Name

CS503 Homework \#5

Solutions

\#1. Show that the following languages are or are not context-free
a) $\left\{\mathbf{w} \mathbf{w}^{\mathbf{R}} \mathbf{w} \mid \mathbf{w} \varepsilon\{\mathbf{a}, \mathbf{b}\}^{*}\right\}$

Not c-f
If L were $c-f$, then there is a constant, k, such that if $z \varepsilon L$ and $|z| \geq k$, the PL conditions are true.
Pick $z=a^{n} b^{n} b^{n} a^{n} a^{n} b^{n}$. Then $z \varepsilon L$ and $|z| \geq k$
So
$\mathrm{z}=u v w x y$ with
$|v w x| \leq k$
$|v|+|y|>0$ (i.e., not both v and x are λ)
There are two cases:
Case $1 v w x$ is completely within one of the a^{n} or $b^{n \prime}$ s, say the first b^{n}
Assume $|v|>0$ so $v=b^{p}$ with $p>0$. (Results will be similar if $|\mathbf{x}|>0$)
Then $u v v w x \times y=a^{n} b^{n+p} b^{n} a^{n} a^{n} b^{n}$ and there is no way to split this up to be of the form: $\mathbf{w}^{\mathrm{R}} \mathbf{w}$

Case 2 z overlaps a's and b's or b's and a's: then either first and last \mathbf{w} will not be the same or again no way to split this up to be of the form: $w w^{R} w$
b) $\left\{a^{i} b^{2 i} c^{j} \mid i, j \geq 0\right\}$
c-f:
$\mathrm{S} \rightarrow \mathrm{AC}$
$\mathbf{A} \rightarrow \mathbf{a A b b} \mid \lambda$
$\mathrm{C} \rightarrow \mathrm{c} \mathbf{C} \mid \lambda$
c) $\left\{a^{n} b^{n} a^{n} \mid n \geq 0\right\}$

Not c-f
Proof similar to $\left\{a^{n} b^{n} \mathbf{c}^{n} \mid n \geq 0\right\}$
d) $\left\{\mathbf{x} \varepsilon\{\mathbf{0}, \mathbf{1}\}^{*} \mid \#_{0}(\mathbf{x})=\#_{1}(\mathbf{x})\right\}$
$\mathrm{S} \rightarrow \mathbf{0} \mathrm{S} 1|\mathbf{1} \mathrm{~S} 0| \mathrm{SS}$
\#2. For each of the following languages, show it is either a) regular, b) context-free, but not regular, c) not context-free
a) $\left\{\mathbf{a}^{\mathrm{n}} \mathbf{b}^{m} \mid \mathbf{n}=\mathbf{2 m}\right\}$

This is $\left\{a^{2 m} b^{m}\right\}$ which is not regular by the PL
(done in class)
C-F:
$\mathbf{S} \rightarrow$ aa $\mathbf{S b |} \mid \lambda$
b) $\left\{a^{\mathrm{n}} \mathrm{b}^{2 \mathrm{~m}} \mid \mathrm{n}, \mathrm{m} \geq 0\right\}$

This is a*(bb)* which is a regular expression, so regular
c) $\left\{\mathbf{a}^{\mathrm{n}} \mathbf{b}^{\mathrm{m}} \mid \mathbf{n} \neq \mathbf{m}\right\}$

Not regular
If it were regular, then its complement would also be regular, but we know its complement which is $\left\{a^{n} b^{n}\right\}$ is not regular
c-f:
$\overline{\mathrm{S}} \rightarrow \mathrm{aS} \mathrm{B} \mid \mathrm{B}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{b}$
generates
$\left\{\mathbf{a}^{\mathrm{n}} \mathbf{b}^{\mathrm{m}} \mid \mathbf{n}<\mathbf{m}\right\}$
$\mathbf{S} \rightarrow \mathbf{A S b} \mid \mathbf{A}$
$\mathbf{A} \rightarrow \mathbf{a} \mathbf{A} \mid \mathbf{a}$
generates
$\left\{\mathbf{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mid \mathrm{n}>\mathrm{m}\right\}$
The union of the languages generated by these grammars is $\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{m}} \mid \mathbf{n} \neq \mathbf{m}\right\}$, hence it is $\mathbf{c}-\mathrm{f}$.
\#3. a) Use the subset construction to convert the following nfa to a dfa

	a	b
$\{0\}$	$\{01\}$	\varnothing
$\{01\}$	$\{01\}$	$\{01\}$
\varnothing	\varnothing	\varnothing

b) Give a regular expression for $L(M)$

a (a U b)*
\#4. Prove: CFL's are closed under union, concatenation and Kleene *
union
Given
$\mathrm{S}_{1} \rightarrow \ldots$ for L_{1}
and
$S_{2} \rightarrow \ldots$ for L_{2}
Create G: $\mathbf{S} \boldsymbol{\rightarrow} \mathbf{S}_{1} \mid \mathbf{S}_{\mathbf{2}}$
concatenation
Given
$\mathrm{S}_{1} \rightarrow \ldots$ for L_{1} and
$S_{2} \rightarrow \ldots$ for L_{2}
Create G: $\mathrm{S} \rightarrow \mathrm{S}_{\mathbf{1}} \mathbf{S}_{\mathbf{2}}$
*
Given
$\mathrm{S}_{1} \rightarrow \ldots$ for L_{1}
Create G: $\mathrm{S} \rightarrow \mathrm{S}_{1} \mathrm{~S}$
\#5. Prove: CFL's are not closed under intersection or complement

We know that $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not $c-f$, but it is the intersection of the $\mathbf{2 c - f}$ languages $\left\{a^{n} b^{n} c^{m} \mid m, n \geq 0\right\}$ and $\left\{a^{m} b^{n} c^{n} \mid m, n \geq 0\right\}$, so cfl's not closed under intersection.

If cfl's closed under complement,
then because $L_{1} \cap L_{2}=\sim\left(\sim L_{1} U \sim L_{2}\right)$, cfl's would be closed under \cap.

