## Homework #1

## #1 (10 Points) *True or False:*

a) Given a language (set of strings) L, the question: "Is string w  $\varepsilon$  L" is a decision problem: T F b)  $\Phi = \{\varepsilon\}$  T F c) For sets A and C. ~ (A U C) = ~ A U ~ C T F d) There is only 1 dfa that accepts a\* T F e) Given an alphabet  $\Sigma$  and a regular language  $L \subseteq \Sigma^*$ , the strings in L' =  $\Sigma^*$  - L form a regular language T F

## **Proofs:**

#2. (10 Points) Given that an integer *n* is even if there is an integer *i* such that n = 2 \* i and an integer *n* is odd if there is an integer *i* such that n = 2 \* i + 1, prove that for every integer  $n \ge 0$ , *n* is either even or odd, but not both.

#3. (10 points) Given an alphabet  $\Sigma$ , and a string x in  $\Sigma$  \*, define the reversal of x, denoted  $x^{R}$  as:

- a) If length(x) = 0, then  $x = \varepsilon$  and  $\varepsilon^{R} = \varepsilon$
- b) If length(x) = n>0, then x = wa for some string w with length n 1 and some a in  $\Sigma$ , and  $x^{R} = aw^{R}$ .

Using this definition, the definition of concatenation and associativity, prove by induction that:  $(xy)^{R} = y^{R}x^{R}$ .

#4. (5 Points) Disprove: All WPI computer science professors are men.

## DFA's

#5. (5 Points) What set of strings does the following automaton accept?



#6. (10 Points) Create a DFA that accepts an odd number of a's

#7. (Best ones will be posted to the bb) Give applications in Computer Science or in the world that use

- a) strings
- b) languages
- c) regular sets
- d) finite automata
- e) proofs