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Abstract

Dolev and Yao initiated an approach to studying cryptographic pro-
tocols which abstracts from possible problems with the cryptography
so as to focus on the structural aspects of the protocol. Recent work in
this framework has developed easily applicable methods to determine
many security properties of protocols. A separate line of work, initi-
ated by Bellare and Rogaway, analyzes the way specific cryptographic
primitives are used in protocols. It gives asymptotic bounds on the
risk of failures of secrecy or authentication.

In this paper we show how the Dolev-Yao model may be used for
protocol analysis, while a further analysis gives a quantitative bound
on the extent to which real cryptographic primitives may diverge from
the idealized model. We develop this method where the cryptographic
primitives are based on Carter-Wegman universal classes of hash func-
tions. This choice allows us to give specific quantitative bounds rather
than simply asymptotic bounds.

1 Introduction

Cryptographic protocols are sequences of messages that use cryptography
to achieve security goals such as authentication and establishing new shared
secrets. Despite frequently being simple, they are often wrong, sometimes
disastrously. Much work (including [7, 21, 22, 19, 29, 24, 31, 17]) has been
done to develop methods to ensure their correctness, starting with Dolev and
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Yao [12], who represent encryption as a free operator on terms, and abstract
from the properties of particular cryptographic primitives. If an attack
succeeds against a protocol assuming this abstract cryptography, then the
same attack will also succeed when the protocol is implemented with real
cryptographic primitives. By contrast, a proof that there are no attacks,
based on the assumption of abstract cryptography, will no longer be valid
when concrete primitives are selected. Possibly an adversary can manipulate
the details of the cryptography to create attacks that would not succeed
against abstract encryption.

Goals of this paper One form of the Dolev-Yao approach, the strand
space theory, has now developed convenient methods to find what authenti-
cation and confidentiality goals a protocol achieves [17]; to determine when
protocols may safely be combined [16]; to determine when type information
may safely be omitted from a protocol [18]; and to generate protocols manu-
ally [15] or automatically [25] to achieve given goals. However, the approach
relies on Dolev-Yao abstract cryptography. In this paper, we begin to adapt
the strand space theory to the realities of cryptographic operators.

First, we show how to quantify the divergence between concrete cryp-
tographic operators and traditional abstract encryption in the Dolev-Yao
style, as used in a protocol, introducing the notion of ε-faithfulness. A
protocol security goal, proved using abstract encryption, is ε-faithful to a
cryptographic primitive if the probability that execution of the protocol—
implemented using that primitive—violates the goal is ≤ ε. Establishing
ε-faithfulness requires some stochastic assumptions. The security goals we
will consider in this paper are authentication goals [33, 20, 31].

Second, for a particular primitive, we give precise, quantitative bounds
on this divergence. If an attack does not succeed against a protocol with the
abstract cryptography of the Dolev-Yao approach, then the likelihood it suc-
ceeds against the same protocol when implemented using this cryptographic
primitive is below the bound ε. The particular primitive we consider here is
a type of message authentication code. A function is chosen (using a shared
secret) from a universal class in the sense of Carter and Wegman [11, 32];
the protocol participants apply the chosen function to their messages to
construct tags. The tag serves to authenticate that an adversary not privy
to the shared secret has not originated the message, or altered it before
delivery. We expect that our methods will also extend to some other primi-
tives, and we have designed our exposition so that the specifics of message
authentication codes and Carter-Wegman hashing are introduced only in
Sections 5.
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For Carter-Wegman tagging functions, we achieve specific bounds for a
probability of failure such as ε = 2−32 (see Section 5.4). The bounds are
based on parameters. One parameter is the security parameter k, which
summarizes the lengths of randomly chosen values, such as nonces and keys.
Another parameter is the number of runs; it bounds how many guesses the
adversary may make and how many random values the regular participants
must choose. In effect, this parameter dictates a re-keying schedule. Keys
must be changed often enough to limit the number of sessions before re-
keying, counting all sessions by non-adversary participants.

