and move right
e crasem
e move left 1 unary number
e halt
b) n=1,m=0

MULT ,0 q/B11BIB

e read the 1* “1”, and move right
e replace the next “1” with an “X”, and move right
e move right
e addO0,0
e replace “X” from before with a “B”
e crase all the 0’s after the 1* one
e go back to the beginning
e halt
c) n=2,m=2.

MULT 2,2 q,BI111B111B

read the 1*' “1” — mark 1 iteration
copy unary “2” to the end

mark 1 iteration

add 2, 2

erase all trailing unary 2’s

go back to the beginning

#3. Page 321, #10 a-d

Describe the mapping defines by each of the following composite functions:

a)

b) p

d)

add o (mult o (id, id), add © (id, id))
e add o (mult © (id, id), add © (id, id))
= add © (id * id, add © (id, id))

= add o (id - id, id + id)
= id-id+id+id

2 2 2

(1) °(se p(l), eo p(z)) Strictly speaking, this is undefined because e is
undefined — see definition of composition. But | accepted:

° (2) 0 (S 0 p(%) eo (g)) (n] 1n2)

=n, +1

mU|t0(C(3) add O(p(3) g0 (3)))

+ multe (¢ add o (p}s 0 pG) (ny oy
= multo (2,add °(n,n,+1))

= multo(2,n+n, +1)

= 2n+2n,+2

mu|t0(mu|to(p(1)’ p(l)) p(l))

=multe (mutte (p}, p'P), p) ()

=multe (n - n,n)

#4. Page 322, #11 a,b

Give examples of total unary number-theoretic functions that satisfy the following
conditions:

a) gisnotidandhisnotidbutg©h=id. Using domain = N:
e g = pred

e h = successor
e goh=1id

b) g is not a constant function and h is not a constant function butg © his a
constant function. Using domain = /N

e g=S5
e h=z
e goh =g

#5. a) Page 339, #4 a-d
Prove that the recursively enumerable languages are closed under the following
operations:
a) union
Suppose we have L, G are re languages.
L and G have TMs M| and Mg, respectively.
Create anew TM, T.

accepts
RRBI M, +——
do
accepts
Mg L,
LT)=LUG

b) intersection
If L, H are re languages, they have TMs My and My respectively.
Construct a new TM, T such that

> Mg

T

accept accept
— : — My

A 4

L(T)=L N H, and L(T) is a re language because it has a TM that accepts

c) concatenation

If L, H are re languages, they have TMs M| and My respectively.

Construct a new TM, T:

— Mp

accept

A\ 4

accept
My |—»

L(T)=L * H, and L(T) is a re language because it has a TM

c) Kleene star
L is a re language

L*is A UL" | n>0}

concatenate w

w -y ML

accept

accept L

b) Do the same for recursive languages

d) union

L J

Given the recursive languages L, L, with the always-halt TMs M;, M,
L; =L; U L, can be represented with the following TM:

accept
M .,
reject accept
O
reject
—

L, is a recursive language because it has an always-halt TM.

e) intersection
IfL;, L, are recursive languages, they have always-halt TMs T, T,

L; =L; N L, is a recursive language because it has the following always-halt
TM:

accept

accept
—> T1 —»@—» T2 —>

reject reject

v

c) concatenation
IfL;, L, are recursive languages, they have always-halt TMs T, T,

L; =L, * L, is a recursive language because it has the following always-halt TM:

accept accept
—> T, > T, N

reject reject

v

f) Kleene star
Similar to above.

c) Show re languages are not closed under complement.

Let L be a re language.

Assume ~L is a re language.

Then L is recursive by Theorem

But, because not all recursive languages are re languages,

(we’ve shown there are uncountably many languages and countably many Turing
Machines), we have a contradiction.

So ~L is necessarily a re language.

Therefore, re languages are not closed under compliment.

