Homework \#8

\#1 (8 Points) True or False
a) Regular languages are recursive TRUE FALSE
b) Context free languages are recursively enumerable (r.e.) TRUE FALSE
c) Recursive languages are r.e
d) R.e. languages are recursive
\#2. (20 Points) a) Show computations with 000111 and 101 on the following Turing Machine

State	$\mathbf{0}$	$\mathbf{1}$	\mathbf{X}	\mathbf{Y}	\square
q_{0}	$\left(\mathrm{q}_{1}, \mathrm{X}, \mathrm{R}\right)$	-	-	$\left(\mathrm{q}_{3}, \mathrm{Y}, \mathrm{R}\right)$	-
q_{1}	$\left(\mathrm{q}_{1}, 0, \mathrm{R}\right)$	$\left(\mathrm{q}_{2}, \mathrm{Y}, \mathrm{L}\right)$	-	$\left(\mathrm{q}_{1}, \mathrm{Y}, \mathrm{R}\right)$	-
q_{2}	$\left(\mathrm{q}_{2}, 0, \mathrm{~L}\right)$	-	$\left(\mathrm{q}_{0}, \mathrm{X}, \mathrm{R}\right)$	$\left(\mathrm{q}_{2}, \mathrm{Y}, \mathrm{L}\right)$	-
q_{3}	-	-	-	$\left(\mathrm{q}_{3}, \mathrm{Y}, \mathrm{R}\right)$	$\left(\mathrm{q}_{4}, \square_{, \mathrm{R})}\right)$
q_{4}	-	-	-	-	-

b) What is $\mathrm{L}(\mathrm{M})$ (you'll have to guess)
\#3. (12 Points) Construct a Turing Machine to compute $\left\{\mathrm{w} \mathrm{w}^{\mathrm{R}} \mid \mathrm{w} \varepsilon\{0,1\}^{*}\right.$
a) Show pseudo-code that describes how the TM operates
b) Create the actual transitions
c) Show your TM processing (i) 1001, (ii) 101 and (iii) 110
\#4. (5 Points) Show that r.e. languages are closed under union and intersection.
\#5. (5 Points) Post to the bb applications of:
a) Turing Machines
b) Recursive Languages
c) Recursively Enumerable Languages

Please don't repeat others postings (so the earlier you do this, the easier it will be)

