Homework \#2

People I worked with and URL's of sites I visited:

\#1. Convert to Chomsky Normal Form. Please follow the steps even if you can "see" the answer:
a) the expression grammar, G :
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F} \mid \mathrm{F}$
$\mathrm{F} \rightarrow(\mathrm{E}) \mid \mathrm{a}$
b) $\mathrm{S} \rightarrow \mathrm{A} \mid \mathrm{ABa\mid AbA}$
$\mathrm{A} \rightarrow \mathrm{Aa\mid} \mathrm{\lambda}$
$\mathrm{B} \rightarrow \mathrm{Bb} \mid \mathrm{BC}$
$\mathrm{C} \rightarrow \mathrm{CB}|\mathrm{CA}| \mathrm{bB}$
\#2. Show the following languages are regular by creating finite automata with $\mathrm{L}=\mathrm{L}(\mathrm{M})$
a) Strings over $\{\mathrm{a}, \mathrm{b}\}$ that contain 2 consecutive a 's
b) Strings over $\{\mathrm{a}, \mathrm{b}\}$ that do not contain 2 consecutive a 's
c) The set of strings over $\{0,1\}$ which contain the substring 00 and the substring 11
d) The set of strings over $\{\mathrm{a}, \mathrm{b}\}$ which do not contain the substring $a b$.

Show your answers in both table and graph form.
\#3. Describe $\mathrm{L}(\mathrm{M})$ for the following nfa's: a) in words and b) as a regular expression
a)

b)

\#4. a) Create an NFA (with λ transitions) for all strings over $\{0,1,2\}$ that are missing at least one symbol. For example, 00010, 1221, and 222 are all in L while 221012 is not in L
b) Given an NFA with several final states, show how to convert it into one with exactly one start state and exactly one final state.
c) Suppose an NFA with k states accepts at least one string. Show that it accepts a string of length k-1 or less.
d) Let L be a regular language. Show that the language consisting of all strings not in L is also regular.
\#5. a) Consider the extended transition function, δ^{*}, defined by:

$$
\begin{aligned}
& \delta^{*}(\mathrm{q}, \lambda)=\mathrm{q} \\
& \delta^{*}(\mathrm{q}, \mathrm{wa})=\delta\left(\delta^{*}(\mathrm{q}, \mathrm{w}), \mathrm{a}\right)
\end{aligned}
$$

a) Show that $\delta^{*}(\mathrm{q}, \mathrm{a})=\delta(\mathrm{q}, \mathrm{a})$ (follows from the definition)
b) Show that $\delta^{*}(\mathrm{q}, \mathrm{uv})=\delta^{*}\left(\delta^{*}(\mathrm{q}, \mathrm{u}), \mathrm{v}\right)$ (use induction)
c) Show that $\delta^{*}(\mathrm{q}, \mathrm{aw})=\delta^{*}(\delta(\mathrm{q}, \mathrm{a}), \mathrm{w})$ (follows from above)

