
Cryptographic Protocol Composition
via the Authentication Tests?

Joshua D. Guttman

The MITRE Corporation

Abstract. Although cryptographic protocols are typically analyzed in
isolation, they are used in combinations. If a protocol Π1, when analyzed
alone, was shown to meet some security goals, will it still meet those goals
when executed together with a second protocol Π2? Not necessarily:
for every Π1, some Π2s undermine its goals. We use the strand space
“authentication test” principles to suggest a criterion to ensure a Π2

preserves Π1’s goals; this criterion strengthens previous proposals.
Security goals for Π1 are expressed in a language L(Π1) in classi-

cal logic. Strand spaces provide the models for L(Π1). Certain homo-
morphisms among models for L(Π) preserve the truth of the security
goals. This gives a way to extract—from a counterexample to a goal
that uses both protocols—a counterexample using only the first protocol.
This model-theoretic technique, using homomorphisms among models to
prove results about a syntactically defined set of formulas, appears to be
novel for protocol analysis.

Protocol analysis usually focuses on the secrecy and authentication properties
of individual, finished protocols. There is a good reason for this: Each security
goal then definitely either holds or does not hold. However, the analysis is more
reusable if we know which results will remain true after combination with other
protocols, and perhaps other kinds of elaborations to the protocol.

In practice, every protocol is used in combination with other protocols, of-
ten with the same long-term keys. Also, many protocols contain messages with
“blank slots.” Higher level protocols piggyback on them, filling the blank spots
with their own messages. We want to find out when the goals that hold of a
protocol on its own are preserved under combination with other protocols, and
when these blanks are filled in.

Two results on composition. Two existing results, both within the Dolev-
Yao model [12], are particularly relevant. We showed [17] that if two protocols
manipulate disjoint sets of ciphertexts, then combining the protocols cannot un-
dermine their security goals. A careful, asymmetric formulation of this “disjoint
encryption” property allowed us to show that one protocol Π1 may produce
ciphertexts—in a broad sense including digital certificates as well as Kerberos-
style tickets—consumed by another protocol Π2, without Π2 undermining any
? Supported by MITRE-Sponsored Research. Email address: guttman@mitre.org. An

extended version with proofs appears at http://eprint.iacr.org/2008/430.

security goal of Π1. The relation between Π1 and Π2 is asymmetric in that
security goals of Π2 could be affected by the behavior of Π1, but not conversely.

Our result concerned only protocols that completely parse the messages they
receive to atomic values, leaving no unstructured blank slots. A second limita-
tion was to cover protocols using only atomic keys, not keys produced (e.g.) by
hashing compound messages. A recent result by Delaune et al. [8] lifts these two
limitations, but only in the symmetric case (akin to our Def. 9, clause 4). It
applies only when neither protocol produces ciphertexts that may be consumed
by the other, and hence when neither protocol could affect goals achieved by the
other alone. Their method appears not to extend beyond this symmetric case.

One goal of this paper is an asymmetric result covering blank slots and
compound keys.

Our approach. Protocol executions—more specifically, the parts carried out by
the rule-abiding, “regular” participants, but not the adversary—form objects we
call skeletons [11]. A skeleton is realized if it contains enough protocol behavior
so that, when combined with some adversary behavior, it can occur. If additional
regular behavior is needed for a possible execution, then it is unrealized.

We introduce a new first order language L(Π) to describe skeletons of each
protocol Π. Skeletons containing regular behaviors of Π provide a semantics, a
set of models, for formulas of L(Π). Security goals are closed formulas G ∈ L(Π)
of specific forms. A skeleton A is a counterexample to G when A is realized, but
A satisfies G’s negation, A |= ¬G.

When Π1 and Π2 are protocols, L(Π1) is a sublanguage of L(Π1 ∪Π2), and
the security goals G1 of L(Π1) are some the goals of L(Π1 ∪Π2). The skeletons
of Π1 are those skeletons of Π1 ∪Π2 in which only Π1 activity occurs.

We will define a syntactic relation between Π1 and Π2, called strong disjoint
encryption, that ensures goals G1 ∈ L(Π1) are preserved. If any Π1∪Π2-skeleton
is a counterexample to G1 ∈ L(Π1), we want to extract a Π1-skeleton A1 which
is a counterexample to G1. Thus, Π1 alone already undermines any goal that
Π1, Π2 undermine jointly. The language L(Π), the definition of strong disjoint-
ness, and this result are the contributions of this paper.

The authentication test principles [10] suggest the definition of strong disjoint
encryption, in two parts. First, Π2 should not create encryptions of forms spec-
ified in Π1; i.e. Π2 should have no creation conflicts. Second, if a Π2 execution
receives a value only inside encryptions specified in Π1, it should not re-transmit
the value outside these encryptions; i.e. there should be no extraction conflicts.

We find Π1-counterexamples from Π1 ∪ Π2-counterexamples in two steps.
First, we omit all non-Π1 behavior. Second, we generalize: we remove all en-
crypted units not specified in Π1 by inserting blank slots in their place. Each of
these operations preserves satisfaction of ¬G1. When Π1, Π2 has strong disjoint-
ness, they yield realized Π1 skeletons from realized Π1 ∪ Π2 skeletons. Hence,
they preserve counterexamples.

