Homework \#3

1. (10 Points) True or False:
a) $a a b a$ matches $a^{*}+b^{*} \quad \mathrm{~T} \quad \mathrm{~F}$
b) babab matches $b(a b)^{*} \mathrm{~T} \quad \mathrm{~F}$
c) If $\mathrm{A}=\Phi$ then $\mathrm{AB}=\Phi$ for all languages $\mathrm{B} \quad \mathrm{T} \quad \mathrm{F}$
d) If $\mathrm{A}=\{\varepsilon\}$ then $\mathrm{AB}=\Phi$ for all languages $\mathrm{B} \quad \mathrm{T} F$
e) If $\mathrm{A}=\mathrm{a}^{*}$ and $\Sigma=\{\mathrm{a}, \mathrm{b}\}$, then $\Sigma^{*}-\mathrm{A}=\mathrm{b}^{*} \mathrm{~T} \mathrm{~F}$
\#2. (10 Points) Write regular expressions for the set of strings of 0's and 1's with at most one pair of consecutive 1's
\#3. (10 Points) Draw the graph for the following DFA and then convert it to a regular expression.

	$\mathbf{0}$	$\mathbf{1}$
$* \rightarrow \mathrm{p}$	s	p
q	p	s
r	r	q
s	q	r

\#4. (5 Points) Does $(\mathrm{R}+\mathrm{S})^{*} \mathrm{~S}=(\mathrm{R} * \mathrm{~S}) *$ Justify your answer
\#5 - \#6. Given R is a regular language and N is a non-regular language:
\#5. (5 Points) Suppose X is a language such that $N=\sim X$ (\sim means complement). Does it follow that X must be regular? If so, state why. If not, does it follow that X must be nonregular? If so, state why. If neither of these is true name 1) a specific non-regular N such that $\mathrm{N}=\sim \mathrm{X}$ with X non-regular and 2) a specific non-regular N satisfying $\mathrm{N}=\sim \mathrm{X}$ with X regular.
\#6. (5 Points) Suppose X is a language such that $X=R \cap N$. Does it follow that X must be regular? If so, state why. If not, does it follow that X must be non-regular? If so, state why. If neither of these is true name 1) a specific non-regular N and a regular R such that $\mathrm{X}=\mathrm{R} \cap \mathrm{N}$ with X non-regular and 2) a specific non-regular N and a regular R satisfying $\mathrm{X}=\mathrm{R} \cap \mathrm{N}$ with X regular.
\#7. (5 Points) Create a dfa to accept $(0+1)^{*} 1(0+1)^{*}$
\#8. (Best answers will be posted to the bb) Name some applications in CS and in the world of:
a) Regular expressions
b) Converting regular expressions to finite automata
c) Converting finite automata to regular expressions

