Homework #1 Solutions Due Thursday, January 27

True or False:

a) Given a language (set of strings) L, the question: "Is string w ε L" is a decision problem: T F b) $\Phi = \{\varepsilon\}$ T F c) For sets A and C. ~ (A U C) = ~ A U ~ C T F d) There is only 1 dfa that accepts a* T F e) Given an alphabet Σ and a regular language $L \subseteq \Sigma^*$, the strings in L' = Σ^* - L form a regular language T F

Proofs:

#2. Given that an integer *n* is even if there is an integer *i* such that n = 2 * i and an integer *n* is odd if there is an integer *i* such that n = 2 * i + 1, prove that for every integer $n \ge 0$, *n* is either even or odd, but not both.

Solution

There are actually 2 things to prove: 1) an integer must be one of {even,odd} and 2) a number cannot be both even and odd.

- 1) All numbers *n* can be written as n = 2q + r for $0 \le r \le 2$ So *r* must be 0 or 1. If *r* is 0 then n = 2q (i.e., *n* is even). If *r* is 1, then n = 2q + 1 (i.e., *n* is odd)
- 2) If *n* is both even and odd, then n = 2i

and n = 2j + 1

Then we have 2i = 2j + 1Case 1) i = j: then 0 = 1 (impossiblej Case 2) $i \neq j$: then (dividing by 2) $i = j + \frac{1}{2}$ (impossible)

Therefore, an integer *n* must be even or odd, but not both

#3. Given an alphabet Σ , and a string x in Σ *, define the reversal of x, denoted x^{R} as:

- a) If length(x) = 0, then $x = \varepsilon$ and $\varepsilon^{R} = \varepsilon$
- b) If length(x) = n>0, then x = wa for some string w with length n 1 and some a in Σ , and $x^R = aw^R$.

Using this definition, the definition of concatenation and associativity, prove by induction that: $(xy)^{R} = y^{R}x^{R}$.

Proof by induction on |y|

Basis:

Left:

if
$$|y| = 0$$
, then $(xy)^{R} = (x\varepsilon)^{R} = x^{R}$

Right:

if
$$|y| = 0$$
, then $y^R x^R = \varepsilon^R x^R = \varepsilon x^R = \mathbf{x}^R$

Induction Hypothesis: $(xy)^{R} =$, when $0 \le |y| \le n$, $n \ge 0$ Induction Step:

If |y| = n + 1, then y = wa, where a $\varepsilon \Sigma$ and |w| = n

$$(xy)^R = (x (wa))^R$$
where $y = wa$, $|w| = n$, $= ((xw) a)^R$ associativity $= a(xw)^R$ def'n of reversal $= a(w^R x^R)$ induction hypothesis $= (wa)^R x^R$ associativity $= (wa)^R x^R$ definition of reversal $= y^R x^R$ substitution of y for wa

#4. Disprove: All WPI computer science professors are men.

Proof by counterexample (me)

DFA's

#5. What set of strings does the following automaton accept?

Strings of *a*'s and *b*'s that end in *a* a b a b: (a + b)* a a b a b

#6. Create a DFA that accepts an odd number of a's

