Name____

Homework #6

I worked with:

I consulted:

#1. M is the Turing machine:

δ	В	a	b	с
\mathbf{q}_0	q ₁ ,B,R			
q_1	q ₁ ,B,R	q_1,a,R	q ₁ ,b,R	q ₂ ,c,L
q ₂		q ₂ ,b,L	q ₂ ,a,L	

- a) Trace the computation of *abcab*
- b) Trace the computation of *abab*
- c) Draw the graph for M
- d) What does M do?

#2. a) Construct a Turing machine with alphabet $\{0,1\}$ to compute f(n) = 2n. Represent numbers in unary notation; that is, 0 is represented by a *I* on the tape, 1 by *I1*, 2 by *I11*. (So if n = 3, you would be left with seven 1's on the tape etc.). Have your Turing machine halt in the configuration: $q_f B f(n) B$. Show a computation for f(3).

b) Construct a Turing machine with alphabet {0,1} to compute f(n) = n *monus* m defined by:

n - m if $n \ge m$

0 otherwise Show computations for 3 monus 1 and 1 monus 3.

n monus m =

3. Create a Turing machine to accept the language: a(a U b)* b

#4. Given the following Turing machine,

a) What is L(M)

b) Show R(M) using the encodings of Section 11.5 (discussed in class)

#5. Construct a Turing machine in words (i.e, describe its moves without actually writing all the transitions) that determines whether a string over $\{0,1\}$ is the encoding of a Turing machine (Step 1 of the Universal Turing Machine).