## Homework \#2

\#1. (10 Points) Convert the following NFA to a DFA and informally describe the language it accepts.

|  | 0 | 1 |
| :---: | :---: | :---: |
| $\rightarrow \mathrm{p}$ | $\{\mathrm{p}, \mathrm{q}\}$ | $\{\mathrm{p}\}$ |
| q | $\{\mathrm{r}, \mathrm{s}\}$ | $\{\mathrm{t}\}$ |
| r | $\{\mathrm{p}\}$ | $\{\mathrm{t}\}$ |
| ${ }^{*} \mathrm{~s}$ | $\varnothing$ | $\varnothing$ |
| ${ }^{\mathrm{t}} \mathrm{t}$ | $\varnothing$ | $\varnothing$ |

\#2. (10 Points) Show an NFA over $\{0,1\}$ that accepts the set of strings that contain an even number of substrings 01 .
\#3. (9 Points) Create nfa to:
a) accept strings beginning with a letter (use $l$ for letter) followed by any number of letters or digits (use $d$ for digit)
b) accept strings of 1 or more digits (use $d$ for digit).
c) accept either of the languages from part a and part b (use $\mathcal{E}$-transitions)
\#4. (11 Points) Add states to accept the keyword "while" to the nfa in 3c.
\#5. (10 Points) Consider the following dfa’s over \{a,b\}. The start state of M1 is 1 and the start state of $M 2$ is $1_{-}$.


Use the product construction to produce dfa's accepting a) the intersection and b) the union of the sets accepted by these automata.
\#6. (Best ones will be posted to the bb) Name some applications in Computer Science or the world of:
a) Regular Sets
b) Non-deterministic Finite Automata

