Name

People I talked to, urls I looked at:
\#1. Consider the following nfa that will recognize both the keyword "if" and identifiers that consist of at least 1 letter:


Use the subset construction to convert this nfa to a dfa:
\#2. Create the regular expression for the following by eliminating states. Please eliminate $r$ first, then $s$, then $q$ :


Eliminating s:
\#3. Consider the following operation -3 on regular languages L :
$\mathbf{L}^{-3}=\{w \mid y w \in \mathbf{L}$ and $|y|=3\}$
Show regular languages are closed under the -3 operation.
\#4. Show that it is decidable whether a regular language, L , contains 1000 strings or more.
\#5 Use the pumping lemma to show
a) $L=\{w \mid w$ contains twice as many $a$ 's as $b$ 's $\}$ is not regular
b) $L=\left\{0^{\mathrm{n}} \mid \mathbf{n}\right.$ is a power of 2$\}$

