
The Faithfulness of Abstract Protocol Analysis:
Message Authentication∗

Joshua D. Guttman F. Javier Thayer Lenore D. Zuck

The MITRE Corporation New York University

ABSTRACT
Dolev and Yao initiated an approach to studying crypto-
graphic protocols which abstracts from possible problems
with the cryptography so as to focus on the structural as-
pects of the protocol. Recent work in this framework has
developed easily applicable methods to determine many se-
curity properties of protocols. A separate line of work, initi-
ated by Bellare and Rogaway, analyzes the way specific cryp-
tographic primitives are used in protocols. It gives asymp-
totic bounds on the risk of failures of secrecy or authentica-
tion.

In this paper we show how the Dolev-Yao model may be
used for protocol analysis, while a further analysis gives
a quantitative bound on the extent to which real crypto-
graphic primitives may diverge from the idealized model.
We develop this method where the cryptographic primitives
are based on Carter-Wegman universal classes of hash func-
tions. This choice allows us to give specific quantitative
bounds rather than simply asymptotic bounds.

1. INTRODUCTION
Cryptographic protocols are simple sequences of messages

that use cryptography to achieve security goals such as au-
thentication and establishing new shared secrets. Despite
their simplicity, they are often wrong, sometimes disastrously.
Much work (including [5, 15, 16, 13, 21, 18, 22, 11]) has been
done to develop methods to ensure their correctness, start-
ing with Dolev and Yao [8], who represent encryption as a
free operator on terms, and abstract from the mathemati-
cal properties of particular cryptographic primitives. If an
attack succeeds against a protocol assuming this abstract,
perfect cryptography, then the same attack will also succeed

∗This work supported by the National Security Agency
under US Army CECOM contract number DAAB07-99-
C-C201. Author’s affiliations: The MITRE Corporation,
Bedford MA, USA, and also (for L. Zuck) New York Uni-
versity. Authors’ email addresses: guttman,jt@mitre.org
zuck@cs.nyu.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’01, November 5–8, 2001, Philadelphia, Pennsylvania, USA.
Copyright 2001 ACM 1-58113-385-5/01/0011 ...$5.00.

when the protocol is implemented with real cryptographic
primitives. By contrast, a proof that there are no attacks,
based on the assumption of abstract cryptography, will no
longer be valid when concrete, less-than-perfect primitives
are selected. Possibly a penetrator can manipulate the de-
tails of the cryptography to create attacks that would not
succeed against abstract encryption.

Goals of this paper One form of the Dolev-Yao ap-
proach, the strand space theory, has now developed conve-
nient methods to find what authentication and confidential-
ity goals a protocol achieves [11]; to determine when proto-
cols may safely be combined [10]; to determine when type in-
formation may safely be omitted from a protocol [12]; and to
generate protocols automatically to achieve given goals [19].
However, the approach relies on Dolev-Yao abstract cryp-
tography. In this paper, we begin to adapt the strand space
theory to the realities of cryptographic operators.

First, we show how to quantify the divergence between
concrete cryptographic operators and traditional abstract
encryption in the Dolev-Yao style, as used in a protocol,
introducing the notion of ε-faithfulness. A protocol secu-
rity goal, proved using abstract encryption, is ε-faithful to
a cryptographic primitive if the probability that execution
of the protocol—implemented using that primitive—violates
the goal is ≤ ε. Establishing ε-faithfulness requires some
stochastic assumptions. The security goals we will consider
in this paper are authentication goals [24, 14, 22].

Second, for a particular primitive, we give precise, quan-
titative bounds on this divergence. If an attack does not
succeed against a protocol with the perfect abstract cryp-
tography of the Dolev-Yao approach, then the likelihood it
succeeds against the same protocol when implemented us-
ing this cryptographic primitive is below the bound ε. The
particular primitive we consider here is a type of message
authentication code. A function is chosen (using a shared
secret) from a universal class in the sense of Carter and
Wegman [7, 23]; the protocol participants apply the chosen
function to their messages to construct tags. The tag serves
to authenticate that an attacker not privy to the shared
secret has not originated the message, or altered it before
delivery. We expect that our methods will also extend to
some other primitives, possibly symmetric key encryption
algorithms under statistical assumptions.

For Carter-Wegman tagging functions, we achieve spe-
cific bounds for a probability of failure such as ε = 2−32

(see Section 4.4). The bounds are based on parameters.
One parameter is the security parameter k, which summa-
rizes the lengths of randomly chosen values, such as keys.

Another parameter is the number of runs; it bounds how
many guesses the penetrator may make and how many ran-
dom values the regular participants must choose. In effect,
this parameter dictates a re-keying schedule. Keys must be
changed often enough to limit the number of sessions before
re-keying, counting all sessions by non-penetrator partici-
pants.

Our main ideas We use two main ideas to achieve our
goals. Both focus on the bundle as defined in previous work
on strand spaces [22, 11], which provides a model of pro-
tocol execution. A bundle is a directed graph describing
the behavior of the penetrator as well as the regular (non-
penetrator) principals. The arrows represent either message
transmission and reception (in which case they are writ-
ten as single arrows →) or the transition of a single princi-
pal through successive actions of a single session (in which
case they are written as double arrows ⇒). Bundles repre-
sent protocol execution using abstract encryption when the
messages transmitted and received belong to a suitable free
algebra. They represent protocol execution with particu-
lar cryptographic primitives when the messages transmitted
and received are bitstrings generated using those primitives.
We call bundles whose messages belong to a free algebra
abstract bundles, while we call bundles whose messages are
bitstrings concrete bundles.

Our first idea interrelates concrete and abstract bundles.
For each concrete bundle Bc, there is a possibly empty set
Φ(Bc) of corresponding abstract bundles. The correspon-
dence Φ has the property that if there exists an abstract
bundle Ba such that Ba ∈ Φ(Bc) and Ba satisfies an au-
thentication goal, then Bc satisfies the same authentication
goal. We find a condition on concrete bundles such that,
for any concrete bundle Bc satisfying this condition, Φ(Bc)
is non-empty. Therefore, if a concrete bundle Bc is a coun-
terexample to some authentication goal proved to hold of all
abstract bundles, then Bc does not satisfy our condition.

Our second idea helps quantify the probability that Φ(Bc) =
∅ for a concrete bundle Bc. We consider a random variable B
(in the sense of probability theory) taking concrete bundles
as values. We make some stochastic assumptions about B,
that certain parameters of the resulting bundles are stochas-
tically independent of each other. We also assume that cer-
tain parameters of the bundles are uniformly distributed.
From these assumptions, it follows that the probability that
B takes a value Bc such that Φ(Bc) = ∅ is less than a suitable
ε.

These two ideas therefore bound the divergence between
what may happen in concrete bundles Bc using the concrete
cryptographic primitive, when all abstract bundles Ba sat-
isfy some security goal.

