Homework \#4 Solutions

\#1. Prove that the following is not a regular language: The set of strings of 0 's and 1 's that are of the form $w w$

Proof by contradiction using the Pumping Lemma

The language is clearly infinite, so there exists m (book uses a k) such that if I choose a string with \mid string $\mid \geq m$, the 3 properties will hold.

Pick string $=0^{\mathrm{m}} 10^{\mathrm{m}} 1$. This has length $>m$.
So, there is an u, v, w such that string $=u v w$ with $|u v| \leq \mathrm{m},|v| \geq 0$.

So uv $=0^{\mathrm{n}}, \mathrm{v}=0^{\mathrm{k}}$, and $\mathrm{w}=0^{\mathrm{m}-\mathrm{n}} 10^{\mathrm{m}} 1$

And the string $u v v w$ is supposed to also be in the language.

But $u v v w=0^{\mathrm{n}}+{ }^{\mathrm{k}} 10^{\mathrm{m}-\mathrm{n}} 10^{\mathrm{m}} 1$, and a few minutes staring at this should convince that there is no way this could be of the form $w w$ (Be sure you see why).
\#2. Show that the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{p}}\right\} \mathrm{p}$ is prime is not a regular language

Proof by contradiction using the Pumping Lemma

The language is clearly infinite, so there exists k such that if I choose a string with \mid string $\mid \geq k$, the 3 properties will hold.

Pick string $=\mathbf{1}^{\mathrm{p}}$
Then we can break string into $u v w$ such that v is not empty and $|u v| \leq k$.
Suppose $|v|=m$. Then $|u \boldsymbol{w}|=\boldsymbol{p}-\boldsymbol{m}$.
If the language really is regular, the string $u v^{p-m} w$ must be in the language.
But, $\left|u v^{p-m} w\right|=p-m+(p-m) m$
which can be factored into $(m+1)(p-m)$.
Thus this string does not have a length which is prime, and cannot be in L. This is a contradiction.
\#3. Suppose h is the homomorphism from $\{0,1,2\}$ to $\{a, b\}$ defined by $h(0)=a ; h(1)=a b ;$ $h(2)=$ ba.
a) What is $h(21120)$
$h(21120)=$ ba ab ab ba a
b) If $\mathrm{L}=01^{*} 2$, what is $h(\mathrm{~L})$?
$h(L)=a(a b) * b a$
c) If $\mathrm{L}=\mathrm{a}(\mathrm{ba})^{*}$, what is $\mathrm{h}^{-1}(\mathrm{~L})$?

02*U 1*0

\#4. a) Show that the question: Does $L=\Sigma^{*}$? for regular language L is decidable.

First the question Does $L=\Phi$ is decidable: Just have to look at the dfa for L to see if there is a path from the start state to a final state.

Now look at the complement of L, L^{\prime}. It is decidable whether it is empty because the complement of a regular language is regular. If L ' is empty, then $\mathrm{L}=\sum^{*}$; otherwise $\mathrm{L}<>$ Σ^{*}.

A more interesting proof is that a language is empty (hence its complement is Σ^{*}) if and only if the related dfa accepts a string whose length is less than k, the number of states (Then we have a decision procedure: just check if any strings of length $0,1, \ldots \mathrm{k}$ - 1 are accepted). You can show this using the pumping lemma!
b) Show that the question, Given a FA M over Σ, does M accept a string of length \leq 2 ? is decidable

This is a finite set: just check each such string to see if if it leads to a final state.

