CS503

Homework \#4

I worked with:

I consulted:

\#1. a) Given the following PDA, M:
$\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
$\Gamma=\{\mathrm{A}\}$
$\mathrm{F}=\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
$\delta\left(\mathrm{q}_{0}, \mathrm{a}, \lambda\right)=\left\{\left[\mathrm{q}_{0}, \mathrm{~A}\right]\right\}$
$\delta\left(\mathrm{q}_{0}, \lambda, \lambda\right)=\left\{\left[\mathrm{q}_{1}, \lambda\right]\right\}$
$\delta\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{~A}\right)=\left\{\left[\mathrm{q}_{2}, \lambda\right]\right\}$
$\delta\left(\mathrm{q}_{1}, \lambda, \mathrm{~A}\right)=\left\{\left[\mathrm{q}_{1}, \lambda\right]\right\}$
$\delta\left(q_{2}, b, A\right)=\left\{\left[q_{2}, \lambda\right]\right\}$
$\delta\left(\mathrm{q}_{2}, \lambda, \mathrm{~A}\right)=\left\{\left[\mathrm{q}_{2}, \lambda\right]\right\}$
a) Draw the graph for M

b) Trace the computations of $a a b, a b b, a b a, a a b b$

$$
\begin{aligned}
& {[q 0, a a b, \lambda] \rightarrow[q 0, a b, A] \rightarrow[q 0, b, A] \rightarrow[q 2, \lambda, \lambda] \text { (accepted) }} \\
& {[q 0, a b b, \lambda] \rightarrow[q 0, b b, A] \rightarrow[q 0, b, \lambda] \rightarrow[q 1, b, \lambda] \text { (rejected) }} \\
& {[q 0, a b a, \lambda] \rightarrow[q 0, b a, A] \rightarrow[q 0, a, \lambda] \rightarrow[q 1, a, \lambda] \text { (rejected) }} \\
& {[q 0, a a b b, \lambda] \rightarrow[q 0, a b b, A] \rightarrow[q 0, b b, A A] \rightarrow[q 2, b, A] \rightarrow[q 2, \lambda, \lambda] \text { (accepted) }}
\end{aligned}
$$

b) What is $L(M)$?
$\mathrm{L}(\mathrm{M})=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mid \mathrm{n} \geq \mathrm{m} \geq 0\right\}$
\#2. a) Construct a PDA to accept $\left\{a^{n} b^{2 n} \mid n \geq 0\right\}$

b) Show computations on $a \operatorname{ab}$ and $a b b$
$[q 0, a a b, \lambda] \rightarrow[q 1, a b, A] \rightarrow[q 0, b, B] \rightarrow[q 0, \lambda, \lambda]$ (accepts)
$[q 0, a b b, \lambda] \rightarrow \rightarrow[q 1, b b, A] \rightarrow$ halts (rejects)
\#3. Show context free languages are closed under reversal. Show your method on $\left\{\mathrm{ab}^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$

If L is a CFL, then there is a grammar, G, with $L=L(G)$.
For any production, $\mathbf{A} \rightarrow \alpha$ in \mathbf{G}, create a new grammar with $\mathrm{A} \rightarrow \alpha^{\mathrm{R}}$

For $L=\left\{a b^{n} \mid \mathbf{n} \geq 0\right\}, G$ is
$\mathrm{S} \rightarrow \mathrm{aA} \mid \mathrm{a}$
$\mathbf{A} \rightarrow \mathbf{b} \mathbf{A} \mid \mathbf{b}$
and G for $L^{R}=\left\{b a^{n} \mid n \geq 0\right\}$, is
$\mathrm{S} \rightarrow \mathrm{Aa} \mid \mathrm{a}$
$\mathbf{A} \rightarrow \mathbf{A b |} \mid \lambda$
\#4. a) Given G is in Chomsky Normal form, prove using induction that length(derivation) $=2 \mathrm{n}-1$ when $|\mathrm{w}|=\mathrm{n}$

Proof by induction on length(derivation)

Basis |w|

If $|\mathbf{w}|=1, \mathrm{w}=\mathrm{a} \varepsilon \Sigma$ and a is derived in a derivation of length $1: S \rightarrow \mathrm{a}$
length(derivation) $=1,|w|=1$ and $2 * 1-1=1$, the length of w.
Induction Hypothesis

Assume length(derivation) $=\mathbf{2 n} \mathbf{- 1}$ when $1 \leq|\mathbf{w}| \leq n$
Induction Hypothesis
Show: length(derivation) $=\mathbf{2 (n + 1) - 1 = 2 n + 1}$ when $|w|=n+1$
Since $n \geq 1, n+1 \geq 2$, so the derivation must start $S \rightarrow A B$ for some variables A, B. then, the entire derivation is $S \rightarrow A B \rightarrow a_{1} a_{2} \ldots a_{k} b_{1} b_{1} \ldots b_{(n+1)-k}$ where

Note that neither A nor B can derive the null string.
$A \rightarrow a_{1} a_{2} \ldots a_{k}$ and $B \rightarrow b_{1} b_{1} \ldots b_{(n+1)-k}$
Since $\mathbf{k} \leq \mathbf{n}$, length(derivation of $\mathbf{a}_{1} \mathbf{a}_{2} \ldots \mathrm{a}_{\mathbf{k}}$) $=2 \mathbf{k}-1$
and since $(\mathbf{n}+1)-k \leq n$
length(derivation of $\left.b_{1} b_{1} \ldots b_{(n+1)-k}\right)=2(n+1-k)-1$ by the induction hypothesis
Thus, length(derivation) of w from $A B=2 k-1+2(n+1-k)-1=2 n$. Adding on $S \rightarrow A$ B gives length(derivation) $=\mathbf{2 n + 1}$.
\#5. Convert your grammar for L from problem \#3 above to a PDA using the technique in the book. Show both a derivation and a computation of $a b b$
(Note: If your grammar is not in GNF, convert it - should be easy to do this)
$\delta(\mathbf{q} 0, a, \lambda)=[\mathbf{q} 1, A]$
$\delta(\mathbf{q} 1, b, A)=[\mathbf{q} 1, A]$
$\delta(\mathbf{q} 0, a, \lambda)=[\mathbf{q} 1, \lambda]$
$\delta(\mathbf{q} 1, b, A)=[\mathbf{q} 1, \lambda]$

Derivation
$S \rightarrow$ a $A \rightarrow$ abA \rightarrow abb

Computation

$[q 0, a b b, \lambda] \rightarrow[q 1, b b, A] \rightarrow[q 1, b, A] \rightarrow[q 1, \lambda, \lambda]$