Related Work Recent works by Pfitzmann et al. and
Abadi and Rogaway [20, 1] have studied types of concrete
cryptography that do not introduce additional attacks, be-
yond those predicted by the abstract protocol analysis. Or
more precisely, any strategy of the penetrator has a neg-
ligible probability of producing an attack. “Negligible” is
defined asymptotically in this line of work, to mean that the
probability of success decreases faster than 1/p(k), for any
polynomial p, as the security parameter k increases.

These conclusions are akin to those of Bellare and Rog-
away [4], who studied protocols without abstracting from
cryptography, and established security results for specific

A
Na

→ B A
Na

→ B

•

� �

←
[[B·A·Na·Nb]]f

• •

� � � �

←
[[B·A·Na·Nb]]f

•

� �

•

� �
[[A·Nb]]f

→ • •

� � � �
[[Nb]]f

→ •

� �

Figure 1: Intended Runs of map1 (left) and map1.1

Protocols

protocols directly from the way that specific cryptographic
operators are used in them. However, the newer work of
Abadi and Rogaway is a more convenient way to reach these
results, although the penetrator model of [1] is limited to a
passive adversary. The problem is split into a part specific
to the cryptographic primitives and a separate part specific
to the protocol. The protocol-specific part uses the abstract
cryptography of the Dolev-Yao tradition. Similarly, Pfitz-
mann et al. [20] separate a cryptographic lower layer from
an upper layer that applies formal methods (state machine
simulation, in their approach) to protocol analysis.

The asymptotic approaches do not lead to results as spe-
cific as ours. They show only that, for any polynomial p,
there exists some K0 such that for k ≥ K0, the likelihood of
success for the penetrator is below 1/p(k). They provide no
way to show a key length such as k = 128 bits is sufficient,
when the tolerance is ε = 1/(p(128)) for a particular p.

Not all work is asymptotic [2, 3], but the current paper
focuses on protocols with more multiparty interaction and
has a richer penetrator model.

2. BACKGROUND
In this section, we first describe the class of “pure authen-

tication protocols” that will be our focus in this paper, and
give an example (Section 2.1). We then review the strand
space ideas (Section 2.2).

2.1 Pure Authentication Protocols
The protocols that interest us in the current paper are

pure authentication protocols that involve honest partici-
pants, whom we will call regular principals, and a penetra-
tor. The regular principals agree on a tagging function f ,
shared among all of themselves, chosen from a large class
of possible functions. We assume the penetrator does not
know which function has been chosen.

For example, consider the protocol map1 of Bellare and
Rogaway [4], whose intended behavior is summarized on
the left in Figure 1. In this protocol, the initiator (called
A here) sends in the clear a nonce (random bit string) of
the form Na to start an exchange intended for a responder
(called B here). The responder B generates a fresh nonce
Nb, which we assume is distinct from Na, and responds to
A’s message by sending a term of the form [[B·A·Na·Nb]]f =
(B·A·Na·Nb) · f(B·A·Na·Nb). Since f is unknown to the
penetrator, the value f(B·A·Na·Nb) is intended to serve as
a signature, guaranteeing the integrity of the message to the
recipient. When the A receives [[B·A·Na·Nb]]f , it responds
with [[A·Nb]]f , thereby assuring B that the value Nb has
been received by A. Again, [[A·Nb]]f is really a concatena-
tion (A·Nb) · f(A·Nb).

map1 is a pure authentication protocol: If A has had a
run with intended respondent B, then B has undertaken at

least the first two steps of a run with intended initiator A,
and the runs agree on the nonces Na, Nb. Conversely, if B
has had a run with intended initiator A, then A has had a
run with intended respondent B, and the runs agree on the
nonces Na, Nb.

The protocols we consider here do not have the goal of
causing the participants to agree on any new secret. Of
course, preserving the secrecy of the choice of f is necessary.
However, if the secrecy of f fails, then the authentication
goals will also fail. Hence, we will not need to treat secrecy
goals directly.

Authentication goals require some freshness assumptions,
or as we call them, origination assumptions. For instance,
nonces should not be reused. In map1, if B reuses the nonce
Nb, then the penetrator can save [[A·Nb]]f , start sessions
purporting to be A, and complete the run as soon as B re-
uses Nb. We assume that in a bundle involving the value
Nb, there will be just one point in one session at which Nb

originates. By origination, we mean a message transmission
in which Nb is sent without having been received previously
in that session.

Using the authentication test method of [11], we can easily
show that map1 achieves its authentication goals. Indeed,
we may wonder about fine points, such as whether A’s name
is needed in the last message. Again using the same meth-
ods, we can show that the answer is no, and that the modi-
fied protocol map1.1, shown in Figure 1 on the right, which
omits A’s name from the last message, achieves the same
authentication goals for essentially the same reasons.

2.2 Strand Spaces
We very briefly summarize the ideas behind the strand

space model [22, 11]; see also Appendix A. Let A be a
set of messages that can be sent between principals; we are
interested in various choices of A. For each choice of A, we
assume that there is a subterm relation, written t < t′.

A strand is a sequence of message transmissions and re-
ceptions, where transmission of a term t is represented as +t
and reception of term t is represented as −t. Each vertical
column in Figure 1 shows a strand, assuming that particular
values are chosen for the parameters A, B, Na, and Nb. A
strand element is called a node. A strand space Σ is a set of
strands. (See Definition A.1.)

If s is a strand, 〈s, i〉 is the ith node on s. The rela-
tion n ⇒ n′ holds between nodes n and n′ if n = 〈s, i〉
and n′ = 〈s, i + 1〉. The relation n → n′ represents inter-
strand communication; it means that term(n1) = +t and
node term(n2) = −t. The two relations ⇒ and → jointly
impose a graph structure on the nodes of Σ. The vertices of
this graph are the nodes, and the edges are the union of ⇒
and →.

A term t originates at a node n = 〈s, i〉 if the sign of n is
positive; t < term(n); and t 6< term(〈s, i′〉) for every i′ < i.
Thus, n represents a message transmission that includes t,
and it is the first node in s including t. If a value originates
on only one node in the strand space, we call it uniquely orig-
inating ; uniquely originating values are desirable as nonces.
(See Definition A.2.)

A bundle is a causally well-founded collection of nodes and
arrows of both kinds. In a bundle, when a strand receives
a message m, there is a unique node transmitting m from
which the message was received. By contrast, when a strand
transmits m, many strands (or none) may receive m. (See

Definition A.3.)
A strand represents the local view of a participant in a

run of a protocol. For a legitimate participant, it represents
the messages that participant would send or receive as part
of one particular run of his side of the protocol. We call a
strand representing a legitimate participant a regular strand.
Typically, the regular strands of Σ are the instances of a
finite number of parameterized strands (See Section 3.1.)

For the penetrator, the strand represents an atomic de-
duction. More complex actions can be formed by connect-
ing several penetrator strands. While regular principals are
represented only by what they say and hear, the behavior
of the penetrator is represented more explicitly, because the
values he deduces are treated as if they had been said pub-
licly. We partition penetrator strands according to the oper-
ations they exemplify. C-strands and S-strands concatenate
and separate terms, respectively; K-strands emit keys from
a set of known keys; and M-strands emit known atomic texts
or guesses. In protocols which use a genuine encryption op-
erator, E-strands encrypt when given a key and a plaintext;
D-strands decrypt when given a decryption key and match-
ing ciphertext. (See Definition A.6.) We will adapt the E-
strands and D-strands below to reflect our current interest
in pure authentication protocols using tagging.

