Homework \#6

I worked with:

I consulted:

\#1. M is the Turing machine:

δ	B	a	b	c
q_{0}	$\mathrm{q}_{1}, \mathrm{~B}, \mathrm{R}$			
q_{1}	$\mathrm{q}_{1}, \mathrm{~B}, \mathrm{R}$	$\mathrm{q}_{1}, \mathrm{a}, \mathrm{R}$	$\mathrm{q}_{1}, \mathrm{~b}, \mathrm{R}$	$\mathrm{q}_{2}, \mathrm{c}, \mathrm{L}$
q_{2}		$\mathrm{q}_{2}, \mathrm{~b}, \mathrm{~L}$	$\mathrm{q}_{2}, \mathrm{a}, \mathrm{L}$	

a) Trace the computation of $a b c a b$
b) Trace the computation of $a b a b$
c) Draw the graph for M
d) What does M do?
\#2. a) Construct a Turing machine with alphabet $\{0,1\}$ to compute $f(n)=2 n$. Represent numbers in unary notation; that is, 0 is represented by a 1 on the tape, 1 by 11,2 by 111 . (So if $n=3$, you would be left with seven 1 's on the tape etc.). Have your Turing machine halt in the configuration: $q_{f} B f(n) B$. Show a computation for $f(3)$.
b) Construct a Turing machine with alphabet $\{0,1\}$ to compute $f(n)=n$ monus m defined by:

$$
\mathrm{n} \text { monus } \mathrm{m}=\quad \begin{aligned}
& \mathrm{n}-\mathrm{m} \text { if } \mathrm{n} \geq \mathrm{m} \\
& 0 \text { otherwise }
\end{aligned}
$$

Show computations for 3 monus 1 and 1 monus 3.
3. Create a Turing machine to accept the language: $a(a \cup b) * b$
\#4. Given the following Turing machine,

a) What is $L(M)$
b) Show $\mathrm{R}(\mathrm{M})$ using the encodings of Section 11.5 (discussed in class)
\#5. Construct a Turing machine in words (i.e, describe its moves without actually writing all the transitions) that determines whether a string over $\{0,1\}$ is the encoding of a Turing machine (Step 1 of the Universal Turing Machine).

