Homework \#2
Due Thursday Feb. 3
\#1. Convert the following NFA to a DFA and informally describe the language it accepts.

	0	1
$\rightarrow \mathrm{p}$	$\{\mathrm{p}, \mathrm{q}\}$	$\{\mathrm{p}\}$
q	$\{\mathrm{r}\}$	$\{\mathrm{s}\}$
r	$\{\mathrm{p}, \mathrm{r}\}$	$\{\mathrm{t}\}$
${ }^{*} \mathrm{~s}$	\varnothing	\varnothing
${ }^{*} \mathrm{t}$	\varnothing	\varnothing

DFA	0	1
$\rightarrow\{p\}$	$\{p, q\}$	$\{p\}$
$\{p, q\}$	$\{p, q, r, s\}$	$\{p, t\}$
$\{p, q, r, s\}$	$\{p, q, r, s\}$	$\{p, t\}$
$*\{p, t\}$	$\{p, q\}$	$\{p\}$

What is $L(M)$? Not easy to see. It looks like final states can only be reached with strings ending in " 00 " or " 01 ". Hard to see if there are restrictions on the front of the strings. So it looks like $\mathrm{L}(\mathrm{M})=(0 \cup 1)^{*}(00 \cup 01)($ Best to draw graph)
\#2. Give an NFA over $\{0,1\}$ that accepts the set of strings that contain an even number of substrings 01.

\#3. Create nfa to:
a) accept strings beginning with a letter (use l for letter) followed by any number of letters or digits (use d for digit)

b) accept strings of 1 or more digits (use d for digit).

c) accept either of the languages from part a and part b (use \mathcal{E}-transitions)

\#4. Add states to accept the keyword "while" to the nfa in 3c.

\#5. Consider the following dfa’s over $\{\mathrm{a}, \mathrm{b}\}$. The start state of $M 1$ is 1 and the start state of $M 2$ is 1_{-}.

Use the product construction to produce dfa's accepting a) the intersection and b) the union of the sets accepted by these automata.
a) Intersection:

		a	b
\rightarrow	11^{\prime}	22^{\prime}	12^{\prime}
	12^{\prime}	21^{\prime}	11^{\prime}
	21^{\prime}	12^{\prime}	12^{\prime}
F	22^{\prime}	11^{\prime}	11^{\prime}

b) Union: change the set of accepting states to be $\left\{12^{\prime}, 21^{\prime}, 22^{\prime}\right\}$

