Homework \#7

Solutions

\#1. Use the pumping lemma for CFL's to show $L=\left\{a^{i} b^{j} a^{i} b^{j} \mid i, j \geq 0\right\}$ is not a CFL.
Proof by contradiction using the Pumping Lemma.
Assume L is context-free. L is obviously infinite, since $i, j>0$. Pick a string w in L with length $|\mathbf{w}|>\mathrm{m}$, for example, $\mathbf{w}=\mathbf{a}^{\mathrm{m}} \mathbf{b}^{\mathrm{m}} \mathbf{a}^{\mathrm{m}} \mathbf{b}^{\mathrm{m}}, \mathrm{j}>0$.

Then $\mathrm{w}=$ uvxyz with
$|v x y|<m$ and $|v y|>1$ and $u v^{i} x y^{i} z$ is also in L for all $i \geq 0$

\#2. Consider the following 2 languages:
$\mathrm{L}_{1}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{2 \mathrm{n}} \mathrm{c}^{\mathrm{m}} \mid \mathrm{n}, \mathrm{m} \geq 0\right\}$
$\mathrm{L}_{2}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mathrm{c}^{2 \mathrm{~m}} \mid \mathrm{n}, \mathrm{m}>\underline{0}\right\}$
a) Show that each of these languages is context-free.
G_{1}
$S \rightarrow A C \mid \varepsilon$
G_{2}
$S \rightarrow A B \mid \varepsilon$

$\mathrm{A} \rightarrow \mathrm{aAbb\mid} \mathrm{\varepsilon}$	$\mathrm{~A} \rightarrow \mathrm{Aa} \mid \varepsilon$
$\mathrm{C} \rightarrow \mathrm{CC} \mid \varepsilon$	$\mathrm{B} \rightarrow \mathrm{bBcc} \mid \varepsilon$

$L_{1}:|b \prime s|=2 \times|a \prime s|$
$L_{2}:|c \prime s|=2 \times|b ' s|$

So $L_{1} \cap L_{2}=\left\{a^{n} b^{2 n} c^{4 n} \mid n \geq 0\right\}$
b) Is $L_{1} \cap L_{2}$ context-free? Justify your answer.

Not context-free (easy use of pumping lemma.) Pick $w=a^{m} b^{2 m} c^{4 m}$
\#3. Convert the following grammar to Chomsky Normal Form
$\mathrm{S} \rightarrow \mathrm{A} \mid \mathrm{ABa\mid AbA}$
$\mathrm{A} \rightarrow \mathrm{Aa} \mid \varepsilon$
$\mathrm{B} \rightarrow \mathrm{B} \mathrm{b} \mid \mathrm{BC}$
$\mathrm{C} \rightarrow \mathrm{CB}|\mathrm{CA}| \mathrm{bB}$

1. Eliminate ε-productions:

$\mathrm{A} \rightarrow \mathrm{Aa} \mid \mathrm{a}$
$\mathbf{B} \rightarrow \mathbf{B b} \mid \mathbf{B C}$
$\mathbf{C} \rightarrow \mathbf{C B}|\mathbf{C A}| \mathrm{bB} \mid \mathbf{C}$
2. \quad Remove unit productions $S \rightarrow \mathbf{A a | a | A B a | A b A | B a | b A | A b | \varepsilon}$

$$
\begin{aligned}
& \mathbf{A} \rightarrow \mathbf{A a | a} \\
& \mathbf{B} \rightarrow \mathbf{B} \mid \mathbf{B C} \\
& \mathbf{C} \rightarrow \mathbf{C B}|\mathbf{C ~} \mathbf{A}| \mathbf{b} \mathbf{B}
\end{aligned}
$$

3. a) Eliminate useless (non-generating) symbols and all productions involving one or more of those symbols. $\quad \mathrm{S} \rightarrow \mathrm{A} \mathbf{a}|\mathbf{a}| \mathrm{Ab} \mathbf{A}|\mathbf{b} \mathbf{A}| \mathrm{Ab}$

$$
\mathrm{A} \rightarrow \mathrm{~A} \mathbf{a} \mid \mathbf{a}
$$

b) Eliminate unreachable symbols: None
4. Convert to CNF:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \varepsilon\left|\mathrm{~A}_{1}\right| \mathrm{AB}\left|\mathbf{B}_{1} \mathbf{A}\right| \mathbf{A} \mathbf{B}_{1} \\
& \mathbf{A}_{1} \rightarrow \mathbf{a} \\
& \mathbf{B} \rightarrow \mathrm{~B}_{1} \mathbf{A}
\end{aligned}
$$

$\mathrm{B}_{1} \rightarrow$ b
$\mathbf{A} \rightarrow \mathbf{A} \mathbf{A}_{1} \mid \mathbf{a}$
\#4. Let G be a grammar in Chomsky Normal Form. Fill in the following table.

| \mathbf{w} | $\|\mathbf{w}\|$ | length(derivation) | max depth
 (tree) | min
 depth(tree) |
| :--- | :--- | :---: | :---: | :---: | :--- |
| ε | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | 1 |
| \mathbf{a}_{1} | 1 | 1 | 1 | 1 |
| $\mathbf{a}_{1} \mathbf{a}_{2}$ | 2 | 3 | 2 | 2 |
| $\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3}$ | 3 | 5 | 3 | 3 |
| $\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3} \mathbf{a}_{4}$ | 4 | 7 | 4 | 3 |
| $\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3} \mathbf{a}_{4} \mathbf{a}_{5}$ | 5 | 8 | 5 | 4 |