Technical Approach Our approach is based on two ideas, both of which
rely on the strand space model of protocol execution [31, 17] and in particular
the notion of bundle. A bundle is a directed graph describing the behavior of
the adversary as well as the regular (non-adversary) principals. The arrows
represent either message transmission and reception (in which case they are
written as single arrows →) or the transition of a single principal through
successive actions of a single session (in which case they are written as double
arrows ⇒).

Bundles represent protocol executions using abstract encryption when
the messages transmitted and received belong to a suitable free algebra.
They represent protocol executions with particular cryptographic primitives
when the messages transmitted and received are bitstrings generated using
those primitives. We call bundles whose messages belong to a free alge-
bra abstract bundles, while we call bundles whose messages are bitstrings
concrete bundles. Given an abstract bundle, one may construct a concrete
bundle by applying the concatenation function and the cryptographic prim-
itives to each abstract message t, deriving a specific bitstring π(t); thus
it follows that an abstract bundle Ba determines a unique concrete bundle
π(Ba).

Our first idea addresses the inverse question, that is whether a concrete
bundle Bc is of the form π(Ba). We regard the adversary as acting according
to an adversary strategy. A strategy has two ingredients:

1. A partially ordered set N of abstract regular nodes, which we call an
abstract skeleton,

2. For each negative regular node n in N , a synthesis function gn which
returns a concrete term for a sequence of concrete terms as inputs.

The adversary’s job is to produce a concrete bundle Bc in which the regular
nodes are π(N); the work lies in computing the right value to feed into
each negative node n. For this the adversary uses gn. For some strategies,
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these concrete bundles Bc may be possible in the abstract Dolev-Yao model,
while for others, the synthesis function gn exploits some characteristic of the
particular cryptographic primitives in use, which may or may not work for
all bitstrings.

Since a strategy may not work for all values of the parameters, we use, as
our second main idea, a completely classical stochastic model. It quantifies
the probability that the adversary succeeds in creating the desired concrete
bundle Bc, when there is no Dolev-Yao attack. We make some stochastic
assumptions about Bc (Section 5), that certain parameters of the resulting
bundles are stochastically independent of each other. We also assume that
certain parameters of the bundles are uniformly distributed. From these as-
sumptions, it follows (Corollary 5.2) that the probability that B is a correct
bundle, when there is no Dolev-Yao attack, is less than a suitable ε.

These two ideas therefore bound the divergence between what may hap-
pen in concrete bundles Bc using the concrete cryptographic primitive, when
all abstract bundles Ba satisfy some security goal.

An Example In this paper, we will focus in most detail on pure entity
authentication protocols. They involve honest participants, whom we will
call regular principals, and an adversary. A tagging function f is selected
from a large class of possible functions for use by some set of ordered pairs
of regular participants. We assume the adversary does not know which
function has been chosen.

For example, consider the protocol map1 of Bellare and Rogaway [6],
whose intended behavior is summarized on the left in Figure 1. In this pro-
tocol, the initiator (called A here) sends in the clear a nonce (random bit
string) of the form Na to start an exchange intended for a responder (called
B here). The responder B generates a fresh nonce Nb, which we assume
is distinct from Na, and responds to A’s message by sending a term of the
form [[B·A·Na·Nb ]]f = (B·A·Na·Nb) · f(B·A·Na·Nb). Since f is unknown
to the adversary, the value f(B·A·Na·Nb) is intended to serve as a message
authentication code, guaranteeing the integrity of the message to the recip-
ient. When A receives [[B·A·Na·Nb ]]f , it responds with [[A·Nb ]]f , thereby
assuring B that the value Nb has been received by A. Again, [[A·Nb ]]f is
really a concatenation (A·Nb) · f(A·Nb).

map1 achieves entity authentication: If A has had a run with intended
respondent B, then B has undertaken at least the first two steps of a run with
intended initiator A, and the runs agree on the nonces Na, Nb. Conversely,
if B has had a run with intended initiator A, then A has had a run with
intended respondent B, and the runs agree on the nonces Na, Nb. In both
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Figure 1: Intended Run of map1 Protocol

these results, we need the assumption that the principal has chooses fresh
nonces, and that the choice of f was secret.

