

Name _________________________

Homework 9
SOLUTIONS

1. For each of the language classes: regular, context-free, recursively enumerable,
and recursive, and each operation: complement, union, intersection, concatenation, and
*closure, indicate whether the class is closed under that operation by filling in the
corresponding spot in the following table with “yes” or “no”.

 regular

context-free recursively

enumerable
recursive

complement Yes No No Yes
union Yes Yes Yes Yes
intersection Yes No Yes Yes
concatenation Yes Yes Yes Yes
*-closure Yes Yes Yes Yes

#2. Suppose L1, L2, and L3 are recursively enumerable languages over the alphabet
Σ such that
(a) Li ∩Lj = Φ when i ≠ j; and
(b) L1 ∪L2 ∪L3 = Σ*

Prove that L1 is recursive. Indicate clearly how each of the hypotheses (a) and (b) are used
in your argument.

The argument is that both L1 and its complement (L2UL3) are re, so L1 is recursive.
(This is equally true for L2 and L3). In more detail:

Because L1 ∪L2 ∪L3 = Σ*, their union is all possible strings over Σ* .

(a) says that the languages have no strings in common so
Σ* looks like this:

Thus ~L1 = L2 U L3

Since L1 is re, ∃ a TM, ML1 that accepts it.

Because L2 and L3 are re, their union is re and ∃ a TM ML2UL3 that accepts this
union (which is the complement of L1). Putting these together:

This shows L1 is recursive.

#3. Suppose L is a recursive language. Prove that L* is recursive. Write this out in words
rather than using pictures.

Can be done by induction using the fact that recursive languages are close under
union (think about it!)

#4. Complete each sentence with one of the answers:

• regular
• context-free
• Recursive
• Recursively enumerable
• none of the above

Make the strongest true assertion you can. In each case you should explain your answer
by reference to the appropriate closure properties of the relevant language classes. (Bc

means the complement of B)

(a) If A is regular and B is regular, then A∪ Bc is: : regular

Proof The regular languages are closed under complementation, so Bc is regular. The
regular languages are closed under union, so A∪ Bc is regular

(b) If A is context-free and B is regular, then A∪ Bc is: c-f

Proof. The regular languages are closed under complementation, so B

c
 is regular. Any

regular language is context-free, so B
c

 is context-free. The CF languages are closed under
union, so A∪ Bc is CF.

(c) If A is regular and B is context-free, then A∪ Bc is: recursive

Proof. The CF languages are not closed under complementation, so B
c

 is not necessarily CF;
but CF languages are recursive, and the recursive languages are closed under
complementation, so B

c
 is recursive. Regu;ar languages are recursice and recursive

languages are closed under union, so A∪ Bc is recursive.

(d) If A is recursive and B is recursive, then A∪ Bc is: recursive.
Proof. The recursive languages are closed under complementation, so Bc

 is recursive. The
recursive languages are closed under union, so A∪ Bc is recursive.

(e) If A is recursive and B is Recursively enumerable, then A∪ Bc is: none
Proof. The RE languages are not closed under complementation. So take B to be a language
whichis RE, yet Bc

 is not RE, (for example, let B be the language corresponding to the
halting problem). Then take A to be the empty language. Then AU Bc is just Bc, so we
cannot make any claims about it.

(f) If A is recursively enumerable and B is recursive then A∪ Bc is: re

Proof. The recursive languages are closed under complementation, so Bc is recursive. Every
recursive language is RE, so Bc

 is RE. The RE languages are closed under union, so A∪ Bc
is RE.

#5. Show the smallest category (regular, c-f, recursive, re, non-re) that each of the
following is in. Prove that the language is in that category and prove that it is not in the
next innermost category.

a) L(G) where G:
S aB | b A
A a S | b A A | a
B b S | a B B | b

Clearly context-free.
Flawed answers: 1. The grammar is not regular; therefore, the language it generates is not
regular: could be another regular grammar generating L(G) that is regular. A couple of
you said it couldn’t be converted, but no one gave a reason.
2. akbk is in L and when pumped yields a string not of that form. But there are lots of
other strings in the language and the pumped string might be one of them.
SOLUTION
L(G) = {w | w has an equal number of a’s and b’s}
Using the pumping lemma, you can pump akbk so it doesn’t have an equal number of a’s
and b’s

 b) L(G) where G:

 S a S | b S | ε

L(G) = (aUb)* so regular

c) L1 ∩L2 where L1 and L2 are context-free
Recursive. Not (necessarily) c-f because intersection of c-f languages is not c-f

d) The set of encodings of Turing Machines M whose time complexity is not
bounded by n2; i.e., L = {M | there exists an input string w such that M
performs more than |w|2 steps on input w}

Recursively enumerable

#6. Consider the following language:

HALT = {< M, w > | M is a Turing machine and w ε L(M)}

Here < M,w > denotes some encoding of the pair consisting of a description of
machine M and of input w, so that HALT is an encoding of the set of machine-input
pairs such that the machine accepts the input. The specific details of the encoding
itself are irrelevant to the questions which follow.

The theorem on the undecidability of the halting problem states that HALT is not
decidable. For this problem, take that theorem as given.

(a) Is the language HALT recursively enumerable? Defend your answer.

 (b) Is the complement of HALT recursively enumerable? Defend your answer.
The language HALT is Turing-recognizable (RE), but its complement is not RE.

The fact that HALT is RE follows immediately from the fact that there exists a universal
Turing machine. Indeed, the set HALT is precisely the domain of this universal Turing
machine. For some authors being the domain of a TM is the definition of being RE, so in
that case we are done. Some authors define RE sets as the accepted sets of special Turing
machines, the “acceptors”, but it is a trivial matter to build a universal acceptor from the
classical universal Turing machine.

To prove that HALTc is not RE, we invoke the fact that if a set and its complement are each
RE, then that set is in fact recursive. So if HALTc were RE, then by the previous paragraph
it would be recursive, which we know it is not.

#7. Decidable or undecidable: whether a language is regular or not. Prove your answer.
(Hint: Look at RegTM = {M | M is a TM and L(M) is regular})

Vijay, you can find this all over the web
#8. Show that there is no algorithm that determines whether an arbitrary Truing machine
prints a 1 on its final transition.

#9. Show whether the following instance of PCP has a solution or not. (01,011), (001,10),
(10,00)
ditto
#10. Explain the differences between NP, NP-Complete and undecidable briefly but
clearly (I know we have not covered this in class)