This reasoning is model-theoretic, characteristically combining two elements.
One is the algebraic relations (embeddings and restrictions, homomorphisms,
etc.) among the structures interpreting a logic. The second concerns syntax, often

xˆekc - TPM

•
­

I ˆK ˆxˆekc- I ˆK ˆxˆekc- PCA

•
­
� {|aic|}EK �{|aic|}EK •

­
�aicˆkeyrec

•
­w

STORE
aicˆkeyrec - •

ekc = [[ekc MFˆEK]]sk(MF) aic = [[aic I ˆK ˆx]]sk(PCA)

keyrec = {|aikrec K,K−1|}SRK

Fig. 1. Modified Anonymous Identity Protocol

focusing on formulas of particular logical forms. A familiar example, combining
these two ingredients, is the fact that a homomorphism between two structures
for first order logic preserves satisfaction for atomic formulas.

A second goal of this paper is to illustrate this model-theoretic approach to
security protocols.

Structure of this paper. We first give an example certificate distribution
protocol called MAIP. Section 1 gives background on strand spaces, including
authentication tests. The goals of MAIP are formalized in L(Π), introduced
(along with its semantics) in Section 2. Multiprotocols and strong disjointness
are defined in Section 3. Section 4 gives the main results, and concludes.

Example: Anonymous identities in trusted computing. A certificate dis-
tribution protocol (see Fig. 1) for “anonymous identity keys” is used with Trusted
Platform Modules (TPMs). A Privacy Certificate Authority (PCA) creates a
certificate aic binding a key K to a temporary name I. K is a public signature
verification key. The certificate authorizes the signing key K−1 to sign requests
on behalf of the holder of I [4].

Since the PCA knows nothing about the origin of a request, it transmits
aic encrypted under key EK. The TPM manufacturer MF certifies in ekc that
the matching private decryption key EK−1 resides within a TPM. If the request
did not originate from this TPM, the certificate will never be decrypted, while
otherwise that TPM will protect K−1 and use it according to certain rules. In
particular, the TPM emits K,K−1 encrypted with a storage key SRK that only
it possesses; this key record can be reloaded and used later.

We have omitted some details, and added a “blank slot” parameter x, which
may be used to restrict the use of the aic. For instance, x can determine when
the certificate expires, or it can limit its use to specific later protocols.

[[m]]sk(A) refers to m accompanied by a digitally signed hash, created with
a signature key held by A. The tags ekc, aic, and aikrec are bitpatterns that
distinguish units containing them from other cryptographically prepared values.

Security Goals of MAIP. MAIP has three main goals. They should hold
whenever an aic, keyrec pair is successfully stored for future use. First, the PCA
should have produced aic, and transmitted it encrypted with some EK. Second,
the TPM should have received aic encrypted with this EK, and retransmitted it in
the clear. These goals are authentication goals, since they assert that uncompro-
mised (regular) principals executed certain actions. The third is a confidentiality
goal, stating that the private part K−1 of the AIK should never be observed,
unprotected by encryption. Making our assumptions explicit, we get:

Whenever 1. STORE gets a message using parameters I,K, x,PCA,SRK;
2. sk(MF), sk(PCA), SRK−1 are used only in accordance with MAIP;
3. K,K−1 are generated only once,

then, for some public key EK,
1. A PCA run using the parameters I,K, x,PCA,EK reached step 2;
2. A TPM run using the parameters I,K, x,PCA,EK,SRK reached step 3;
3. K−1 is never observed, unprotected by encryption.

Since the definitions of the protocol’s roles are fixed, the goals do not need to say
anything about the forms of the messages. They say only how far the role has
progressed, and with what parameters. The unlinkability of K to a particular
EK matches the classical existential quantifier used here.

MAIP and other protocols. A certificate distribution protocol like MAIP,
on its own, is precisely useless.

MAIP becomes useful only if principals executing other protocols generate
messages signed with K−1, and accept messages verified with K, accompanied
by a matching aic. For instance, a message signed with K−1 could be used to
request access to network services, as is now widely done with Kerberos. More
ambitiously, the aic could be regarded as a check-signing certificate from a bank’s
PCA. Then K−1 can be used to sign on-line checks that are anonymous to the
payee, but guaranteed by the bank (Fig. 2). The blank slots g, a may be filled
with formatted data representing the goods offered and amount to be paid.

Unfortunately, the symmetric criterion for combining protocols [8] says noth-
ing about how to construct such secondary protocols, since aic is a cryptographic

C �
Nm ˆgˆa �Nm ˆgˆa

M

•
­

aicˆchk- aicˆchk- •
­
•
­

aicˆendorsed- aicˆendorsed- B

•
­
wwwww
�[[pd chk]]sk(B) �[[pd chk]]sk(B) •

­
chk = [[chk I ˆM ˆaˆNm ˆhash(g)]]K−1 endorsed = [[ndrs chk]]sk(M)

Fig. 2. AIC-based check cashing

unit that must be shared between the protocols. Our asymmetric criterion [17]
does not apply, since MAIP, like many protocols, contains a blank slot x.

A criterion for safe composition should guide protocol designers to construct
suites that work together. Our criterion says to avoid encryption creation con-
flicts and extraction conflicts. The protocol must not create anything unifying
with the aic, ekc, and keyrec message formats, or with an aic encrypted with a
public key. It must not extract anything that unifies with an aic from an en-
crypted item such as {|aic|}EK. Creating and extracting units of these forms must
remain the exclusive right of the primary protocol MAIP.