As an example of an authentication goal, consider the re-
sponder’s guarantee in map1. Suppose that the responder
B has a run apparently with A, using the nonces Na and
Nb. B may assume that the nonce Nb is uniquely origi-
nating, because he generates it himself using highly random
methods. B’s authentication guarantee is the implication:

�
B : if Nb is uniquely originating, then A has had a match-

ing run apparently with B, using the nonces Na and
Nb.

3. PROTOCOLS AND THEIR IMPLEMEN-
TATIONS

We turn now to the questions how to represent proto-
cols in the strand space theory (Section 3.1), and what it
means to implement protocols using concrete primitives or
abstract messages. We talk about algebras of bitstrings in
Section 3.2, and relate them to abstract (free) message al-
gebras in Section 3.3.

3.1 Representing Protocols in Strand Spaces
A protocol requires regular participants to play a number

of different roles, such as initiator, responder, or key server.
The protocol itself consists of a number of schematic strands,
one for each role played by the regular principals. These
schematic strands may be determined by programs executed
by the principals against their local state; our concern is
exclusively with the resulting behaviors.

A schematic strand consists of a parameter list X1, . . . , Xn,
together with a sequence of a fixed number of signed sche-
matic terms in which the parameters may occur. A signed
schematic term, in turn, is + or − together with a term in
which some parts have been replaced by parameters Xi. For
instance, the schematic strand map1Init[A, B, Na, Nb] that
has parameters A,B, Na, Nb and signed terms

〈+Na, −[[B·A·Na·Nb]]f , +[[A·Nb]]f 〉

defines the map1 initiator’s behavior. The responder’s be-
havior map1Resp[A, B, Na, Nb] is the complementary sche-

matic strand with behavior

〈−Na, +[[B·A·Na·Nb]]f , −[[A·Nb]]f 〉.

The parameters A, B range over names, while the param-
eters Na, Nb range over nonces. No parameter here ranges
over concatenated terms such as A·Na.

Given some particular algebra of messages A, we may
instantiate a schematic strand by choosing suitable values
from A for the parameters X1, . . . , Xn. The result is a
strand. The messages sent and received are the results of
filling in these values in place of the parameters in the suc-
cessive signed schematic terms.

We identify a protocol with the set of schematic strands
which specify it. A protocol may also have parameters. In
map1, the shared secret f is a parameter of the protocol
itself; given a value for f , all of the regular participants
use that value. That is why f is not listed as a param-
eter of the schematic strands. Thus, map1, acting with
shared secret f , as the set with two parametric strands,
Πf = {map1Init[A, B, Na, Nb],map1Resp[A, B,Na, Nb]}.

Given a message algebra A, a protocol Π determines a
strand space Σ, which we call the strand space generated by
Π over A. The instances of a schematic strand are all be-
haviors resulting from choosing values in A of appropriate
type for each parameter. The strand space Σ contains, as
its regular strands, instantiations of each schematic strands
with each appropriate value, for instance all bitstrings of
the correct length for a nonce Na, and all properly formed
domain names or IP addresses for a parameter ranging over
names. In map1, no strand can be an instance of both sche-
matic strands, because the patterns of + and − terms are
different, and this is effectively always the case.

There are two types of message algebra A that specially
interest us, each of which generates a strand space Σ from
a Π. First, there are free algebras, in which [[A·Nb]]f is a
term distinct from any constructed in a different way. Sec-
ond, there are algebras consisting of bitstrings, in which
concatenation is an operator (possibly a partially defined op-
erator) producing bitstrings from bitstrings. Likewise, the
tagging operator produces particular bitstrings when given
bitstrings as arguments, and it has collisions, i.e. cases in
which different messages yield the same tag.

In map1, the parameters range only over names and nonces,
not over concatenated or tagged terms. This is the case for
all (natural) pure authentication protocols, so we will as-
sume it throughout the remainder of the paper. The as-
sumption would not hold for other protocols, particularly
shared-key protocols using a key server, such as Otway-
Rees [17] or Carlsen [6]; see [11, Section 5.1.3] for an ex-
planation.

3.2 Implementing Protocols with Bitstrings
We consider first schemes that may be used to encode

messages via bitstrings.

An Example An atom consists of one letter followed
by a string of hexadecimal digits. The letter indicates its
intended use. Names or addresses begin with a. Randomly
chosen nonces begin with n; the set of such atoms is N. Tags
for verifying integrity begin with v; the set of such atoms is
V. Concatenations are s-expressions in the style of Lisp.
Two terms t0 and t1 are concatenated to form the string
‘(t0 . t1)’.

This is an unambiguous encoding, since it is always clear
whether a string represents an atom or a concatenation, and
if it is a concatenation, where each of the two arguments
begin and end. Every message is built from atoms by a
finite number of concatenations. The result of concatenation
may not always be a valid message. If the total number of
characters exceeds some maximum, then the message may
be rejected because it overflows the receiver’s input buffer.
If the depth of nested parentheses exceeds some maximum,
then it may be rejected because parsing it requires too large
a stack.

Tagging functions, by contrast, because they have colli-
sions. The output bitstrings are tags in V, typically of lim-
ited length, and the inputs may be bitstrings of arbitrary
length. However, in the case of map1, each tag immediately
follows the message body it is meant to validate. Given a
message body such as t = B·A·Na·Nb, the recipient knows
that the next component must be f(t). Thus, if tags in V

occur only in the context t·f(t), then there is never any am-
biguity about the body to which the tag applies, and every
occurrence of a tag contributes to representing an authen-
ticated message [[t]]f with no choice about what t is being
tagged. Tags occur nowhere else.

Rigid Schemes In a scheme such as the one we have
just described, any bitstring received by a principal can be
interpreted as a protocol message in at most one way, and
any message sent can be constructed in at most one way, give
the parameters selected. Thus, a principal always knows
uniquely what strand parameters are compatible with the
bitstrings it has received and sent. We say that a scheme
for encoding messages is rigid for a protocol when it has this
property.

A rigid scheme for a protocol Πf consists three ingredi-
ents: a set of bitstrings M , a concatenation function ·, and a
set F of possible tagging functions (where f ∈ F). We again
refer to the tags as V, and require that all f ∈ F have type
f : M → V. The atoms of the scheme, written atom(M),
are all values x ∈M such that x is not of the form t0·t1 for
any t0, t1 ∈ M ; we require that V ⊂ atom(M). We assume
that a bitstring in M can be a concatenation in at most one
way, and that every member of M may be built from atoms
by a finite sequence of concatenations.

We also require that tags v ∈ V occur only in the form t·v,
where v = f(t), in messages of Πf . Thus, tags contribute
only to tagging messages [[t]]f .

