Homework \#1

Name

Worked with (list all people you discussed this homework with):

URL's consulted:

Each question is worth 10 points.

\#1. Given the alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$, and the languages over Σ : $\mathrm{L}_{1}=\{\mathrm{aa}\}^{*}$, $\mathrm{L}_{2}=\{\mathrm{a}, \mathrm{b}\}\{\mathrm{a}, \mathrm{b}\}\{\mathrm{a}, \mathrm{b}\}\{\mathrm{a}, \mathrm{b}\}$ and $\mathrm{L}_{3}=\mathrm{L}_{2}{ }^{*}$, describe the strings in
a) L_{2}
b) L_{3}
c) $\mathrm{L}_{1} \cap \mathrm{~L}_{3}$
\#2. Give regular expressions for the following:
a) The set of strings over $\{a, b, c\}$ where all the a's precede all the b's which precede all the c's (there may be no a's, b's or c's)
b) The set of strings over $\{0,1\}$ which contain the substring 00 and the substring 11 .
c) The set of strings over $\{\mathrm{a}, \mathrm{b}\}$ which do not contain the substring $a b$.
\#3. a) Let G be the grammar:
$\mathrm{S} \rightarrow 0|1| 0 \mathrm{~S} 0|1 \mathrm{~S} 1| \lambda|00| 11$
a) Show a leftmost derivation of 011110
b) Create a parse tree for 011110
c) Show that this grammar is ambiguous
d) Describe L(G) using set notation
b) Construct grammars to generate the languages of \#2
\#4. Explain briefly and clearly why (how) all finite alphabets can be replaced with a two symbol alphabet. Do this in general (for any length alphabet) and then show your method for the alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and the string $b b c a$.
\#5. For the CFG G defined by
$\mathrm{S} \rightarrow 0 \mathrm{~S}|\mathrm{~S} 1| 0 \mid 1$
prove by induction on the size of the parse tree that no string in the language has $b a$ as a substring