Our criterion of strongly disjoint encryption (Def. 9, Thm. 2) indicates that
these are the only constraints on secondary protocols to interoperate with MAIP.

1 Messages, Protocols, Skeletons

Let A0 be an algebra equipped with some operators and a set of homomorphisms
η : A0 → A0. We call members of A0 atoms.

For the sake of definiteness, we will assume here that A0 is the disjoint union
of infinite sets of nonces, atomic keys, names, and texts. The operator sk(a) maps
names to (atomic) signature keys, and K−1 maps an asymmetric atomic key to
its inverse, and a symmetric atomic key to itself. Homomorphisms η are maps
that respect sorts, and act homomorphically on sk(a) and K−1.

Let X is an infinite set disjoint from A0; its members—called indetermi-
nates—act like unsorted variables. A is freely generated from A0 ∪ X by two
operations: encryption {|t0|}t1 and tagged concatenation tag t0ˆt1, where the
tags tag are drawn from some set TAG . For a distinguished tag nil , we write
nil t0ˆt1 as t0ˆt1 with no tag. In {|t0|}t1 , a non-atomic key t1 is a symmetric
key. Members of A are called messages.

A homomorphism α = (η, χ) : A → A consists of a homomorphism η on
atoms and a function χ : X → A. It is defined for all t ∈ A by the conditions:

α(a) = η(a), if a ∈ A0 α({|t0|}t1) = {|α(t0)|}α(t1)

α(x) = χ(x), if x ∈ X α(tag t0ˆt1) = tag α(t0)ˆα(t1)

Indeterminates x serve as blank slots, to be filled by any χ(x) ∈ A. This A has
the most general unifier property, which we will rely on. That is, suppose that
for v, w ∈ A, there exist α, β such that α(v) = β(w). Then there are α0, β0, such
that α0(v) = β0(w), and whenever α(v) = β(w), then α and β are of the forms
γ ◦ α0 and γ ◦ β0. Messages are abstract syntax trees in the usual way:

1. Let ` and r be the partial functions such that for t = {|t1|}t2 or t = tag t1ˆt2,
`(t) = t1 and r(t) = t2; and for t ∈ A0, ` and r are undefined.

2. A path p is a sequence in {`, r}∗. We regard p as a partial function, where
〈〉 = Id and cons(f, p) = p ◦ f . When the rhs is defined, we have: 1. 〈〉(t) = t;
2. cons(`, p)(t) = p(`(t)); and 3. cons(r, p)(t) = p(r(t)).

3. p traverses a key edge in t if p1(t) is an encryption, where p = p1
_〈r〉_p2.

4. p traverses a member of S if p1(t) ∈ S, where p = p1
_p2 and p2 6= 〈〉.

5. t0 is an ingredient of t, written t0 v t, if t0 = p(t) for some p that does not
traverse a key edge in t.1

6. t0 appears in t, written t0 � t, if t0 = p(t) for some p.

A single local session of a protocol at a single principal is a strand, containing a
linearly ordered sequence of transmissions and receptions that we call nodes. In
Fig. 1, the vertical columns of nodes connected by double arrows⇒ are strands.

A message t0 originates at a node n1 if (1) n1 is a transmission node; (2)
t0 v msg(n1); and (3) whenever n0 ⇒+ n1, t0 6v msg(n0).

Thus, t0 originates when it was transmitted without having been either re-
ceived or transmitted previously on the same strand. Values assumed to originate
only on one node in an execution—uniquely originating values—formalize the
idea of freshly chosen, unguessable values. Values assumed to originate nowhere
may be used to encrypt or decrypt, but are never sent as message ingredients.
They are called non-originating values. For a non-originating value K, K 6v t
for any transmitted message t. However, K � {|t0|}K v t possibly, which is why
we distinguish v from �. See [18, 11] for more details.

In the tree model of messages, to apply a homomorphism, we walk through,
copying the tree, but inserting α(a) every time an atom a is encountered, and
inserting α(x) every time that an indeterminate x is encountered.

Definition 1. Let S be a set of encryptions. A message t0 is found only within
S in t1, written t0 �S t1, iff for every path p such that p(t1) = t0, either (1) p
traverses a key edge or else (2) p traverses a member of S before its end.

Message t0 is found outside S in t1, written t0 †S t1, iff not (t0 �S t1). ut

Equivalently, t0 †S t1 iff for some path p, (1) p(t1) = t0, (2) p traverses no key
edge, and (3) p traverses no member of S before its end. Thus, t0 v t1 iff t0 †∅ t1.

E.g. aic †∅ {|aic|}EK, although aic �S1 {|aic|}EK, where S1 = { {|aic|}EK }. The
TPM transforms aic, transmitting a t such that aic †S1 t, namely t = aicˆkeyrec.

Protocols. A protocol Π is a finite set of strands, representing the roles of the
protocol. Three of the roles of the MAIP are the strands shown in Fig. 1. Their
instances result by replacing I,K, etc., by any name, asymmetric key, etc., and
replacing x by any (possibly compound) message. The fourth role is the listener
role Lsn[y] with a single reception node in which y is received. The instances
of Lsn[y] are used to document that values are available without cryptographic
protection. For instance, Lsn[K] would document that K is compromised. Every
protocol contains the role Lsn[y].

