Homework #7 Solutions

#1. Use the pumping lemma for CFL's to show $L = \{a^i b^j a^i b^j | i, j \ge 0\}$ is not a CFL.

Proof by contradiction using the Pumping Lemma.

Assume L is context-free. L is obviously infinite, since i, j > 0. Pick a string w in L

with length |w| > m, for example, $w = a^m b^m a^m b^m$, j > 0.

Then w = uvxyz with

|vxy| < m and |vy| > 1 and $uv^ixy^i z$ is also in L for all $i \ge 0$

1) vxy is within first a ^m
uv²xy²z = a ^{m+ v + y} b ^m a ^m b ^m ∉ L because m+ v + y
≠ m because vy > 0
2) vxy is within first b ^m
uv²xy²z = a ^m b ^{m+ v + y} a ^m b ^m ∉ L … similar to #1
3) vxy overlaps first a ^m and first b ^m
3a) v itself straddles a's and b's: pumping v would
produce strings of the form a…a(ab) ⁱ b…ba ^m b ^m which
are not in L
3b) y itself straddles a's and b's: similar to #3a
3c) v is all a's, y is all b's: $uv^2xy^2z = a^{m+ v }b^{m+ y }a^mb^m \notin L$
because either m+ v ≠m, or m+ y ≠m
4) vxy overlaps first b ^m and second a ^m : Similar logic to
#3
5) vxy is within 2 nd a ^m : Same as #1
6) vxy is within 2 nd b ^m : Same as #2
7) vxy overlaps 2 nd a ^m and 2 nd b ^m : Same as #3

#2. Consider the following 2 languages:

 $\begin{array}{l} L_1 = \{a^n b^{2n} c^m \, | \, n, \, m \geq 0 \} \\ L_2 = \{a^n b^m c^{2m} \, | \, n, \, m \geq \underline{0} \} \end{array}$

a) Show that each of these languages is context-free.

 $\begin{array}{ccc} G_1 & G_2 \\ S \rightarrow AC \mid \epsilon & S \rightarrow AB \mid \epsilon \end{array}$

A→aAbb ε	A→Aa ε
C→cC ε	<mark>B→bBcc</mark> ε

L₁: |b's| = 2×|a's| L₂: |c's| = 2×|b's|

So $L_1 \cap L_2 = \{ a^n b^{2n} c^{4n} \mid n \ge 0 \}$

b) Is $L_1 \cap L_2$ context-free? Justify your answer.

Not context-free (easy use of pumping lemma.) Pick $w = a^m b^{2m} c^{4m}$

#3. Convert the following grammar to Chomsky Normal Form

 $S \rightarrow A | A B a | A b A$ $A \rightarrow A a | \varepsilon$ $B \rightarrow B b | BC$ $C \rightarrow C B | C A | b B$

1. Eliminate ε -productions: S \rightarrow A | A B a | A b A | B a | b A | A b | ε A \rightarrow A a | a B \rightarrow B b | BC C \rightarrow C B | C A | b B | C

2. Remove unit productions S → A a | a | A B a | A b A | B a | b A | A b | ε
A → A a | a
B → B b | BC
C → C B | C A | b B

3. a) Eliminate useless (non-generating) symbols and all productions involving one or more of those symbols. S→ A a | a | A b A | b A | A b

A → A a | a

b) Eliminate unreachable symbols: None

4. Convert to CNF:

 $S \rightarrow \varepsilon | A A_1 | A B | B_1 A | A B_1$ $A_1 \rightarrow a$ $B \rightarrow B_1 A$ $B_1 \rightarrow b$ $A \rightarrow A A_1 | a$

W	 W	length(derivation)	max depth (tree)	min depth(tree)
3	0	1	1	1
a ₁	1	1	1	1
$a_1 a_2$	2	3	2	2
a ₁ a ₂ a ₃	3	5	3	3
a1a2a3a4	4	7	4	3
a1a2a3a4a5	5	8	5	4

#4. Let G be a grammar in Chomsky Normal Form. Fill in the following table.