Name

CS503 Homework #5

Solutions

#1. Show that the following languages are or are not context-free

a) $\{w w^{R} w | w \in \{a,b\}^{*}\}$

Not c-f

If L were c-f, then there is a constant, k, such that if $z \in L$ and $|z| \ge k$, the PL conditions are true. Pick $z = a^n b^n b^n a^n a^n b^n$. Then $z \in L$ and $|z| \ge k$ So z = u v w x y with

 $|v w x| \le k$ |v| + |y| > 0 (i.e., not both v and x are λ)

There are two cases:

<u>Case 1</u> v w x is completely within one of the a^n or b^n 's, say the first b^n

Assume |v| > 0 so $v = b^p$ with p > 0. (Results will be similar if |x| > 0)

Then $u v v w x x y = a^n b^{n+p} b^n a^n a^n b^n$ and there is no way to split this up to be of the form: w w^R w

<u>Case 2</u> z overlaps a's and b's or b's and a's: then either first and last w will not be the same or again no way to split this up to be of the form: $w w^{R} w$

b) $\{a^{i}b^{2i}c^{j} | i, j \ge 0\}$ <u>c-f:</u> $S \rightarrow A C$ $A \rightarrow a A b b | \lambda$ $C \rightarrow c C | \lambda$ c) $\{a^{n}b^{n}a^{n} | n \ge 0\}$ <u>Not c-f</u> Proof similar to $\{a^{n}b^{n}c^{n} | n > 0\}$ d) {x ϵ {0,1}* $|\#_0(x) = \#_1(x)$ }

 $S \rightarrow 0 S 1 | 1 S 0 | S S$

#2. For each of the following languages, show it is either a) regular, b) context-free, but not regular, c) not context-free

a) $\{a^{n}b^{m} | n = 2m\}$

This is $\{a^{2m}b^m\}$ which is not regular by the PL (done in class) <u>C-F:</u> $S \rightarrow aa \ S \ b \mid \lambda$

b) $\{a^{n}b^{2m} | n, m \ge 0\}$

This is a^{*(}bb)^{*} which is a regular expression, so regular

c) $\{a^n b^m \mid n \neq m\}$

Not regular

If it were regular, then its complement would also be regular, but we know its complement which is $\{a^nb^n\}$ is not regular

 $\frac{c-f}{S} \Rightarrow a \ S \ B \mid B$ $B \Rightarrow b \ B \mid b$ generates $\{a^{n}b^{m} \mid n < m\}$ $S \Rightarrow A \ S \ b \mid A$

 $A \rightarrow a A \mid a$ generates $\{a^n b^m \mid n > m\}$

The union of the languages generated by these grammars is $\{a^nb^m \mid n \neq m\}$, hence it is c-f.

#3. a) Use the subset construction to convert the following nfa to a dfa

	a	b
{0}	{01}	Ø
{01}	{01}	{01}
Ø	Ø	Ø

b) Give a regular expression for L(M)

a (a U b)*

#4. Prove: CFL's are closed under union, concatenation and Kleene *

<u>union</u> Given $S_1 \rightarrow \dots$ for L_1 and $S_2 \rightarrow \dots$ for L_2 Create G: S \rightarrow S₁ | S₂ **concatenation** Given $S_1 \rightarrow \dots$ for L_1 and $S_2 \rightarrow \dots$ for L_2 Create G: $S \rightarrow S_1 S_2$ * Given $S_1 \rightarrow \dots$ for L_1 Create G: $S \rightarrow S_1 S$

#5. Prove: CFL's are not closed under intersection or complement

We know that $\{a^nb^nc^n \mid n \ge 0\}$ is not c-f, but it is the intersection of the 2 c-f languages $\{a^nb^nc^m \mid m,n \ge 0\}$ and $\{a^mb^nc^n \mid m,n \ge 0\}$, so cfl's not closed under intersection.

If cfl's closed under complement,

then because $L_1 \cap L_2 = (\sim L_1 \cup \sim L_2)$, cfl's would be closed under \cap .