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#1. Page 321, #8 a,b 
 
 Design machines that compute the following relations.  You may use the macros 
and machines constructed in Sections 9.2 through 9.4 and the machines constructed in 
Exercise 5. 

a) gt(n, m) = { 1 if n > m, 0 otherwise 

gt(n, m) = { 1 if n > m, 0 otherwise = 1 in unary 

gt(n, m)  

1. Compute monus(m,n) 

2. if result = 0, halt 

3. otherwise 

i. erase m 

ii. erase n 

iii. write a 1 

b) persq(n) = { 1 if n is a perfect square, 0 otherwise 

persq(n) 
1. create a new variable on the tape, k = 0 
2. run  mult(k, k) 
3. if the result of the mult < n 

i. run successor function on k 
ii. go back to #2 

4. if result of mult = n 
i. erase n, k, mult(k, k) 

ii. write a 1 
5. if result of mult > n 

i. erase n, k, mult(k, k) 
ii. write a 0 

 



#2. Page 321, #9 a, b, c 
 
 Trace the actions of the machine MULT for computations with input 

a) n = 0, m = 4 

MULT 0, 4    q0B1B11111B 

• read the 1st “1”, and move right 
• erase m 
• move left 1 unary number 
• halt 
 

b) n = 1, m = 0 

MULT 1, 0    q0B11B1B 

• read the 1st “1”, and move right 
• replace the next “1” with an “X”, and move right 
• move right 
• add 0, 0 
• replace “X” from before with a “B” 
• erase all the 0’s after the 1st one 
• go back to the beginning 
• halt 

 

c) n = 2, m = 2. 

MULT 2, 2    q0B111B111B 

• read the 1st “1” – mark 1 iteration 
• copy unary “2” to the end 
• mark 1 iteration 
• add 2, 2 
• erase all trailing unary 2’s 
• go back to the beginning 
 



#3. Page 321, #10 a-d 
 
 Describe the mapping defines by each of the following composite functions: 

a) add º (mult º (id, id), add º (id, id)) 

• add º (mult º (id, id), add º (id, id)) 

= add º (id · id, add º (id, id)) 

=  add º (id · id, id + id) 

=  id · id + id + id 

b) p(2
1  

) º (s º p(2
1  

), e º p(2
2  

)) Strictly speaking, this is undefined because e is 
undefined – see definition of composition. But I accepted: 

• p(2
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) º (s º p(2
1  

), e º p(2
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)) ( n1 ,n2)   

=  p(2
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)) 
=  n2 + 1 

c) mult º ( c(3
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• mult º ( c(3
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=  mult º ( 2, add º ( n1, n2
 + 1)) 

=  mult º ( 2, n1+ n2
 + 1) 

=  2n1+ 2n2
 + 2 
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= mult º ( mult º ( p(1
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= mult º ( n1 · n1, n1 ) 

= n1 · n1· n1 
 



#4. Page 322, #11 a,b 
 
 Give examples of total unary number-theoretic functions that satisfy the following 
conditions: 

a) g is not id and h is not id but g º h = id. Using domain = N: 
• g  =  pred 

• h  =  successor 

• g º h  =  id 

b) g is not a constant function and h is not a constant function but g º h is a 
constant function. Using domain = N 

• g =  s 

• h = z 

• g º h  =  c1 
 

#5. a) Page 339, #4 a-d 
 Prove that the recursively enumerable languages are closed under the following 
operations:  

a) union 
 Suppose we have L, G are re languages.   

L and G have TMs ML and MG, respectively.   
Create a new TM, T. 

 
 

 
 

L(T) = L U G 
 

b) intersection 
If L, H are re languages, they have TMs ML and MH respectively. 
Construct a new TM, T such that 
 

q0 q1 
ML 

MG 

B/B L

B/B R

B/B R
accepts 

accepts 



 
L(T) = L ∩ H, and L(T) is a re language because it has a TM that accepts 

 
 c)  concatenation 

If L, H are re languages, they have TMs ML and MH respectively. 
Construct a new TM, T: 
 

 
 
L(T) = L · H, and L(T) is a re language because it has a TM 

 
c) Kleene star 
L is a re language 
L* is {λ U L

n
 | n > 0} 

 
 

 
  
 
      b) Do the same for recursive languages 

d) union 
Given the recursive languages L1, L2 with the always-halt TMs M1, M2 

L3 = L1 U L2 can be represented with the following TM: 
 

ML MH 
accept accept 

ML MH 
T 

accept accept 

*



 
L2 is a recursive language because it has an always-halt TM. 

M1 

M2 

accept 

*

reject accept 

reject 



 
e) intersection 
If L1, L2 are recursive languages, they have always-halt TMs T1, T2 

L3 = L1 ∩ L2  is a recursive language because it has the following always-halt 
TM: 
 

 
 

 
 c)  concatenation 

If L1, L2 are recursive languages, they have always-halt TMs T1, T2 

L3 = L1 · L2  is a recursive language because it has the following always-halt TM: 
 

 
 

f) Kleene star 
Similar to above. 
 

T1 
accept 

reject reject 

T2 
accept 

T1 
accept 

*

reject reject 

T2 
accept 



 
c) Show re languages are not closed under complement. 
 
Let L be a re language. 
Assume ~L is a re language. 
Then L is recursive by Theorem 
But, because not all recursive languages are re languages,  
(we’ve shown there are uncountably many languages and countably many Turing 
Machines), we have a contradiction. 
So ~L is necessarily a   re language. 
Therefore, re languages are not closed under compliment. 

 
 


