Name
CS503 Homework \#3
People I talked to, urls I looked at:
\#1. Consider the following nfa that will recognize both the keyword "if" and identifiers that consist of at least 1 letter:

Use the subset construction to convert this nfa to a dfa:
Solution

The problem here is that both f and i are in $a-z$ so you need separate entries for f, i, and $\{a-z\}-\{f, i\}$ to get a deterministic machine.
\#2. Create the regular expression for the following by eliminating states. Please eliminate r first, then s, then q :

Solution

Eliminating r:

Eliminating s:

Eliminating q:

So $L(M)=\left(\left(1+0(0+10 * 1)(1(0+10 * 1))^{*} 0\right)^{*}\right.$
\#3. Consider the following operation $\mathbf{- 3}$ on regular languages L :
$\mathrm{L}^{-3}=\{w \mid y w \in \mathrm{~L}$ and $|y|=3\}$
Show regular languages are closed under the - $\mathbf{3}$ operation.

Solution

A regular language L has a $f a, M$, such that $L=\ell(M)$.

Add a new start state and λ-transitions to all states that are reachable by a path of length 3 from the original start state of M. This new nfa accepts L^{-3}.
\#4. Show that it is decidable whether a regular language, L, contains 1000 strings or more.

If the dfa for L contains a cycle on a path from the initial to final state, then it accepts an infinite number of strings, so certainly accepts 1000 or more.

If there is no cycle from the initial to a final state, just count the number of paths from the initial to the various final states. If there are $\mathbf{1 0 0 0}$ or more such paths, \mathbf{L} contains $\mathbf{1 0 0 0}$ strings or more. If there are fewer, then L does not accept 1000 strings or more.
\#5 Use the pumping lemma to show
a) $\mathrm{L}=\{\mathbf{w} \mid \mathbf{w}$ contains twice as many a 's as b 's $\}$ is not regular

Proof
Note that $L \neq\left\{a^{2 n} b^{n} \mid n \geq 0\right\}!!!$

If L were regular, then there is a dfa, M, with \boldsymbol{k} states accepting L.
Pick $z=a^{2 k} b^{k}$

Then, since $z \varepsilon L$ and $|z| \geq k$, by the pumping lemma:
$z=u v w$ with $|u v| \leq k$, length $(v)>0$ and $u v^{i} w$ is also in L for all $i \geq 0$.
Because $|u v| \leq k, u v$ is all a's and since length $(v)>0, v=a^{j}$, some j.
When $i=2$, we have the string: $u v v w=a^{2 k+j} b^{k}$
which has more than twice as many a 's as b 's. Thus $u v v w$ is not in L which is a contradiction.

Therefore the language is not regular.
b) $L=\left\{0^{\mathrm{n}} \mid \mathbf{n}\right.$ is a power of 2$\}$

Proof

If L were regular, then there is a dfa, M, with k states accepting L. Pick $z=0^{m}$ where $m=\mathbf{2}^{k}$

Then, since $|z|=2^{k} \geq k$, by the pumping lemma:
$z=u v w$ with $|u v| \leq k$, length $(v)>0$ and $u v^{i} w$ is also in L for all $i \geq 0$.
Since $|u v| \leq k$ and length $(v)>0$, there are between 1 and $k 0$'s in v.
$1 \leq|\mathbf{v}| \leq \mathbf{k}$
So $2^{\mathrm{k}}+1 \leq|\mathbf{u v v w}| \leq 2^{\mathrm{k}}+\mathrm{k}<2^{\mathrm{k}}+2^{\mathrm{k}}=2^{\mathrm{k}+1}$
So uvvw has length between $2^{\mathrm{k}}+1$ and $2^{\mathrm{k}}+\mathrm{k}$.
So |uvvw| cannot be a power of 2 and thus uvvw is not in the language. Therefore L is not regular.