The protocols we emphasize here do not have the goal of causing the
participants to agree on any new secret. In this sense they are pure entity
authentication protocols. Of course, preserving the secrecy of the choice of f
is necessary. However, if the secrecy of f fails, then the authentication goals
will also fail. That is why we will not need to treat secrecy goals directly.

2 Strand Spaces

2.1 Strands: Basic Notions

We very briefly summarize the ideas behind the strand space model [31,
17]; see also Appendix A. Let A be a structure; we call the members of
the domain of A messages or terms, because they represent values that
can be sent between principals. Operations of A include encryption and
concatenation, and a binary relation on messages called the subterm relation,
written t

�
t′. We will define these structures in more detail in Section 2.2.

Strands A strand is a sequence of message transmissions and receptions,
where transmission of a term t is represented as +t and reception of term
t is represented as −t. A strand represents the local view of a participant
in a run of a protocol. Each vertical column in Figure 1 shows a strand,
assuming that particular values are chosen for the parameters A,B,Na, and
Nb. A strand element is called a node. A strand space Σ is a set of strands.
(See Definition A.1.)

If s is a strand and i is between 1 and the length of s, then 〈s, i〉 is
the ith node on s. The relation n ⇒ n′ holds between nodes n and n′ if
n = 〈s, i〉 and n′ = 〈s, i + 1〉. The relation n → n′ represents inter-strand
communication; it means that term(n1) = +t and node term(n2) = −t. The
two relations ⇒ and → jointly impose a graph structure on the nodes of Σ.
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The vertices of this graph are the nodes, and the edges are the union of ⇒
and →.

Bundles A bundle is a causally well-founded collection of nodes and ar-
rows of both kinds. In a bundle, when a strand receives a message m, there
is a unique node transmitting m from which the message was received. By
contrast, when a strand transmits m, many strands (or none) may receive
m. (See Definition A.3.)

Origination A term t originates at a node n = 〈s, i〉 if the sign of n
is positive; t

�
term(n); and t 6

�
term(〈s, i′〉) for every i′ < i. Thus, n

represents a message transmission that includes t, and it is the first node in
s including t. If a value originates on only one node in some set S of nodes,
such as those contained in a particular bundle, then we call it uniquely
originating in S; uniquely originating values are desirable as nonces. (See
Definition A.2.)

Regular Strands For a legitimate participant, a strand represents the
messages that participant would send or receive as part of one particular
run of his side of the protocol. We call a strand representing a legitimate
participant a regular strand. Typically, the regular strands of Σ are the
instances of a finite number of parameterized strands (See Section 2.3.)

The Standard Adversary For the adversary, each strand represents an
atomic deduction. More complex actions can be formed by connecting sev-
eral adversary strands. While regular principals are represented only by the
messages they send to others, the behavior of the adversary is represented
more explicitly, because the values it deduces are treated as if they had
been transmitted publicly, or as if they were sent by the adversary to itself.
We partition adversary strands according to the operations they exemplify.
C-strands and S-strands concatenate and separate terms, respectively; K-
strands emit keys from a set of known keys; and M-strands emit known
atomic texts or guesses. In protocols which use a genuine encryption opera-
tor, E-strands encrypt when given a key and a plaintext; D-strands decrypt
when given a decryption key and matching ciphertext. (See Definition A.6.)

We will also consider non-standard adversaries below, which may be able
to apply additional useful functions to messages.