Definition 3.1. If (M, ·,F) is a rigid scheme, then the
subterm relation for it, written t0 < t1, is the smallest re-
flexive, transitive relation such that t < t·t′ and t′ < t·t′.

A bundle, whose messages are encoded as bitstrings using a
rigid scheme, will be called a concrete bundle, and usually
denoted by Bc.

Given a protocol under a rigid scheme and a bundle Bc,
each regular strand in Bc has a unique set of possible param-
eters, which are names (of participants) or nonces. Thus,
parameters are in atom(M) \ V, the set of atoms that are
not tags.

Penetrator Strands In the concrete model, the pen-
etrator can do anything. The penetrator can choose any
bitstring to deliver, or given a number of bitstrings, can ap-
ply any function g to them to determine a new bitstring to
deliver. Thus any strand of the form 〈−x1 ⇒ · · · − xn ⇒

+g(x1, . . . , xn)〉 is a penetrator strand, which we call a g-
strand.

In case n = 0, a g-strand amounts to guessing a constant
value g() independent of input; for instance, the penetrator
may choose any pair a · v to deliver when a tagged value
is needed. Indeed, he may choose a · v for v = f(a) with-
out knowing that he did so, and may thus apply f -strands
unknowingly.

3.3 Free Message Algebras
Given a rigid scheme for a protocol Πf , we define an as-

sociated abstract (free) encryption algebra. We regard the
set of tagging functions as if they were keys, because they
are a shared secret. Being functions, though, these “keys”
are never transmitted as part of a message belonging to the
protocol.

Definition 3.2. Let (M, ·,F) be a rigid scheme for Πf .
The algebra E of abstract tagging over (M, ·,F) is freely
generated from:

• two sets: texts in atom(M) \ V and “keys” in F,

• via two operations: concatenation ·E and tagging [[t]]f
for t ∈ E and f ∈ F.

If the protocol Πf consists of a set of parameterized strands
Rolei[X1, . . . , Xni

], and the parameters Xj range only over
atoms in atom(M)\V, then we can regard it as determining
messages in either M or E. We write RoleM

i or RoleE

i when
we want to distinguish them.

What protection is offered by tagging? Although only
someone possessing f can create [[h]]f from h, anyone can
extract h from [[h]]f . Thus, we adapt the penetrator strands
shown in Definition A.6 slightly, replacing the decryption
penetrator strand with the untagging strand shown here,
and updating the encryption strand to our tagging notation:

Eh,f Encryption: 〈−f, −h, +[[h]]f 〉

Uh Untagging: 〈−[[h]]f , +h〉

We refer to these strands and the remaining M, K, C, and S

strands from Definition A.6 as abstract penetrator strands.
We are interested in the case where the protocol Πf is

executed using a secret tagging function hidden from the
penetrator, so we assume that f 6∈ KP , the set of keys ini-
tially available to the penetrator.

3.4 Bundle Abstraction
Suppose that we have a pure authentication protocol Π =
{Rolei[X1, . . . , Xni

] : 1 ≤ i ≤ n}, implemented using a rigid
scheme (M, ·,F). Let Bc be a concrete bundle, and suppose
s is a regular strand with some nodes occurring in Bc. Possi-
bly only an initial segment of s is in Bc. We say the B-height
of a strand is the number of nodes of s in B. If s has no
nodes in B, then its B-height is 0.

Since the operations yield bitstrings as determined by
(M, ·,F), the messages sent and received in s are partic-
ular bitstrings in M . From Section 3.2, we know that there
is a unique parameterization of s as some RoleM

i [~a], and the
parameters ~a are atoms of M which are not tags. Therefore,
these parameters are also atoms of E, the algebra of abstract
tagging corresponding to (M, ·,F), and there is also an ab-
stract strand s′ = RoleE

i [~a], in which the same parameters

determine abstract terms using the free algebra. The ab-
stract skeleton of Bc is the result of transforming each reg-
ular strand s of Bc in this way, annotating each resulting
strand with the Bc-height of s.

Definition 3.3. The abstract skeleton of Bc, which we
write skel(Bc), is the set of pairs (s′, h) where s′ = RoleE

i [~a]
and h > 0 is the Bc-height of s = RoleM

i [~a].

The abstract skeleton skel(Bc) is not an abstract bundle; it
is simply a set of regular strands annotated with heights.
We also sometimes regard it as a set of nodes, namely the
first h nodes on s when (s′, h) is in skel(Bc).

Although skel(Bc) is not a bundle, we may be able to
turn it into a bundle by adding abstract penetrator strands
and connecting message transmissions and receptions using
arrows →. There may be multiple ways to do so. Alterna-
tively, if the penetrator exploited something peculiar in the
way the bitstrings worked out in Bc, it may be impossible to
mimic this via abstract penetrator strands. We then regard
Bc as having been a lucky outcome from the penetrator’s
point of view.

Definition 3.4. Φ(Bc) is the set of all abstract bundles
Ba such that for regular strands s′, the Ba-height of s′ = h
and h > 0 if and only if (s′, h) ∈ skel(Bc).

If Φ(Bc) = ∅, then Bc is a lucky strike.

A lucky strike is a concrete bundle that is inexplicable, rel-
ative to the abstract model of the powers of the penetrator.
The penetrator either guessed or did something specific to
the way that concatenation and tagging interact with the
bitstrings in M .

3.5 Lucky Strikes and Forgeries
There is only one way that a lucky strike can occur: The

penetrator selects a tag v ∈ V, and delivers t·v to a reg-
ular participant, who verifies that v = f(t). We call this
a forgery. Of course, it is anomalous only if no regular par-
ticipant has previously sent t·v. We understand previously
by the bundle partial ordering �B (Definition A.4) accord-
ing to which n0 �B n1 if there is a path of zero or more
arrows → and ⇒ in B leading from n0 to n1.

Definition 3.5. A forgery is a negative regular node n1 ∈
Bc such that t·f(t) < term(n1) and there is no positive regu-
lar node n0 ∈ Bc such that n0 �Bc

n1 and t·f(t) < term(n0).

In the Introduction we mentioned the need for a property
that ensures that Φ(Bc) is non-empty. This is the property
of containing no forgeries.

Proposition 3.6. If Bc is a lucky strike, then there exists
a forgery n1 ∈ Bc.

Proof. Suppose that there is no forgery in Bc; we show
that Bc is not a lucky strike by building an abstract bundle
Ba from skel(Bc). We do so by starting with the empty
abstract bundle B0. Inductively we define a sequence of
abstract bundles; at each step Bi+1 has one new regular
node, together with 0 or more penetrator nodes and new
arrows as needed.

If all of the nodes in skel(Bc) have been used, then we
have constructed Ba. Otherwise, let nc be a regular node
in Bc that is �-minimal (in the precedence ordering for Bc)
among nodes not yet used, and let na be the corresponding

node in skel(Bc). Bi+1 will contain na. To satisfy the bundle
definition, we must construct term(na) from nodes already
in Bi together with new penetrator nodes if needed. Using
C-strands, we can build term(na) if given all of its atomic
components and all of its tagged components [[t]]f .