Indeterminates represent messages received from protocol peers, or passed
down as parameters from higher-level protocols. Thus, we require:

If n1 is a node on ρ ∈ Π, with an indeterminate x� msg(n1),
then ∃n0, n0 ⇒∗ n1, where n0 is a reception node and x v msg(n0).

1 v was formerly called the “subterm” relation [18], causing some confusion. A key
is not an ingredient in its ciphertexts, but an aspect of how they were prepared, so
K 6v {|t|}K unless K v t. Also, v ∩ (A0 × A0) = IdA0 , so e.g. a 6v sk(a).

So, an indeterminate is received as an ingredient before appearing in any other
way. The initial node on the TPM AIC role in Fig. 1 shows x being received
from the higher level protocol that has invoked the TPM activity.

A principal executing a role such as the PCA’s role in MAIP may be partway
through its run; for instance, it may have executed the first receive event without
“yet” having executed its second event, the transmission node.

Definition 2. Node n is a role node of Π if n lies on some ρ ∈ Π.
Let nj be a role node of Π of the form n1 ⇒ . . .⇒ nj ⇒ Node mj is an

instance of nj if, for some homomorphism α, the strand of mj, up to mj, takes
the form: α(n1)⇒ . . .⇒ α(nj) = mj. ut

That is, messages and their directions—transmission or reception—must agree
up to node j. However, any remainders of the two strands beyond node j are
unconstrained. They need not be compatible. When a protocol allows a principals
to decide between different behaviors after step j, based on the message contents
of their run, then this definition represents branching [14, 16]. At step j, one
doesn’t yet know which branch will be taken.

Skeletons. A skeleton A consists of (possibly partially executed) role instances,
i.e. a finite set of nodes, nodes(A), with two additional kinds of information:

1. A partial ordering �A on nodes(A);
2. Finite sets uniqueA, nonA of atomic values assumed uniquely originating and

respectively non-originating in A.

nodes(A) and �A must respect the strand order, i.e. if n1 ∈ nodes(A) and n0 ⇒
n1, then n0 ∈ nodes(A) and n0 �A n1. If a ∈ uniqueA, then a must originate at
most once in nodes(A). If a ∈ nonA, then a must originate nowhere in nodes(A),
though a or a−1 may be the key encrypting some e� msg(n) for n ∈ nodes(A).

A is realized if it is a possible run without additional activity of regular
participants; i.e., for every reception node n, the adversary can construct msg(n)
via the Dolev-Yao adversary actions,2 using as inputs:

1. all messages msg(m) where m ≺A n and m is a transmission node;
2. any atomic values a such that a 6∈ (nonA∪uniqueA), or such that a ∈ uniqueA

but a originates nowhere in A.

A homomorphism α yields a partial function on skeletons. We apply α to the
messages on all nodes of A, as well as to the sets uniqueA and nonA. We regard α
as a homomorphism from A to α(A), when this is defined. However, α must not
identify K ∈ nonA with any atom that is an ingredient in any message in A, or
identify a ∈ uniqueA with another atom if this would give α(a) two originating
nodes in α(A). A homomorphism α always acts as a bijection between nodes(A)
and nodes(α(A)). In [11] we use a compatible although more inclusive notion of
homomorphism, since the action on nodes is not always bijective.
2 The Dolev-Yao adversary actions are: concatenating messages and separating the

pieces of a concatenation; encrypting a given plaintext using a given key; and de-
crypting a given ciphertext using the matching decryption key.

Authentication tests. The core proof method in the strand space framework is
the authentication test idea [11, 10].3 The idea concerns a realized skeleton A and
a value c. If c was found only within a set of encryptions S, up to some point,
and is later found outside S, then this “test” must be explained or “solved.”
Solutions are of two kinds: Either a key is compromised, so the adversary can
create an occurrence of c outside S, or else a regular strand has a transmission
node m1 where, for all earlier nodes m0 ⇒+ m1,

c �S msg(m0), but c †S msg(m1).

Since there are only finitely many roles in Π, unification on their nodes can find
all candidates for regular solution nodes m1. We formalize this using cuts.

Definition 3. Let c be an atom or an encryption, and S be a set of encryptions.
Cut(c, S,A), the test cut for c, S in A, is defined if ∃n1 ∈ nodes(A) such that
c †S msg(n1). In this case,

Cut(c, S,A) = {n ∈ nodes(A) : ∃m.m �A n ∧ c †S msg(m)}. ut

For instance, in any skeleton A containing a full run of the TPM role, its fourth
node n4 is in the cut Cut(aic, S,A) for every S, since n4 transmits aic outside
every encryption. Letting A0 be the skeleton containing all the activity in Fig. 1,
with the visually apparent ordering, the third TPM node n3 ∈ Cut(aic, ∅,A) but
n3 6∈ Cut(aic, S1,A) where S1 = { {|aic|}EK }. In all m �A0 n3, aic �S1 msg(m).

Definition 4. U = Cut(c, S,A) is solved if for every �A-minimal m1 ∈ U :

1. either m1 is a transmission node;
2. or there is a listener node m = Lsn[t] with m ≺A m1, and either

(a) c = {|t0|}t1 and t1 = t, or else
(b) for some {|t0|}t1 ∈ S, t is the corresponding decryption key t = t−1

1 . ut

In the skeleton A0 from Fig. 1, the cut Cut(aic, S1,A) is solved by n4. The cut
Cut(aic, ∅,A) is solved by the second PCA node, which transmits {|aic|}EK, which
means that it occurs outside the empty set at this point.

