Homework \#1

Solutions

Please email me if you see any errors or have any questions.

Each question is worth 10 points.

\#1. Let Given the alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$, and the languages over $\Sigma: \mathrm{L}_{1}=\{\mathrm{aa}\}^{*}$, $\mathrm{L}_{2}=\{\mathrm{a}, \mathrm{b}\}\{\mathrm{a}, \mathrm{b}\}\{\mathrm{a}, \mathrm{b}\}\{\mathrm{a}, \mathrm{b}\}$ and $\mathrm{L}_{3}=\mathrm{L}_{2}{ }^{*}$, describe the strings in
a) L_{2}
b) L_{3}
c) $\mathrm{L}_{1} \cap \mathrm{~L}_{3}$
a) $\mathrm{L}_{2}=$
\{aaaa,aaab,aaba,aabb,abaa,abab,abba,abbb,baaa,baab,baba,babb,bbaa,bbab, bbba,bbbbb
b) $\mathrm{L}_{3}=\left\{\mathbf{w} \varepsilon\{\mathrm{a}, \mathrm{b}\}^{*}:|\mathrm{w}|=4^{*} \mathrm{n}, \mathrm{n} \geq 0\right\}$
c) $\mathrm{L}_{1} \cap \mathrm{~L}_{3}=\left\{\mathrm{a}^{\mathrm{n}} \mid \mathrm{n}=\mathbf{1 2 k}, \mathrm{k} \geq 0\right\}$
\#2. Give regular expressions for the following:
a) The set of strings over $\{a, b, c\}$ where all the a's precede all the b's which precede all the c's (there may be no a's, b's or c's)
$a^{*} b^{*} \mathbf{c}^{*}$
b) The set of strings over $\{0,1\}$ which contain the substring 00 and the substring 11 .
((0U1)*00 (0U1)*11 (0U1)*) U ((0U1)*11 (0U1)*00 (0U1)*)
c) The set of strings over $\{\mathrm{a}, \mathrm{b}\}$ which do not contain the substring $a b$.
$b^{*} a^{*}$
\#3. a) Let G be the grammar:
$\mathrm{S} \rightarrow 0|1| 0 \mathrm{~S} 0|1 \mathrm{~S} 1| \lambda|00| 11$
a) Show a leftmost derivation of 011110

Note: any derivation will be leftmost (or rightmost!)
$\mathrm{S} \rightarrow 0 \mathrm{SO} \rightarrow 01 \mathrm{~S} 10 \rightarrow 011 \mathrm{~S} 110 \rightarrow 011110$
b) Create a parse tree for 011110

c) Show that this grammar is ambiguous

Two leftmost derivations for 00 (among others):

1. $\mathrm{S} \rightarrow 00$
2. $\mathrm{S} \rightarrow 0 \mathrm{SO} \rightarrow 00$ (using $\mathrm{S} \rightarrow \lambda$)
d) Describe $L(G)$ using set notation
$\mathbf{L}(\mathbf{G})=\left\{\mathbf{w} \varepsilon\{\mathbf{0}, \mathbf{1}\}^{*} \mid \mathbf{w}=\mathbf{w}^{\mathbf{R}}\right\}$
b) Construct grammars to generate the languages of \#2
a)
$\mathrm{S} \rightarrow \mathrm{aS} \mid \mathrm{B}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{C}$
$\mathrm{C} \rightarrow \mathrm{cC} \mid \lambda$
b)
$\mathrm{S} \rightarrow \mathbf{0} \mathrm{S}|1 \mathrm{~S}| 00 \mathrm{~A} \mid 11 \mathrm{~B}$
$\mathrm{A} \rightarrow 0 \mathrm{~A}|1 \mathrm{~A}| 1 \mathbf{1} \mathrm{C}$
$\mathrm{B} \rightarrow \mathbf{0 B | 1 B | 0 0 C}$
$\mathrm{C} \rightarrow \mathbf{0} \mathrm{C}|\mathbf{1}| \lambda$
c)
$\mathbf{S} \rightarrow \mathbf{b} \mathbf{A}|\mathbf{A}| \lambda$
$\mathbf{A} \rightarrow \mathbf{a} \mathbf{A} \mid \lambda$
\#4. Explain briefly and clearly why (how) all finite alphabets can be replaced with a two symbol alphabet. Do this in general (for any length alphabet) and then show your method for the alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and the string $b b c a$.

Given the alphabet $\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ and the two symbol alphabet $\left\{b_{1}, b_{2},\right\}$. Represent the symbols as follows:

$$
\begin{aligned}
& \mathbf{a}_{1}=b_{1} \\
& \mathbf{a}_{2}=b_{1} b_{1} \\
& \mathbf{a}_{3}=b_{1} b_{1} b_{1} \\
& \ldots \\
& \mathbf{a}_{n}=b_{1} b_{1} b_{1} \ldots . b_{1}\left(n b_{1} \cdot s\right)
\end{aligned}
$$

Use b_{2} as a separator between symbols. So if the string is $a_{3} a_{1} a_{2}$, it can now be represented by $b_{1} b_{1} b_{1} b_{2} b_{1} b_{1} b_{2} b_{1}$

So for $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ using the two symbol alphabet $\{\mathrm{a}, \mathrm{b}\}$,
$\mathbf{a}=\mathbf{a}$
$\mathbf{b}=\mathbf{a} \mathbf{a}$
$\mathbf{c}=\mathbf{a} \mathbf{a} \mathbf{a}$
and bbca is aabaabaaaba
\#5. For the CFG G defined by
$\mathrm{S} \rightarrow 0 \mathrm{~S}|\mathrm{~S} 1| 0 \mid 1$
prove by induction on the depth of the parse tree that no string in the language has 10 as a substring.
$\underline{\text { Basis }} \operatorname{depth}($ tree $)=1$. The only 2 trees are

and neither of them are 10 .

Induction Hypothesis
Assume for trees of depth $k, k \geq 1$ that none contain 10 as a substring.
Induction Step
Consider trees of depth $k+1$:

Case 1

where

is a parse tree of depth k and will not generate 10 as a substring by the induction hypothesis. Prefixing this string with 0 still will not generate a string with a substring 10

Case 2

where

is a parse tree of depth k and will not generate 10 as a substring by the induction hypothesis. Suffixing this string with 1 still will not generate a string with a substring 10 .