If m is an atomic component of term(na), then as noted
before Definition 3.2, m is not a key f ∈ F ; keys are not
transmitted in these protocols. Thus, we may add an M-
strand initiating m. If [[t]]f is a tagged component, then by
the assumption that there is no forgery in Bc, some regular
node n0 � nc emits the corresponding bitstring. By the
�-minimality of nc, the regular node corresponding to n0 is
already in Bi.

Thus, in all cases, we may construct Bi+1. By the finite-
ness of Bc this process must terminate with all of the nodes
in skel(Bc) used. �

By this proposition, if an authentication property holds of
all abstract bundles, then a concrete bundle is not a coun-
terexample unless it has a forgery. To quantify the diver-
gence between possible concrete behaviors and the abstract,
Dolev-Yao model, and to prove ε-faithfulness in the sense
of our Introduction, we must show that the probability of a
bundle having a forgery is ≤ ε. We show how to do this in
Section 4.3.

There is another reason why authentication may fail, apart
from forgery. An authentication theorem such as

�
B in

Section 2.2 states an implication: if a regular participant
chooses uniquely originating nonces, then its peer has en-
gaged in a matching strand. However, two regular principals
could choose the same nonce. Then the conclusion might not
be true.

In Section 4.4, we bound the probability of this event.
We combine the bound on the likelihood of forgery with the
bound on the likelihood of nonce collision to infer an overall
bound on the risk of authentication failure, assuming the
protocol is correct in the abstract Dolev-Yao model.

4. STOCHASTIC MODEL
To bound the probability that a concrete bundle contains

a forgery, we need a stochastic model of protocol behavior.
This model consists of an underlying probability space, to-
gether with some random variables1 that extract aspects of
the behavior. We must assume some constraints, which re-
quire either that a random variable is uniformly distributed,
or else that random variables are independent of one an-
other.

We call the probability space (Ω, P). For convenience, we
assume that it is finite, as we may do because the sets of
messages (bitstrings of bounded size) are finite and the size
of the bundles of interest are bounded. (Ω, P) encapsulates
an array of information including the choice of nonces and
of interlocutors by the regular participants.

We assume that the penetrator has some strategy. It
determines his behavior as a function of two arguments,
namely first what he observes of the regular participants
and second some random choices determined by the prob-
ability space. The strategy determines the behavior of the
penetrator, including his choices about what genuine mes-
sages to deliver, and especially what messages and tags to
try as forgeries. A protocol implementation is ε-faithful to

1A random variable (sometimes we write just “variable”) is
a function on the underlying probability space.

an authentication goal
�

if the ε bounds the probability of
the event that a bundle is chosen in which

�
fails.

4.1 Random Variables
Each choice of ω ∈ Ω determines a bundle B(ω). We

assume that the regular strands of B(ω) are ordered in some
arbitrary way, so that Si(ω) enumerates skel(B(ω)), as a
function of i. The model focuses on 4 random variables.

1. The random variable F : Ω→ F determines the secret
tagging function f .

2. The random variable R : Ω → {0, 1}∗ is the penetra-
tor’s source of randomness.

3. The random variable N : Ω → (� × �) → N deter-
mines, given integers i and j, the jth nonce chosen to orig-
inate on the ith regular strand Si(ω).

4. The random variable T : Ω→ (� × �) → (M ×V) de-
termines, given integers i and j, the jth tagged value t·f(t)
sent by the ith regular strand Si(ω).

In map1, regular strands use a single nonce, so N(ω)(i, j) is
defined only when j = 1. Likewise, they send a single tagged
message each, so T (ω)(i, j) is also defined only when j = 1.
T is certainly not independent of N , since a fresh nonce
is part of each tagged message sent by a regular strand.
Likewise, T is not independent of F , because the values T
delivers are pairs 〈t, f(t)〉. However, we assume below that
this is the only dependence of T on F , i.e. that the values of
the first components t are independent of F (Assumption 2).

The key aspect of penetrator behavior is the set of forgery
attempts. We formalize the penetrator strategy by a func-
tion G(T (ω), R(ω)) which, given the signed messages sent
by the regular participants and the penetrator’s random-
ness, returns a set of pairs (b, v) ∈ M × V. The pene-
trator’s forgery attempts in B(ω) are the messages b·v for
(b, v) ∈ G(T (ω),R(ω)). For these to be forgeries rather than
replays, the messages b must be different from those sent by
the regular participants, so we assume that there is no mes-
sage b and tags v, v′ such that (b, v) ∈ G(T (ω), R(ω)) and
(b, v′) = T (ω)(i, j).

B(ω) has a successful forgery if a value in G(T (ω), R(ω))
has the form b·f(b) where f = F (ω). Thus, we are interested
in the event

forge = {ω : for some (b, v) ∈ G(t, r), v = F (ω)(b)}

whose probability we want to show is small, conditional on
any particular values T (ω) = t and R(ω) = r.

4.2 Model Assumptions
We need to make assumptions that some of the variables

are independent and that some are uniformly distributed.
We regard N(ω)(i, j) as a family of nonce-valued random
variables indexed by i and j.

Assumption 1. Any two different variables N(ω)(i, j) and
N(ω)(i′, j′) are independent, and each variable N(ω)(i, j) is
uniformly distributed.

This assumption is used only in Section 4.4.
Let fst be the function that delivers the first component of

a pair, so that fst ◦T is the function that delivers the bodies
but not the tags of the tagged messages sent by regular
participants.

Assumption 2. The variable F is stochastically indepen-
dent of R and T ′ = fst ◦T taken jointly:

P{F (ω) = f ∧ T ′(ω) = x ∧ R(ω) = r} =

P{F (ω) = f} · P{T ′(ω) = x ∧ R(ω) = r}

Hence, F and R are pairwise independent, as are F and T ′.

Assumption 3. The distribution of F on F is uniform,
that is, for any E ⊆ F

P{F (ω) ∈ E} =
cardE

cardF

The protocol limits the number of new nonces sent by a
single regular strand. It also limits the number of signed
expressions sent by a single regular strand. And it limits
the number of signed expressions that can be received by a
single regular strand. In map1, all of these numbers equal 1,
though in another protocol they may have some maximum
ν. Therefore, if a bundle Bc has at most Γ many regular
strands, the risk of two strands re-using a nonce is limited
because only Λ = ν times Γ nonces are used. The number
of samples of the tagging function f that the regular partic-
ipants show the penetrator is limited by Λ. And the number
of forgeries that the penetrator may submit to the regular
participants is bounded by Λ.

Assumption 4. The number of nonces, tagged values sent,
and tagged values received on regular nodes in B(ω) is bounded
by some value Λ.

This assumption is part of the justification for taking Ω to
be finite. The restriction to no more than Γ many regular
strands is ultimately justified by a re-keying schedule. We
require the participants to agree on a new value of f before
Γ many sessions can have occurred.