In MAIP, these are the two important cuts. In skeleton A0, they are solved by
regular strands emitting the aic (clause 1) in new forms, but in other skeletons
they could be solved by a listener node m = Lsn[privk(PCA)] (clause 2a), or, for
S1, by m′ = Lsn[EK−1] (clause 2b). In skeletons in which EK−1 and privk(PCA)
are non-originating, then the TPM and PCA strands offer the only solutions.

Theorem 1 ([10]) 1. If every well-defined cut in A is solved, A is realized.
2. If A is realized, then A has an extension A′, obtained by adding only listener

nodes, in which every well-defined cut is solved.

Clauses 1 and 2 assert completeness [10, Prop. 5], and soundness [10, Props. 2,3],
respectively.
3 A fine point is that [11] worked in a framework without indeterminates X, while [10]

established its completeness result for a stronger framework including them.

2 The goal language L(Π)

L(Π) is a language for talking about executions of a protocol Π. We use type-
writer font x, m, etc. for syntactic items including metasymbols such as Φ, RhoJ.

Definition 5. L(Π) is the classical quantified language with vocabulary:

Variables (unsorted) ranging over messages in A and nodes;
Function symbols sk, inv for the functions on A0;
Predicate symbols equality u = v, falsehood false (no arguments), and:

– Non(v), Unq(v), and UnqAt(n, v);
– DblArrw(m, n) and Prec(m, n);
– One role predicate RhoJ for each role ρ ∈ Π and each j with 1 ≤ j ≤

length(ρ). The predicate RhoJ(m, v1, . . . , vi) for the jth node on ρ has
as arguments: a variable m for the node, and variables for each of the i
parameters that have appeared in any of ρ’s first j messages. ut

Suppose for the moment that a message value v is associated with each variable
v, and the nodes m,n are associated with the variables m, n. Then the predicates
Non(v), Unq(v), and UnqAt(n, v) are (respectively) true in a skeleton A when v
is assumed non-originating in nonA; when v is assumed uniquely originating in
uniqueA; and when v is assumed uniquely originating in uniqueA and moreover
originates at the node n in A. The predicates DblArrw(m, n) and Prec(m, n) are
(respectively) true in a skeleton A when the node m lies immediately before the
node n, i.e. m⇒ n; and when m ≺A n.

Role predicate RhoJ(m, v1, . . . , vi) is true in a skeleton A when m is the jth

node of an instance of role ρ, with its parameters (in some conventional order)
instantiated by the associated values v1, . . . , vi. The role predicates are akin to
the role state facts of multiset rewriting [13].

In particular, since every protocol Π contains the listener role Lsn[y], L(Π)
always has a role predicate Lsn1(m, x), meaning that m is the first node on a
listener strand receiving message x. It is used to express confidentiality goals.

The MAIP TPM role has four role predicates; the first two are:

– maip tpm1(m, x), meaning that m is a reception node not preceded by any
other on its strand, and the message received is on node m is just the pa-
rameter x, as dictated by the definition of the MAIP TPM role;

– maip tpm2(m, x, i, k, f, e), meaning that m lies on the second position on its
strand after a node m′ such that maip tpm1(m′, x), and m transmits message:
iˆkˆxˆ[[ekc f ˆe]]sk(f). These are not independent; a valid formula is:

maip tpm2(m2, x, i, k, f, e) ⊃ ∃m1 . DblArrw(m1, m2) ∧ maip tpm1(m1, x).

If Π1 is a subprotocol of Π in the sense that every role of Π1 is a role of Π, then
L(Π1) is a sublanguage of L(Π).

Two ingredients are conspicuously missing from L(Π). First, L(Π) has no
function symbols for the constructors of A, namely encryption and concate-
nation. Second, L(Π) has no function which, given a node, would return the
message sent or received on that node. We omitted them for two reasons.

∀m, I, K, x, PCA, MF, SRK .

if Store1(m, I, K, x, PCA, SRK) (Φ1)
∧ Non(skMF) ∧ Non(skPCA) ∧ Non(SRK) (Φ2)
∧ Unq(K) ∧ Unq(inv(K)) (Φ3)
then ∃n1, n2, EK .

Pca2(n1, I, K, x, PCA, EK) ∧ Tpm4(n2, I, K, x, PCA, EK, SRK).

∀m, n, I, K, x, PCA, MF, SRK . if Φ1 ∧ Φ2 ∧ Φ3 ∧ Lsn1(n, inv(K)) then false.

Fig. 3. Authentication and confidentiality goals in L(Π)

First, the security goals we want to express need not be explicit about the
forms of the messages sent and received. They need only refer to the underlying
parameters. The definition of the protocol determines uniformly what the partic-
ipants send and receive, as a function of these parameters. Moreover, assertions
about compound messages embedded within parameters would provide artificial
ways to construct counterexamples to our protocol independence theorem.

Second, L(Π) should be insensitive to the notational specifics of the protocol
Π, describing the goals of the protocol without prejudicing the message syntax.

However, to reason axiomatically about protocols, we would work within an
expanded language L′(Π) with message constructors for encryption and con-
catenation, and with a function to extract the message sent or received on a
node. Goals would still be expressed in the sublanguage L(Π1).

