Homework \#5

1. True or False:

a) Regular Languages are always Context-Free Languages True
b) Context Free Languages are always Regular Languages

True
False
c) The grammar $S \rightarrow 0 \mathrm{~S}|0 \mathrm{~S} 1 \mathrm{~S}| \varepsilon$ is ambiguous
d) The language $\left\{a^{n} b^{n} c^{n}\right\}$ is regular
e) The language $\left\{a^{n} b^{n} c^{n}\right\}$ is context-free
2. Minimize the following dfa:

(1) Dividing into Final and Non-Final:

	a	b
1	6	3
2	5	6
5	2	1
6	1	4
3	4	5
4	3	2

(2) In Partition 1, all states "do the same thing" on an a. But on a b, states 1 and 6 both go to Partition II. We'll move them to their own partition:

	a	b
2	5	6
5	2	1
1	6	3
6	1	4
3	4	5
4	3	2

(3) We cannot partition further:

$\mathbf{L}(\mathbf{M})=\left(\mathbf{a}^{*} \mathbf{b a}^{*} \mathbf{b a}^{*}\right)^{*}$
\#3. a) Create a grammar that generates the set of all strings over $\{0,1\}$ with an equal number of 0 's and 1 's Also b) construct a parse tree and c) leftmost derivation of 0011. d) Is your grammar ambiguous? Why or why not?
a) $\mathrm{S} \rightarrow 0 \mathrm{~S} 1, \mathrm{~S} \rightarrow 1 \mathrm{~S} 0, \mathrm{~S} \rightarrow \mathrm{~S} S, \mathrm{~S} \rightarrow \varepsilon$
b)

b) c) Yes. There is more than 1 parse tree for ε as well as other strings.
\#4. Find the Start symbol for the Java grammar shown at:
http://www.cse.psu.edu/~saraswat/cg428/lecture_notes/LJava2.html
The start symbol is CompilationUnit. It doesn't appear on the left-hand-side. It is good technique to write a programming language grammar so that the Start symbol does not occur on the right-hand-side, and all grammars can be changed to an equivalent grammar having this property (how?)
\#5. For the grammar G:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{X} \text { Z Z X } \\
& \mathrm{X} \rightarrow \mathbf{x} \\
& \mathrm{X} \rightarrow \varepsilon \\
& \mathrm{Z} \rightarrow \mathbf{z} \\
& \mathrm{Z} \rightarrow \varepsilon
\end{aligned}
$$

a) What is $\mathrm{L}(\mathrm{G})$?
$L(G)$ is finite so we can just list its strings: $\{\varepsilon, x, z, x z, x x, z z, z x, x z z, x z x . z z x$, xzzx \}.

Proof:
Let $X=\{\varepsilon, x, z, x z, x x, z z, z x, x z z, x z x$. $z z x, x z z x\}$. To show $X=L(G)$ requires 2 proof parts:

1. if $w \varepsilon X$, then $w \varepsilon L(G)$
2. if $w \varepsilon L(G)$, then $w \varepsilon X$
3. Given: $w \in X$

Prove: $w \in L(G)$
To show $w \varepsilon L(G)$ means we have to show $S \rightarrow w$
Since the language is finite, we can show this for each string: $w=\varepsilon$:

$$
\mathrm{S} \Rightarrow \mathrm{XZZX} \Rightarrow \varepsilon \mathrm{ZZX} \Rightarrow \varepsilon \varepsilon Z X \Rightarrow \varepsilon \varepsilon \varepsilon X \Rightarrow \varepsilon \varepsilon \varepsilon \varepsilon=\varepsilon
$$

$\mathrm{w}=\mathrm{x}$:

$$
S \Rightarrow X Z Z X \Rightarrow x Z Z X \Rightarrow x \varepsilon Z X \Rightarrow x \varepsilon \varepsilon X \Rightarrow x \varepsilon \varepsilon \varepsilon=x
$$

w = xz:

$$
\mathrm{S} \Rightarrow \mathrm{XZZX} \Rightarrow \mathrm{xZZX} \Rightarrow \mathrm{xzZX} \Rightarrow \mathrm{xZ} \mathrm{\varepsilon} \mathrm{X} \Rightarrow \mathrm{xz} \mathrm{\varepsilon} \mathrm{\varepsilon}=\mathrm{xz}
$$

w = xzz:

$$
S \Rightarrow X Z Z X \Rightarrow x z Z \varepsilon=x z z
$$

$w=x z x:$

$$
S \Rightarrow X Z Z X \Rightarrow x Z Z X \Rightarrow x z Z X \Rightarrow x z X \Rightarrow x z x
$$