4.3 The Probability of Forgery
Given a particular ω, the penetrator may observe t =

T (ω) and r = R(ω), the first being the tagged messages
chosen by the regular participants and the second being the
penetrator’s source of randomness. The penetrator uses G to
choose forgery attempts, so we must bound P(forge | T (ω) =
t ∧R(ω) = r), i.e.

P{for some (b, v) ∈ G(t, r), v = F (ω)(b)
| T (ω) = t ∧ R(ω) = r}

The penetrator, having observed the regular participants
sending the signed messages in T (ω), can exclude some tag-
ging functions f ∈ F , because they are incompatible with
a signed message t·v = T (ω)(i, j). We refer to the set of
remaining candidates as the part of F compatible with ω,
or Fω, where

Fω = {g ∈ F : ∀i, j, t, v .
T (ω)(i, j) = (t, v) implies g(t) = v}

Calculation using Assumptions 2 and 3 yields

P(forge | T (ω) = t ∧R(ω) = r) =
card({g ∈ Fω : ∃(b, v) ∈ G(t, r) , g(b) = v})

card(Fω)

which in turn equals P({g ∈ Fω : ∃(b, v) ∈ G(t, r) . g(b) =
v}), by uniformity.

Suppose now that the set of tagging functions F is a uni-
versal class, following the classic papers by Carter and Weg-
man [7, 23]. We define the notion in the form:

Definition 4.1. A set of functions F ⊆ Y X is n-strongly
universal just in case the following two conditions are met:
(1) card(X) is at least n, and (2) if x1, . . . , xn are any n
pairwise distinct values in X, then the distribution of the
evaluation mapping f 7→ 〈f(x1), . . . , f(xn)〉 is uniformly
distributed.

In Appendix B we give an example of an n-strongly universal
class (Example B.4), and derive a key lemma (Lemma B.7):

Lemma 4.2. If F ⊆ Y X is n-strongly universal then F,
then for any ` ≤ n and x1, . . . , x` ∈ X, and any y1, . . . , y` ∈
Y ,

P{f ∈ F : ∃i ≤ ` . f(xi) = yi} ≤
`

card Y
.

Observe that if F is n-universal and T (ω) provides at most
m tagged messages, then Fω is (n−m)-universal. We there-
fore take F to be (2 Λ)-universal and apply Lemma 4.2, in-
stantiating F with Fω, and observing that ` ≤ Λ. This
last inequality is justified because Λ bounds the number of
forgery attempts `. Thus,

P(forge) ≤
Λ

card(V)
.

4.4 Likelihood of Anomalies
In the analysis of bundles by the abstract bundle represen-

tation theorem (Proposition 3.6), there are two events whose
likelihood we would like to bound. Either could cause a fail-
ure of the conclusion that the bundle contains a matching
strand, as in the authentication goal

�
B of Section 2.2. One

is forge; the other is that the regular participants choose
clashing nonces, which we define:

clash = {ω : N(ω)(i, j) = N(ω)(i′, j′)

where i 6= i′ or j 6= j′}

Since by Assumption 1 the random variables N(ω)(i, j) are
uniformly distributed and mutually independent, determin-
ing a bound on the likelihood of a nonce anomaly is a spe-
cial case of the “birthday problem” [9]. The total number
of choices is bounded by Λ, so the likelihood of at least one
collision is bounded above by Λ(Λ − 1)/2 card(N).

As an example, consider a tolerance of ε = 2−32 for the
likelihood of forgeries and clashes together, where we will
allocate half of ε for each type of anomaly. If nonces are
given by 64-bit strings, then card(N) = 264. To ensure that
independent choices of Λ nonces has probability of anomaly
below ε/2, it suffices to restrict Λ so that Λ2/2·264 ≤ 2−33,
i.e., Λ ≤ 216 = 65, 536. If, for example, we would like to use
a shared secret choice of f without change for a year, this
would allow 175 strands per day, since 65, 000/365 > 175.

For the case of forgeries, P(forge) ≤ Λ/ card V. We must
use Carter-Wegman hash functions which are (2 Λ)-strongly
universal with Λ = 216 as before, i.e. 217 − universal. To
ensure that Λ/ cardV ≤ 2−33, we need card V ≥ 249, so that
64-bit tags are ample.

Thus with Λ = 216, the likelihood of an authentication
failure is

ε ≤ P(forge) + P(clash) ≤ 2−33 + 2−33 ≤ 2−32

Each tag calculation requires substantial computation, but
the rekeying is infrequent and the risk of authentication fail-
ure is very low. These numbers are only illustrative; the

point is that we have described a comprehensive method
that yokes abstract protocol design and verification using
strand spaces to low-level calculations of the risk of security
compromise.

5. CONCLUSION
In this paper we have shown that abstract encryption is

faithful in the sense that, when a protocol meets its secu-
rity goals in an abstract model like the strand space model,
then the probability that a penetrator can defeat it is be-
low a suitable ε such as 2−32. Specifically, we have estab-
lished this in the case in which the cryptographic primitive
is Carter-Wegman hashing; the protocol uses a single secret
shared among all participants; and the implementation of
the protocol is rigid in the sense of Section 3.2. It is likely
that the restriction to a single shared secret is unnecessary.
It is also likely that some other types of cryptography lead
to analogous results.

6. REFERENCES
[1] Mart́ın Abadi and Phillip Rogaway. Reconciling two

views of cryptography (the computational soundness
of formal encryption). In IFIP International
Conference on Theoretical Computer Science (IFIP
TCS2000), Lecture Notes in Computer Science.
Springer-Verlag, 2000.

[2] Mihir Bellare. Practice-oriented provable security. In
E. Okamoto, G. Davida, and M. Mambo, editors, First
International Workshop on Information Security (ISW
97), volume 1396 of LNCS. Springer Verlag, 1998.

[3] Mihir Bellare, J. Killian, and Phillip Rogaway. The
security of cipher block chaining. In Yvo Desmedt,
editor, Advances in Cryptology — Crypto 94, volume
839 of LNCS. Springer Verlag, 1994.

[4] Mihir Bellare and Phillip Rogaway. Entity
authentication and key distribution. In Advances in
Cryptology – Crypto ’93 Proceedings. Springer-Verlag,
1993. Full version available at
http://www-cse.ucsd.edu/users/mihir/papers/eakd.ps.

[5] Michael Burrows, Mart́ın Abadi, and Roger Needham.
A logic of authentication. Proceedings of the Royal
Society, Series A, 426(1871):233–271, December 1989.
Also appeared as SRC Research Report 39 and, in a
shortened form, in ACM Transactions on Computer
Systems 8, 1 (February 1990), 18-36.

[6] Ulf Carlsen. Optimal privacy and authentication on a
portable communications system. Operating Systems
Review, 28(3):16–23, 1994.

[7] J. Lawrence Carter and Mark N. Wegman. Universal
classes of hash functions. Journal of Computer and
System Sciences, 18:143–54, 1979.

[8] D. Dolev and A. Yao. On the security of public-key
protocols. IEEE Transactions on Information Theory,
29:198–208, 1983.