What is a security goal? A security goal is either an authentication or a
confidentiality property. An authentication goal requires a peer to have executed
some behavior. A confidentiality goal requires some desired secret t not be shared
as a parameter of another strand. Usually, this is a listener strand Lsn[t], so the
goal ensures that t can never be transmitted unencrypted, in plaintext.4

Definition 6. 1. A security claim is a conjunction of atomic formulas of L(Π).
2. Suppose that G0 is Φ ⊃ ∃v0 . . . vj . (Ψ1 ∨ . . . ∨ Ψk), where Φ and each Ψi is a

security claim. Suppose that, for every variable n over nodes occurring free
in G0, some conjunct of Φ is a role predicate RhoJ(n, u, . . . , w). Then the
universal closure G of G0 is a security goal of Π.

3. G is an authentication goal if k > 0 and a confidentiality goal if k = 0. ut

We identify the empty disjunction
∨
i∈∅ Ψi with false. We identify the unit

conjunction
∧
i∈{1} Φi with its sole conjunct Φi, and

∨
i∈{1} Φi with Φi.

As examples, we formalize the authentication and confidentiality goals of
Section 1 as two separate goals in Fig. 3. The authentication goal has a unit
disjunction, i.e. Ψ1 is everything inside the existential quantifier, and the confi-
dentiality goal uses the vacuous disjunction false, where k = 0.

4 We consider only “full disclosure” goals, rather than “partial information” goals,
in which a party learns that some values of t are possible, but not others. On the
relation between full disclosure goals and partial information goals, see e.g. [3, 7].

Semantics. The semantics for L(Π) are classical, with each structure a skeleton
for the protocol Π. This requirement builds the permissible behaviors of Π
directly into the semantics without requiring an explicit axiomatization.

Definition 7. Let A be a skeleton for Π. An assignment σ for A is a function
from variables of L(Π1) to A ∪ nodes(Π). Extend σ to terms of L(Π) via the
rules: σ(sk(t)) = sk(σ(t)), σ(inv(t)) = (σ(t))−1.

Satisfaction A, σ |= Φ is defined via the standard Tarski inductive clauses for
the classical first order logical constants, and the base clauses:

A, σ |= u = v iff σ(u) = σ(v);
A, σ |= Non(v) iff σ(v) ∈ nonA;
A, σ |= Unq(v) iff σ(v) ∈ uniqueA;
A, σ |= UnqAt(m, v) iff σ(m) ∈ nodes(A), and σ(v) ∈ uniqueA, and

σ(v) originates at node σ(m);
A, σ |= DblArrw(m, n) iff σ(m), σ(n) ∈ nodes(A), and σ(m)⇒ σ(n);
A, σ |= Prec(m, n) iff σ(m) ≺A σ(n);

and, for each role ρ ∈ Π and index j on ρ, the predicate RhoJ(m, v1, . . . , vk)
obeys the clause

A, σ |= RhoJ(m, v1, . . . , vk) iff σ(m) ∈ nodes(A), and
σ(m) is an instance of the jth node on role ρ,
with the parameters σ(v1), . . . , σ(vk).

We write A |= Φ when A, σ |= Φ for all σ. ut

When n is a variable over nodes, although σ(n) 6∈ nodes(A) is permitted, in that
case, whenever φ(n) is an atomic formula, A, σ 6|= φ(n).

In protocols where there are two different roles ρ, ρ′ that differ only after their
first j nodes—typically, because they represent different choices at a branch point
after the jth node [16, 14]—the two predicates RhoJ and Rho′J are equivalent.

Lemma 1. If φ is an atomic formula and A, σ |= φ, then α(A), α ◦ σ |= φ.
If α is injective, and if φ is an atomic formula other than a role predicate

RhoJ, and if α(A), α ◦ σ |= φ, then A, σ |= φ. ut

3 Multiprotocols, Disjointness, and Authentication Tests

Given a primary protocol Π1, as well as a protocol Π which includes it, we have
written Π in the form Π1 ∪Π2, but this is imprecise. We distinguish the nodes
of Π1 from nodes of Π that do not belong to Π1.

Definition 8. 1. (Π,Π1) is a multiprotocol if Π,Π1 are protocols, and every
role of Π1 is a role of Π.

2. Role node nj is primary if it is an instance of a node of Π1 (Def. 2). Role
node n2 is secondary if it is an instance of a node of Π, but it is not primary.

3. Instances of encryptions e1 R-related to role nodes of Π1 are in ER(Π1):

ER(Π1) = {α(e1) : ∃n1 . R(e1,msg(n1)) ∧ n1 is a role node of Π1}. ut

Below, we use the cases v and � for R, i.e. Ev(Π1) and E�(Π1).
E�(Π1) 6= {e : ∃n1, α . e � msg(α(n1)) ∧ n1 is a role node of Π1}, since the

latter contains all encryptions, whenever any role of Π1 uses an indeterminate
(blank slots). E�(Π1) requires that an encryption is syntactically present in a
roles of Π1, not instantiated from an indeterminate. The more näıve general-
ization of [17] would be useless for protocols with indeterminates. Refining the
definition was easy, but proving it correct required a new method.

The secondary nodes of (Π,Π1) do not form a protocol. Π1 contains the
listener role, so listener nodes are primary, not secondary. However, (Π1∪Π2, Π1)
is a multiprotocol. Its secondary nodes are some of the instances of role nodes
of Π2, namely, those that are not also instances of role nodes of Π1.

