Homework #1

Solutions

Please email me if you see any errors or have any questions.

Each question is worth 10 points.

#1. Let Given the alphabet Σ = {a,b}, and the languages over Σ: L₁ = {aaa}*, L₂ = {a,b} {a,b} {a,b} {a,b} {a,b} and L₃ = L₂*, describe the strings in

a) L₂
b) L₃
c) L₁∩L₃

a) L₂ = {aaaa,aaab,aaba,aabb,abaa,abab,abba,abbb,baaa,baab,baba,babb,bbaa,bbab,bbaa,bbab,bbaa,bbab}

b) $L_3 = \{w \in \{a,b\}^* : |w| = 4^*n, n \ge 0\}$

c) $L_1 \cap L_3 = \{a^n \mid n = 12k, k \ge 0\}$

#2. Give regular expressions for the following:

a) The set of strings over {a,b,c} where all the a's precede all the b's which precede all the c's (there may be no a's, b's or c's)

a*b*c*

b) The set of strings over $\{0,1\}$ which contain the substring 00 and the substring 11.

((0U1)*00 (0U1)*11 (0U1)*) U ((0U1)*11 (0U1)*00 (0U1)*)

c) The set of strings over {a,b} which do not contain the substring *ab*.

b* a*

#3. a) Let G be the grammar:

 $S \rightarrow 0 \mid 1 \mid 0 \mid S \mid 0 \mid 1 \mid S \mid 1 \mid \lambda \mid 0 \mid 0 \mid 1 \mid 1$

a) Show a leftmost derivation of 0111110

Note: any derivation will be leftmost (or rightmost!)

 $S \rightarrow 0 S 0 \rightarrow 01 S 1 0 \rightarrow 011 S 110 \rightarrow 01111 0$

b) Create a parse tree for 0 1 1 1 1 0

c) Show that this grammar is ambiguous

Two leftmost derivations for 00 (among others):

- 1. $S \rightarrow 0 0$ 2. $S \rightarrow 0 S 0 \rightarrow 0 0$ (using $S \rightarrow \lambda$)
- d) Describe L(G) using set notation

 $L(G) = \{w \in \{0,1\}^* | w = w^R\}$

b) Construct grammars to generate the languages of #2

```
a)

S \rightarrow aS | B

B \rightarrow bB | C

C \rightarrow cC | \lambda

b)

S \rightarrow 0 S | 1 S | 0 0 A | 1 1 B

A \rightarrow 0 A | 1 A | 1 1 C

B \rightarrow 0 B | 1 B | 0 0 C

C \rightarrow 0 C | 1 C | \lambda

c)

S \rightarrow b A | A | \lambda

A \rightarrow a A | \lambda
```

#4. Explain briefly and clearly why (how) all finite alphabets can be replaced with a two symbol alphabet. Do this in general (for any length alphabet) and then show your method for the alphabet $\{a,b,c\}$ and the string *b b c a*.

Given the alphabet {a₁,a₂, a₃, ..., a_n} and the two symbol alphabet { b₁,b₂,}. Represent the symbols as follows:

 $a_1 = b_1$ $a_2 = b_1 b_1$ $a_3 = b_1 b_1 b_1$... $a_n = b_1 b_1 b_1 \dots b_1 (n b_1 `s)$ Use b₂ as a separator between symbols. So if the string is a₃ a₁ a₂, it can now be represented by b₁ b₁ b₂ b₁ b₁ b₂ b₁ b₁ b₂ b₁

So for {a,b,c} using the two symbol alphabet {a,b},

a = a b = a a c = a a aand b b c a is a a b a a b a a b a a b a

#5. For the CFG G defined by

 $S \rightarrow 0 S | S 1 | 0 | 1$ prove by induction on the depth of the parse tree that no string in the language has *10* as a substring.

<u>Basis</u> depth(tree) = 1. The only 2 trees are

S	S
0	1

and neither of them are 1 0.

Induction Hypothesis

Assume for trees of depth $k, k \ge 1$ that none contain 1 θ as a substring.

Induction Step

Consider trees of depth *k* + *1*:

<u>Case 1</u>

Case 2

S 1 where

where $\stackrel{\frown}{\longrightarrow}$ is a parse tree of depth k and will not generate 1 θ as a substring by the induction hypothesis. Suffixing this string with 1 still will not generate a string with a substring 1 θ .