[9] W. Feller. An Introduction to Probability Theory and
its Applications. John Wiley and Sons, Inc., New
York, 1958.

[10] Joshua D. Guttman and F. Javier Thayer Fábrega.
Protocol independence through disjoint encryption. In
Proceedings, 13th Computer Security Foundations
Workshop. IEEE Computer Society Press, July 2000.

[11] Joshua D. Guttman and F. Javier Thayer Fábrega.
Authentication tests and the structure of bundles.
Theoretical Computer Science, 2001. To appear.

[12] James Heather, Gavin Lowe, and Steve Schneider.
How to prevent type flaw attacks on security
protocols. In Proceedings, 13th Computer Security
Foundations Workshop. IEEE Computer Society
Press, July 2000.

[13] Gavin Lowe. Breaking and fixing the
Needham-Schroeder public-key protocol using FDR.
In Proceeedings of tacas, volume 1055 of Lecture
Notes in Computer Science, pages 147–166. Springer
Verlag, 1996.

[14] Gavin Lowe. A hierarchy of authentication
specifications. In 10th Computer Security Foundations
Workshop Proceedings, pages 31–43. IEEE Computer
Society Press, 1997.

[15] Catherine Meadows. A model of computation for the
NRL protocol analyzer. In Proceedings of the
Computer Security Foundations Workshop VII, pages
84–89. IEEE, IEEE Computer Society Press, 1994.

[16] Jonathan K. Millen. The Interrogator model. In
Proceedings of the 1995 IEEE Symposium on Security
and Privacy, pages 251–60, 1995.

[17] D. Otway and O. Rees. Efficient and timely mutual
authentication. Operating Systems Review, 21(1):8–10,
January 1987.

[18] Lawrence C. Paulson. Proving properties of security
protocols by induction. In 10th IEEE Computer
Security Foundations Workshop, pages 70–83. IEEE
Computer Society Press, 1997.

[19] Adrian Perrig and Dawn Xiaodong Song. Looking for
diamonds in the desert: Extending automatic protocol
generation to three-party authentication and key
agreement protocols. In Proceedings of the 13th IEEE
Computer Security Foundations Workshop. IEEE
Computer Society Press, July 2000.

[20] Birgit Pfitzmann, Matthias Schunter, and Michael
Waidner. Cryptographic security of reactive systems.
Electronic Notes in Theoretical Computer Science, 32,
2000.

[21] Steve Schneider. Verifying authentication protocols
with CSP. In Proceedings of the 10th IEEE Computer
Security Foundations Workshop, pages 3–17. IEEE
Computer Society Press, 1997.

[22] F. Javier Thayer Fábrega, Jonathan C. Herzog, and
Joshua D. Guttman. Strand spaces: Proving security
protocols correct. Journal of Computer Security,
7(2/3):191–230, 1999.

[23] Mark N. Wegman and J. Lawrence Carter. New hash
functions and their use in authentication and set
equality. Journal of Computer and System Sciences,
22:265–79, 1981.

[24] Thomas Y. C. Woo and Simon S. Lam. Verifying
authentication protocols: Methodology and example.
In Proc. Int. Conference on Network Protocols,
October 1993.

APPENDIX

A. STRANDS AND THE PENETRATOR
In this appendix, we define the basic strand space notions

used in the body of the paper. This material is derived
from [22, 11].

A.1 Strand Spaces
Consider a set A, the elements of which are the possi-

ble messages that can be exchanged between principals in a
protocol. We will refer to the elements of A as terms. We
assume that a subterm relation is defined on A. t0 < t1
means t0 is a subterm of t1. We also assume that A has a
concatenation operator · and possibly also a cryptographic
operator. We write {|t|}K for the result of applying the cryp-
tographic operator to t using the secret K.

In a protocol, principals can either send or receive terms.
We represent transmission of a term as the occurrence of
that term with positive sign, and reception of a term as its
occurrence with negative sign.

Definition A.1. A signed term is a pair 〈σ, a〉 with a ∈
A and σ one of the symbols +,−. We will write a signed
term as +t or −t. (±A)∗ is the set of finite sequences of
signed terms. We will denote a typical element of (±A)∗ by
〈 〈σ1, a1〉, . . . , 〈σn, an〉 〉.

A strand space over A is a set Σ together with a trace
mapping tr : Σ→ (±A)∗.

By abuse of language, we will still treat signed terms as
ordinary terms. For instance, we shall refer to subterms of
signed terms. We will usually represent a strand space by
its underlying set of strands Σ.

Definition A.2. Fix a strand space Σ.

1. A node is a pair 〈s, i〉, with s ∈ Σ and i an integer
satisying 1 ≤ i ≤ length(tr(s)). The set of nodes is
denoted by N . If n = 〈s, i〉 ∈ N then index(n) = i and
strand(n) = s. Define term(n) to be (tr(s))

i
, i.e. the

ith signed term in the trace of s.

2. There is an edge n1 → n2 if and only if term(n1) = +a
and term(n2) = −a for some a ∈ A. Intuitively, the
edge means that node n1 sends the message a, which
is received by n2, recording a potential causal link be-
tween those strands.

3. When n1 = 〈s, i〉 and n2 = 〈s, i + 1〉 are members of
N , there is an edge n1 ⇒ n2. Intuitively, the edge
expresses that n1 is an immediate causal predecessor
of n2 on the strand s.

4. Suppose I is a set of unsigned terms. The node n ∈ N
is an entry point for I iff term(n) = +t for some t ∈ I,
and whenever n′ ⇒+ n, term(n′) 6∈ I.

5. An unsigned term t originates on n ∈ N iff n is an
entry point for the set I = {t′ : t < t′}.

6. An unsigned term t is uniquely originating in a set of
nodes S ⊂ N iff there is a unique n ∈ S such that t
originates on n.

7. An unsigned term t is non-originating in a set of nodes
S ⊂ N iff there is no n ∈ S such that t originates on
n.

A.2 Bundles and Causal Precedence
A bundle is a finite subgraph of the graph 〈N , (→ ∪ ⇒)〉,

for which we can regard the edges as expressing the causal
dependencies of the nodes.

Definition A.3. Suppose →C ⊂ →; suppose ⇒C ⊂ ⇒;
and suppose C = 〈NC, (→C ∪ ⇒C)〉 is a subgraph of 〈N , (→
∪ ⇒)〉. C is a bundle if:

1. NC and →C ∪ ⇒C are finite.

2. If n2 ∈ NC and term(n2) is negative, then there is a
unique n1 such that n1 →C n2.

3. If n2 ∈ NC and n1 ⇒ n2 then n1 ⇒C n2.

4. C is acyclic.

In conditions 2 and 3, it follows that n1 ∈ NC , because C is
a graph.

Definition A.4. If S is a set of edges, i.e. S ⊂→ ∪ ⇒,
then ≺S is the transitive closure of S, and �S is the reflex-
ive, transitive closure of S.