w = xzzx:

$$
S \Rightarrow X Z Z X \Rightarrow x z Z x=x z z x
$$

w = xx:

$$
S \Rightarrow X Z Z X \Rightarrow x Z Z X \Rightarrow x \varepsilon Z X \Rightarrow x \varepsilon \varepsilon X \Rightarrow x \varepsilon \varepsilon x=x x
$$

w = z:

$$
\mathrm{S} \Rightarrow \mathrm{XZZX} \Rightarrow \varepsilon \mathrm{ZZX} \Rightarrow \varepsilon Z Z X \Rightarrow \varepsilon Z \varepsilon X \Rightarrow \varepsilon Z \varepsilon \varepsilon=\mathrm{Z}
$$

$\mathrm{w}=\mathrm{zz}:$

$$
\begin{array}{ll}
\mathrm{w}=\mathrm{zx}: & \mathrm{S} \Rightarrow \mathrm{XZZX} \Rightarrow \varepsilon Z Z X \Rightarrow \varepsilon Z Z X \Rightarrow \varepsilon Z Z X \Rightarrow \varepsilon Z Z \varepsilon=z Z \\
\mathrm{w}=\mathrm{zZX}: & \mathrm{S} \Rightarrow \mathrm{XZZX} \Rightarrow \varepsilon Z Z X \Rightarrow \varepsilon Z Z X \Rightarrow \varepsilon Z \varepsilon X \Rightarrow \varepsilon Z \varepsilon X=\mathrm{zX} \\
& \mathrm{~S} \Rightarrow X Z Z X \Rightarrow \varepsilon Z Z X=\mathrm{zZX}
\end{array}
$$

2. if $w \varepsilon L(G)$, then $w \varepsilon X$

Derivations of strings of length 0 in $L(G)$:
$\mathrm{S} \Rightarrow \mathrm{XZZX} \Rightarrow \varepsilon Z Z X \Rightarrow \varepsilon \varepsilon Z X \Rightarrow \varepsilon \varepsilon \varepsilon X \Rightarrow \varepsilon \varepsilon \varepsilon \varepsilon=\varepsilon$
and ε is in X
Derivations of strings of length 1 in L(G):
$S \Rightarrow X Z Z X \Rightarrow x Z Z X \Rightarrow x \varepsilon Z X \Rightarrow x \varepsilon \varepsilon X \Rightarrow x \varepsilon \varepsilon \varepsilon=x$ (can be derived another way also)
And x is in X
$\mathrm{S} \Rightarrow \mathrm{XZZX} \Rightarrow \varepsilon Z Z X \Rightarrow \varepsilon Z Z X \Rightarrow \varepsilon Z \varepsilon X \Rightarrow \varepsilon Z \varepsilon \varepsilon=\mathrm{Z}$ (can be derived another way also
And z is in X
No other derivations result in strings of length 1
Derivations of strings of length 2 in $L(G)$:
$\mathrm{S} \Rightarrow X Z Z X \Rightarrow x Z Z X \Rightarrow x Z Z X \Rightarrow x Z \varepsilon X \Rightarrow x z \varepsilon \varepsilon=x z$
$S \Rightarrow X Z Z X \Rightarrow x Z Z X \Rightarrow x \varepsilon Z X \Rightarrow x \varepsilon \varepsilon X \Rightarrow x \varepsilon \varepsilon X=x x$
$\mathrm{S} \Rightarrow \mathrm{XZZX} \Rightarrow \varepsilon Z Z X \Rightarrow \varepsilon Z Z X \Rightarrow \varepsilon Z Z X \Rightarrow \varepsilon Z Z \varepsilon=z z$
$\mathrm{S} \Rightarrow X Z Z X \Rightarrow \varepsilon Z Z X \Rightarrow \varepsilon Z Z X \Rightarrow \varepsilon Z \varepsilon X \Rightarrow \varepsilon Z \varepsilon X=Z X$
Derivations of strings of length 3 in $L(G)$:
$S \Rightarrow X Z Z X \Rightarrow x z Z \varepsilon=x z z$
$S \Rightarrow X Z Z X \Rightarrow \varepsilon Z Z X=z Z X$
Derivations of strings of length 4 in $L(G)$:
$S \Rightarrow X Z Z X \Rightarrow x z z x=x z z x$
Then we'd have to argue that these are all the possible derivations in G .
I think a slightly better proof here might have been to show all the leftmost derivations and show that each results in a string in X.

Now we can assert that $\mathrm{L}(\mathrm{G})=\{\varepsilon, x, x z, x z z, x z z x, x x, z, z z, z x, z z x\}$

