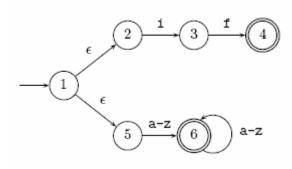
Name_____

CS503 Homework #3

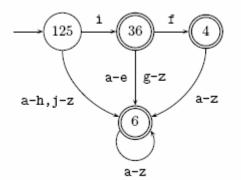
People I talked to, urls I looked at:

#1. Consider the following nfa that will recognize both the keyword "if" and identifiers that consist of at least 1 letter:



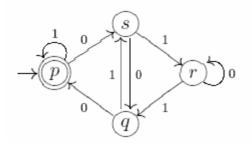
Use the subset construction to convert this nfa to a dfa:

Solution



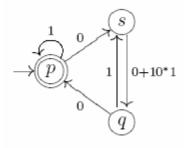
The problem here is that both f and i are in a-z so you need separate entries for f, i, and $\{a$ - $z\}$ – $\{f$, $i\}$ to get a deterministic machine.

#2. Create the regular expression for the following by eliminating states. Please eliminate r first, then s, then q:

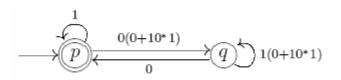


Solution

Eliminating r:



Eliminating s:



Eliminating q:

$$\rightarrow p$$
 (1+0(0+10*1)(1(0+10*1))*0)

So L(M) = ((1 + 0(0 + 10*1)(1(0 + 10*1))* 0)*

#3. Consider the following operation -3 on regular languages L:

 $L^{-3} = \{w \mid y \ w \ \varepsilon \ L \ and \mid y \mid =3\}$

Show regular languages are closed under the -3 operation.

Solution

A regular language L has a fa, M, such that $L = \ell(M)$.

Add a new start state and λ -transitions to all states that are reachable by a path of length 3 from the original start state of M. This new nfa accepts L⁻³.

#4. Show that it is decidable whether a regular language, L, contains 1000 strings or more.

If the dfa for L contains a cycle on a path from the initial to final state, then it accepts an infinite number of strings, so certainly accepts 1000 or more.

If there is no cycle from the initial to a final state, just count the number of paths from the initial to the various final states. If there are 1000 or more such paths, L contains 1000 strings or more. If there are fewer, then L does not accept 1000 strings or more.

#5 Use the pumping lemma to showa) L = {w | w contains twice as many a's as b's} is not regular

<u>Proof</u>

Note that $L \neq \{ a^{2n}b^n | n \ge 0 \} !!!$

If L were regular, then there is a dfa, M, with k states accepting L.

Pick $z = a^{2k}b^k$

Then, since $z \in L$ and $|z| \ge k$, by the pumping lemma:

z = u v w with $|u v| \le k$, length(v) >0 and $uv^i w$ is also in L for all $i \ge 0$.

Because $|u v| \le k$, u v is all a's and since length(v) >0, $v = a^{j}$, some j.

When i = 2, we have the string: $u v v w = a^{2k+j} b^k$

which has more than twice as many a's as b's. Thus u v v w is not in L which is a contradiction.

Therefore the language is not regular.

b) $L = \{0^n | n \text{ is a power of } 2\}$

Proof

If L were regular, then there is a dfa, M, with k states accepting L. Pick $z = 0^m$ where $m = 2^k$

Then, since $|z| = 2^k \ge k$, by the pumping lemma:

z = u v w with $|u v| \le k$, length(v) >0 and $uv^i w$ is also in L for all $i \ge 0$.

Since $|u v| \le k$ and length(v) >0, there are between 1 and k 0's in v.

 $1 \leq |v| \leq k$

So $2^k + 1 \le |u \ v \ v | \le 2^k + k < 2^k + 2^k = 2^{k+1}$

So u v v w has length between $2^k + 1$ and $2^k + k$.

So |uvvw| cannot be a power of 2 and thus uvvw is not in the language. Therefore L is not regular.