The relations ≺S and �S are each subsets of NS×NS , where
NS is the set of nodes incident with any edge in S.

Proposition A.5. Suppose C is a bundle. Then �C is a
partial order, i.e. a reflexive, antisymmetric, transitive re-
lation. Every non-empty subset of the nodes in C has �C-
minimal members.

A.3 Penetrator Strands
The actions available to the penetrator in the abstract

Dolev-Yao model are relative to the set of keys that the
penetrator knows initially. We encode this in a parameter,
the set of penetrator keys KP .

Definition A.6. A penetrator trace relative to KP is one
of the following:

Mt Text message: 〈+t〉 where t ∈ T

KK Key: 〈+K〉 where K ∈ KP

Cg,h Concatenation: 〈−g, −h, +g·h〉

Sg,h Separation: 〈−g·h, +g, +h〉

Eh,K Encryption: 〈−K, −h, +{|h|}K 〉

Dh,K Decryption: 〈−K−1, −{|h|}K , +h〉

PΣ is the set of all strands s ∈ Σ such that tr(s) is a pene-
trator trace.

A strand s ∈ Σ is a penetrator strand if it belongs to PΣ,
and a node is a penetrator node if the strand it lies on is a
penetrator strand. Otherwise we will call it a regular strand
or node.

B. CARTER-WEGMAN HASH FUNCTIONS
We now develop Carter-Wegman universal classes [7, 23]

to establish Lemma 4.2.

Definition B.1. φ : X → Y is uniformly distributed
iff φ maps the uniform distribution on X to the uniform
distribution on Y . Thus,

card � φ−1(A) �
card(X)

=
card(A)

card(Y)

for every A ⊆ Y .

Alternatively, φ is uniform iff the inverse image of each
y ∈ Y has cardinality card(X)/ card(Y).

For any φ : X → Y , X is the disjoint union of the sets
φ−1(y) for y ∈ Y . Uniform distribution means that all these
sets have the same cardinality. Intuitively, uniformly dis-
tributed maps decompose X as a “product” Y ×H.

Example B.2. Let V, W be finite dimensional vector spaces
over the finite field � q . An linear map T : V → W is uni-
formly distributed iff it is surjective. This will be the case iff
dim V − dim kerT = dim W .

Proof. If T is surjective and w ∈ W , then T−1(w) is an
subspace of dimension T−1(0).

Definition B.3. A set of functions F ⊆ Y X is n-strongly
universal iff card(X) is at least n and for any pairwise dis-
tinct x1, . . . , xn ∈ X, the evaluation mapping

f 7→ 〈f(x1), . . . , f(xn)〉

is uniform. Equivalently, for pairwise distinct x1, . . . , xn ∈
X

P{f ∈ F : 〈f(x1), . . . , f(xn)〉 = 〈y1, . . . , yn〉} =
1

(cardY)n

The definition requires that the x1, . . . , xn be pairwise
distinct. If some of the xi’s coincide, then 〈f(x1), . . . , f(xn)〉
lies on a proper subspace of Y n, in which case the evaluation
mapping is non-uniform.

Example B.4. If q ≥ n, the space of polynomial func-
tions p : � q → � q with deg(p) ≤ n − 1 is n-strongly univer-
sal. This follows from linearity of the evaluation mapping
p 7→ (p(θ1), . . . , p(θn)) and Lagrange interpolation.

As a special case, the space of affine mappings x 7→ ax + b
on finite fields is 2-strongly universal.

Note that the usual definition of n-strong universality does
not require that card(X) be at least n. However, without
this assumption, the following lemma fails.

Lemma B.5. If F ⊆ Y X is n-strongly universal then F
is m strongly universal for m ≤ n.

Proof. If x1, . . . xm are pairwise distinct, extend to a pair-
wise distinct sequence x1, . . . xn, which exists since card(X)
is at least n, and use the fact the composition of uniform
mappings is uniform. �

Given x1, . . . x` ∈ X, let us refer to a set of the form
{i : 1 ≤ i ≤ `∧xi = x} as an index class. The set C of index
classes clearly partition the set {1, . . . , `}.

Lemma B.6. If F ⊆ Y X is n-strongly universal, then for
any x1, . . . , xn ∈ X (distinct or not) and y1, . . . , yn ∈ Y ,

P{f ∈ F : 〈f(x1), . . . , f(xn)〉 = 〈y1, . . . , yn〉} =

�
(card Y)−`

or 0

where ` ≤ n is the number of distinct x1, . . . , xn.

Proof. Consider the two cases: yi = yj whenever i, j be-
long to the same index class and yi 6= yj for some i, j be-
longing to the same index class. In the first case, we can
reduce the result to the previous case by choosing an i in
each index class. In the second case, there clearly can be no
f ∈ F in the preimage of 〈y1, . . . , yn〉. �

We write 〈x1, . . . , xn〉 1 〈y1, . . . , yn〉 to mean that corre-
sponding elements are distinct, i.e. xi 6= yi for all i with
1 ≤ i ≤ n.

Lemma B.7. If F ⊆ Y X is n-strongly universal, then for
any ` ≤ n and x1, . . . , x` ∈ X, y1, . . . , y` ∈ Y

P{f ∈ F : 〈f(x1), . . . , f(x`)〉 1 〈y1, . . . , y`〉} ≥ 1−
`

cardY
.

Equivalently, P{f ∈ F : ∃i ≤ ` . f(xi) = yi} ≤ `/cardY .

Proof. Assume first x1, . . . , x` ∈ X are distinct. By `-
strong universality, for each z1, . . . , z` ∈ Y with

P{f ∈ F : 〈f(x1), . . . , f(x`)〉 = 〈z1, . . . , z`〉} = � 1

card Y � `

.

Now sum the previous inequality over z1, . . . , z` for which
for all i, 1 ≤ i ≤ `, zi 6= yi. The cardinality of this set is

� card Y − 1 � `
so clearly in this case

P{f ∈ F : 〈f(x1), . . . , f(x`)〉 1〈z1, . . . , z`〉}

≥ � 1−
1

cardY � `

≥1 −
`

card Y
.

as claimed.
Now consider the case in which there is one index class,

but the yi’s are all distinct. In this case, the only way to get
〈f(x1), . . . , f(x`)〉 1 〈y1, . . . , y`〉 is by choosing the common
value of f(xi) distinct from all y1, . . . , y`. By Assumption 3,
the likelihood of this happening is 1− `/ card(V).

The other cases fall somewhere in between. The case in
which yi = yj whenever i, j belong to the same index class
easily reduces to the first case, by selecting an iC ∈ C for
each index class C.

In the general case, note that the inequality worsens (that
is, the left hand side decreases) as the number of yj ’s in-
creases for each index class. Thus if we assume the number
of yj ’s is as large as possible for each index class C, namely
card(C) we obtain:

P{f ∈ F : 〈f(x1), . . . , f(x`)〉 1〈z1, . . . , z`〉}

≥ �
C∈C

� 1−
cardC

cardY �
≥1 − �

C∈C

card C

card Y

=1 −
`

card Y

