Name_____

CS503 Homework #7 Solutions

#1. Page 321, #8 a,b

Design machines that compute the following relations. You may use the macros and machines constructed in Sections 9.2 through 9.4 and the machines constructed in Exercise 5.

- a) gt(n, m) = { 1 if n > m, 0 otherwise
 gt(n, m) = { 1 if n > m, 0 otherwise = 1 in unary
 gt(n, m)
 1. Compute monus(m,n)
 2. if result = 0, halt
 3. otherwise

 i. erase m
 ii. erase m
 iii. erase n
 iii. write a 1

 b) persq(n) = { 1 if n is a perfect square, 0 otherwise
 - 1. create a new variable on the tape, k = 0
 - 2. run mult(k, k)
 - 3. if the result of the *mult* < n
 - i. run successor function on k
 - ii. go back to #2
 - 4. if result of mult = n
 - i. erase n, k, mult(k, k)
 - ii. write a 1
 - 5. if result of *mult* > n
 - i. erase n, k, mult(k, k)
 - ii. write a 0

#2. Page 321, #9 a, b, c

Trace the actions of the machine MULT for computations with input a) n = 0, m = 4

MULT 0, 4

q₀B1B11111B

- read the 1st "1", and move right
- erase *m*
- move left 1 unary number
- halt
- b) n = 1, m = 0

MULT 1, 0 q₀B11B1B

- read the 1st "1", and move right
- replace the next "1" with an "X", and move right
- move right
- add 0, 0
- replace "X" from before with a "B"
- erase all the 0's after the 1st one
- go back to the beginning
- halt
- c) n = 2, m = 2.

MULT 2, 2 q₀B111B111B

- read the 1st "1" mark 1 iteration
- copy unary "2" to the end
- mark 1 iteration
- add 2, 2
- erase all trailing unary 2's
- go back to the beginning

#3. Page 321, #10 a-d

Describe the mapping defines by each of the following composite functions:

- a) add o (mult o (id, id), add o (id, id))
 - add o (mult o (id, id), add o (id, id))

 $= add \circ (id \cdot id, add \circ (id, id))$

- $= add \circ (id \cdot id, id + id)$
- $= id \cdot id + id + id$
- b) $p_1^{(2)} \circ (s \circ p_1^{(2)}, e \circ p_2^{(2)})$ Strictly speaking, this is undefined because *e* is undefined see definition of composition. But I accepted:

•
$$p_1^{(2)} \circ (s \circ p_1^{(2)}, e \circ p_2^{(2)}) (n_1, n_2)$$

= $p_1^{(2)} \circ (n_2 + 1, e \circ p_2^{(2)})$
= $n_2 + 1$

c) mult
$$\circ (c_2^{(3)}, add \circ (p_1^{(3)}, s \circ p_2^{(3)}))$$

- mult \circ $(c_{2}^{(3)}, add \circ (p_{1}^{(3)}, s \circ p_{2}^{(3)})) (n_{1}, n_{2})$
- = mult \circ (2, add \circ ($n_1, n_2 + 1$))
- = mult o $(2, n_1 + n_2 + 1)$

$$= 2n_1 + 2n_2 + 2$$

d) mult \circ (mult \circ ($p_1^{(1)}, p_1^{(1)}$), $p_1^{(1)}$). = mult \circ (mult \circ ($p_1^{(1)}, p_1^{(1)}$), $p_1^{(1)}$) (n_1, n_2) = mult \circ ($n_1 \cdot n_1, n_1$) = $n_1 \cdot n_1 \cdot n_1$ #4. Page 322, #11 a,b

Give examples of total unary number-theoretic functions that satisfy the following conditions:

- a) g is not *id* and h is not *id* but $g \circ h = id$. Using domain = \mathcal{N} :
 - g = pred
 h = successor
 - $g \circ h = id$
- b) g is not a constant function and h is not a constant function but $g \circ h$ is a constant function. Using domain = \mathcal{N}
 - g = s
 h = z
 g h = c₁
- #5. a) Page 339, #4 a-d

Prove that the recursively enumerable languages are closed under the following operations:

a) union Suppose we have L, G are re languages. L and G have TMs M_L and M_G , respectively. Create a new TM, T.

L(T) = L U G

b) intersection

If L, H are re languages, they have TMs $M_{\rm L}$ and $M_{\rm H}$ respectively. Construct a new TM, T such that

 $L(T) = L \cap H$, and L(T) is a re language because it has a TM that accepts

c) concatenation

If L, H are re languages, they have TMs $M_{\rm L}$ and $M_{\rm H}$ respectively. Construct a new TM, T:

 $L(T) = L \cdot H$, and L(T) is a re language because it has a TM

c) Kleene star L is a re language L* is $\{\lambda U L^n \mid n > 0\}$

b) Do the same for recursive languages

d) union

Given the recursive languages L_1 , L_2 with the always-halt TMs M_1 , M_2 $L_3 = L_1 U L_2$ can be represented with the following TM:

 L_2 is a recursive language because it has an always-halt TM.

e) intersection

If L_1 , L_2 are recursive languages, they have always-halt TMs T_1 , T_2 $L_3 = L_1 \cap L_2$ is a recursive language because it has the following always-halt TM:

c) concatenation

If L_1 , L_2 are recursive languages, they have always-halt TMs T_1 , T_2 $L_3 = L_1 \cdot L_2$ is a recursive language because it has the following always-halt TM:

f) Kleene starSimilar to above.

c) Show re languages are not closed under complement.

Let L be a re language.

Assume ~L is a re language. Then L is recursive by Theorem But, because not all recursive languages are re languages, (we've shown there are uncountably many languages and countably many Turing Machines), we have a contradiction. So ~L is necessarily a re language. Therefore, re languages are not closed under compliment.