Strong Disjointness. To ensure that a Π does not interfere with the goals
of Π1, we control how the secondary nodes transform encryptions. To create
an encryption is one way to transform it, or another way is to extract some
ingredient—such as a smaller encryption or a nonce or key—from inside it.

Definition 9. 1. If any e ∈ E�(Π1) originates on a secondary transmission
node n2, then n2 is an encryption creation conflict.

2. A secondary transmission node n is an extraction conflict if t1 †S msg(n)
for some S ⊆ Ev(Π1) where t1 v e ∈ S, and:

(∃m. m⇒+ n ∧ e v msg(m)) ∧ (∀m. m⇒+ n ⊃ t1 �S msg(m)).

3. Π,Π1 has strongly disjoint encryption (s.d.e.) iff it has neither encryption
creation conflicts nor extraction conflicts.

4. Π1 and Π2 are symmetrically disjoint if, letting Π = Π1 ∪Π2, both Π,Π1

and Π,Π2 have s.d.e. ut

Creation conflicts and extraction conflicts are the two ways that Π could create
new ways to solve authentication tests already present in Π1. Thus, s.d.e. ensures
that only Π1 solutions are needed for the tests in a Π1 skeleton.

Strong disjointness is a syntactic property, even though its definition talks
about all strands of the protocols Π and Π1. We can check it using unification,
as, in Figs. 1–2, we can quickly observe that the check-cashing protocol never
creates an ekc, aic, or keyrec, and never extracts an aic from an encryption.
Protocol analysis tools such as CPSA [11] can be programmed to check for it.

4 Protocol Independence

For any goal G1 ∈ L(Π1), we want to squeeze a Π1-counterexample A1 out of a
Π-counterexample B. We do this in two steps: First, we restrict B to its primary
nodes B |̀Π1. Then, we remove all non-primary encryptions e2 6∈ E�(Π1) from
B |̀ Π1, by replacing them with indeterminates. In the reverse direction, this
is a homomorphism. I.e., there is a A1 and a homomorphism α such that no
secondary encryptions e2 appear in A1, and B |̀Π1 = α(A1). We call this second
step “removal.”

Definition 10. Let {ei}i∈I be the indexed family of all secondary encryptions
appearing in a Π-skeleton B, without repetitions, and let {xi}i∈I be an indexed
family of indeterminates without repetitions, none of which appear in B.

The homomorphism α that maps xi 7→ ei, and is the identity for all atoms
and all indeterminates not in {xi}i∈I is a removal for B. ut

For a removal α, there are As with B = α(A). To compute a canonical one, for
each n ∈ nodes(B), we walk the tree of msg(n) from the top. We copy structure
until we reach a subtree equal to any ei, when we insert xi instead. The resulting
A is the result of the removal α for B. The result of α for a node m ∈ B means
the n ∈ nodes(A) such that α(n) = m.

Lemma 2. Let Π,Π1 be a multiprotocol, with G1 ∈ L(Π1) a Π1 security goal.

1. If B |= ¬G1, then B |̀Π1 |= ¬G1.
2. Let α be a removal for B with result A.

(a) If α(n) is a primary node, then n is a primary node for the same role.
(b) If φ is a role predicate and B, α ◦ σ |= φ, then A, σ |= φ.
(c) If B |= ¬G1, then A |= ¬G1.

The definition of strong disjointness (Def. 9) implies, using Thm. 1:

Lemma 3. Let Π,Π1 have s.d.e., and let α be a removal for B |̀Π1 with result
A. If B is a realized Π-skeleton, then A is a realized Π1-skeleton.

The essential idea here is to show that a solution to a primary cut lies on a
primary node, which will be preserved in the restriction, and then again preserved
by the removal. From the two preceding results, we obtain our main theorem:

Theorem 2 Let Π,Π1 have s.d.e., and let G1 ∈ L(Π1) be a security goal. If
A |= ¬G1 and is realized, then for some realized Π1-skeleton A1, A1 |= ¬G1.

Thm. 2 implies, for instance, that the check-cashing protocol of Fig. 2 preserves
the goals of MAIP.

Conclusion. Our result Thm. 2 uses a new, model-theoretic approach. It com-
bines reasoning about the logical form of formulas—the security goals G—with
operations on the structures that furnish models of these formulas. These oper-
ations are restriction, homomorphisms, and removals. The authentication tests
suggest the definition of strong disjointness (Def. 9).

Thm. 2 simplifies establishing that two protocols combine to achieve their
goals. Goals of the joint protocol Π expressed in L(Π1) may be verified with-
out reference to Π \ Π1. Second, our composition result can also be read as a
prescription—or a heuristic—for protocol design. Protocols can be built from
subprotocols that provide some of the intermediate cryptographic values that
they require. Thm. 2 gives the constraints that a protocol designer must ad-
here to, in enriching an existing suite of protocols. His new operations must be
strongly disjoint from the existing protocols, regarded as a primary protocol.

Related work. An outstanding group of articles by Datta, Derek, Mitchell,
and Pavlovic, including [9], concern protocol derivation and composition. The
authors explore a variety of protocols with common ingredients, showing how
they form a sort of family tree, related by a number of operations on protocols.

