Homework \#1 Solutions

Due Thursday, January 27

True or False:

a) Given a language (set of strings) L , the question: "Is string $\mathrm{w} \varepsilon \mathrm{L}$ " is a decision problem: T F
b) $\Phi=\{\varepsilon\} \quad \mathrm{T} F$
c) For sets A and C. $\sim(\mathrm{A} \cup \mathrm{C})=\sim \mathrm{A} U \sim \mathrm{C} \quad \mathrm{T}$ F
d) There is only 1 dfa that accepts a* T F
e) Given an alphabet Σ and a regular language $\mathrm{L} \subseteq \Sigma^{*}$, the strings in $\mathrm{L}^{\prime}=\Sigma^{*}-\mathrm{L}$ form a regular language $\quad \mathrm{T} \quad \mathrm{F}$

Proofs:

\#2. Given that an integer n is even if there is an integer i such that $n=2 * i$ and an integer n is odd if there is an integer i such that $n=2 * i+1$, prove that for every integer $n \geq 0, n$ is either even or odd, but not both.

Solution

There are actually 2 things to prove: 1) an integer must be one of $\{$ even,odd $\}$ and 2) a number cannot be both even and odd.

1) All numbers n can be written as $n=2 q+r$ for $0 \leq r \leq 2$

So r must be 0 or 1 .
If r is 0 then $n=2 q$ (i.e., n is even).
If r is 1 , then $n=2 q+1$ (i.e., n is odd)
2) If n is both even and odd, then

$$
n=2 i
$$

and $n=2 j+1$
Then we have $2 i=2 j+1$
Case 1) $i=j$: then $0=1$ (impossiblej
Case 2) $\mathrm{i} \neq \mathrm{j}$: then (dividing by 2) $\mathrm{i}=\mathrm{j}+1 / 2$ (impossible)
Therefore, an integer n must be even or odd, but not both
\#3. Given an alphabet Σ, and a string x in Σ^{*}, define the reversal of x, denoted x^{R} as:
a) If length $(x)=0$, then $x=\varepsilon$ and $\varepsilon^{\mathrm{R}}=\varepsilon$
b) If length $(x)=\mathrm{n}>0$, then $x=w a$ for some string w with length $\mathrm{n}-1$ and some a in Σ, and $x^{R}=a w^{R}$.

Using this definition, the definition of concatenation and associativity, prove by induction that: $(x y)^{\mathrm{R}}=y^{\mathrm{R}} x^{\mathrm{R}}$.

Proof by induction on $|\mathrm{y}|$
Basis:
Left:

$$
\text { if }|y|=0 \text {, then }(x y)^{R}=(x \varepsilon)^{R}=x^{R}
$$

Right:

$$
\text { if }|y|=0 \text {, then } y^{R} x^{R}=\varepsilon^{R} x^{R}=\varepsilon x^{R}=x^{R}
$$

Induction Hypothesis: $\quad(x y)^{R}=$, when $\quad 0 \leq|y| \leq n, \quad n \geq 0$
Induction Step:

$$
\begin{aligned}
& \text { If }|\mathrm{y}|=\mathrm{n}+1 \text {, then } \mathrm{y}=\mathrm{wa} \text {, where a } \varepsilon \Sigma \text { and }|\mathrm{w}|=\mathrm{n} \\
& \begin{aligned}
(x y)^{R} & =(x(w a))^{R} & & \text { where } y=w a,|w|=n, \\
& =((x w) a)^{R} & & \text { associativity } \\
& =a(x w)^{R} & & \text { def'n of reversal } \\
& =a\left(w^{R} x^{R}\right) & & \text { induction hypothesis } \\
& =\left(a w^{R}\right)^{R} x^{R} & & \text { associativity } \\
& =\left(w^{R}\right)^{R} x^{R} & & \text { definition of reversal } \\
& =y^{R} x^{R} & & \text { substitution of } y \text { for wa }
\end{aligned}
\end{aligned}
$$

\#4. Disprove: All WPI computer science professors are men.
Proof by counterexample (me)

DFA's

\#5. What set of strings does the following automaton accept?

Strings of a 's and b 's that end in a a b a b : $(a+b) * a a b a b$
\#6. Create a DFA that accepts an odd number of a 's