Our definition of multiprotocol covers both [9]’s parallel composition and its
sequential composition. Refinement enriches the message structure of a protocol.
Transformation moves information between protocol messages, either to reduce
the number of messages or to provide a tighter binding among parameters.

Despite their rich palette of operations, their main results are restricted to
parallel and sequential composition [9, Thms. 4.4, 4.8]. Each result applies to
particular proofs of particular security goals G1. Each proof relies on a set Γ of
invariant formulas that Π1 preserves. If a secondary protocol Π2 respects Γ , then
G1 holds of the parallel composition Π1∪Π2 (Thm. 4.4). Thm 4.8, on sequential
composition, is more elaborate but comparable. By contrast, our Thm. 2 is one
uniform assertion about all security goals, independent of their proofs. It ensures
that Π2 will respect all usable invariants of Π1. This syntactic property, checked
once, suffices permanently, without looking for invariants to re-establish.

Universal composability [6] is a related property, although expressed in a very
different, very strong, underlying model. It is often implemented by randomly
choosing a tag to insert in all messages of a protocol, this tag being chosen at ses-
sion set-up time. Thus, the symmetric disjointness of any two sessions, whether
of the same or of different protocols, holds with overwhelming probability.

Andova, et al. [1] study sequential and parallel composition, using tags or
distinct keys as implementation strategies, as in our [17]. They independently
propose a definition [1, Def. 25] like the symmetric definition of [8].

Related but narrower problems arise from type-flaw attacks, situations in
which a participant may parse a message incorrectly, and therefore process it in
inappropriate ways [19]. Type flaw attacks concern a single protocol, although
a protocol that may be viewed with different degrees of explicit tagging.

Future work. Is there a theorem like Thm. 2 for the refinement and transfor-
mation operations [9]? For specific, limited formulations, the answer should be
affirmative, and the model-theoretic approach is promising for establishing that
answer. Such a result would provide a strong guide for protocol design.

Acknowledgments. I am grateful to Stéphanie Delaune and to my colleagues
Leonard G. Monk, John D. Ramsdell, and F. Javier Thayer. An extremely
perceptive anonymous referee report from CSF provoked a radical reworking.
MITRE release number: 07-0029.

References

1. S. Andova, C.J.F. Cremers, K. Gjøsteen, S. Mauw, S.F. Mjølsnes, and
S. Radomirović. Sufficient conditions for composing security protocols. Infor-
mation and Computation, 2007.

2. M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the applied pi-calculus and
automated verification of the Direct Anonymous Attestation protocol. In IEEE
Symposium on Security and Privacy, 2008.

3. M. Backes and B. Pfitzmann. Relating cryptographic and symbolic key secrecy. In
Proceedings, 26th IEEE Symposium on Security and Privacy, May 2005.

4. B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and G. Proudler. Trusted Computing
Platforms: TCPA Technology in Context. Prentice Hall PTR, NJ, 2003.

5. E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In ACM
Conference on Communications and Computer Security (CCS), 2004.

6. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. FOCS, 2001. IACR 2000/067, October 2001.

7. R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual
authentication and key exchange protocols. In Proceedings, Theory of Cryptography
Conference (TCC), March 2006.

8. V. Cortier, J. Delaitre, and S. Delaune. Safely composing security protocols. In
V. Arvind and S. Prasad, editors, FSTTCS ’07, LNCS, December 2007.

9. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and com-
positional logic for security protocols. Journal of Computer Security, 13(3):423–
482, 2005.

10. S. F. Doghmi, J. D. Guttman, and F. J. Thayer. Completeness of the authentication
tests. In J. Biskup and J. Lopez, editors, ESORICS ’07, LNCS 4734, pages 106–
121. September 2007.

11. S. F. Doghmi, J. D. Guttman, and F. J. Thayer. Searching for shapes in crypto-
graphic protocols. In TACAS, LNCS 4424, pages 523–538. March 2007. Extended
version at http://eprint.iacr.org/2006/435.

12. D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions
on Information Theory, 29:198–208, 1983.

13. Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre Scedrov. Multiset rewrit-
ing and the complexity of bounded security protocols. Journal of Computer Secu-
rity, 12(2):247–311, 2004.

14. S. Fröschle. Adding branching to the strand space model. In Proceedings of EX-
PRESS’08, Electronic Notes in Theoretical Computer Science. Elsevier, 2008.

15. J. A. Goguen and J. Meseguer. Order-sorted algebra I. Theoretical Computer
Science, 105(2):217–273, 1992.

16. J. D. Guttman, J. C. Herzog, J. D. Ramsdell, and B. T. Sniffen. Programming
cryptographic protocols. In R. De Nicola and D. Sangiorgi, editors, Trust in Global
Computing, LNCS 3705, pages 116–145. Springer, 2005.

17. J. D. Guttman and F. J. Thayer. Protocol independence through disjoint en-
cryption. In Proceedings, 13th Computer Security Foundations Workshop. IEEE
Computer Society Press, July 2000.

18. J. D. Guttman and F. J. Thayer. Authentication tests and the structure of bundles.
Theoretical Computer Science, 283(2):333–380, June 2002.

19. James Heather, Gavin Lowe, and Steve Schneider. How to prevent type flaw at-
tacks on security protocols. In Proceedings, 13th Computer Security Foundations
Workshop. IEEE Computer Society Press, July 2000.