The Form of Authentication Goals As an example of an authenti-
cation goal, consider the responder’s guarantee in map1. Suppose that the
responder B has a run apparently with A, using the nonces Na and Nb. B
may assume that the nonce Nb is uniquely originating, because he generates
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it himself using highly random methods. B’s authentication guarantee is
the implication:

�
B : if B has a run of the protocol as responder, apparently with A and

involving nonces Na and Nb, and Nb is uniquely originating, then A
has had a matching run as initiator, apparently with B, using the
nonces Na and Nb.

Naturally, there are two ways that A may turn out not to have a matching
run. One is that some attack on the protocol or underlying cryptography
occurs. The other is that B has (by bad luck) chosen a nonce Nb that has
been used before, so that the adversary can re-use some part of a message
generated in a non-matching run. We will treat these two types of failure
separately, focusing on the first type for the bulk of the paper, and returning
to the problem collisions of randomly chosen values in Section 5.4.

2.2 Cryptoalgebras

A cryptoalgebra is a structure A where the domain is partitioned into atoms,
concatenations, and encryptions. We also assume that atoms include disjoint
sets of nonces and keys; there may also be other atoms (e.g. serving as names
of principals). We write Aatom, Anonce, and Akey for the atoms, nonces, and
keys. We also return to the union of the keys and nonces as cryptovalues,
and write Acrypto = Akey∪Anonce. By this we mean that they are intended to
be chosen unpredictably, so that it is unlikely that choices can be guessed,
or that independent choices will coincide.

A is equipped with two (possibly partial) binary operators, concatenation
and encryption. Concatenation maps two messages to a concatenation, and
encryption maps a message and a key to an encryption. We write t1·t2 for
the concatenation of t1 and t2 and {|t|}K for the encryption of t by K.

We assume that t is a concatenation just in case there is a unique pair of
values t1, t2 such that t = t1·t2. We also assume that terms may be equipped
with a natural number-valued rank function such that the terms of rank 0
are precisely the atoms and encryptions, and if t = t1·t2, then the rank of t
exceeds the ranks of t1 and t2.

We are interested in the subterm relation
�

primarily in the case where
the cryptoalgebra is freely generated from atoms by concatenation and en-
cryption, as we will discuss shortly.

Cryptoalgebras of Bitstrings Suppose B is a cryptoalgebra whose do-
main is a finite set of bitstrings. We call such a cryptoalgebra a concrete
cryptoalgebra.
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We assume that the various kinds of atoms—keys, nonces, and non-
cryptovalues such as names—are distinguished by tags or prefixes of some
kind. The keys may be further subdivided by tags that indicate an algorithm
or cryptographic transform, together with a representation of the actual key.

The concatenation function will be partial, being undefined when for
instance the result would be too long.

We allow the set of “encryptions” in B to contain the results of various
kinds of cryptographic transform, whether or not the transforms are all
genuine encryptions. For instance, we will refer to the result of a keyed hash
as an encryption, despite the fact that no one knows how to decrypt it. A
cryptographic transformation may also be undefined for some arguments, for
instance if the key is unsuitable for the algorithm by its length or number-
theoretic properties.

We assume that some form of encoding such as ASN.1 is used to represent
atoms, concatenations, and encryptions unambiguously.

Free Cryptoalgebras If B is a concrete cryptoalgebra, define AB to
be the free algebra generated from Batom by two free total operations of
concatenation and encryption. Thus, there is a canonical partial map π :
AB → B which maps a term t ∈ A to a bitstring in the domain of B by
replacing the abstract operations of A with the corresponding concrete ones;
it is undefined when the concrete operations in B are undefined. We omit
the subscript B when no confusion can result.

If X = {Xi}i∈I is a set of parameters, we also consider the free cryptoal-
gebra AB(X) generated by Batom and parameters Xi, also used like atoms.
In our intended interpretation, each parameter has a value determined by a
regular participant.

We equip AB(X) with the subterm relation defined to be the smallest
reflexive, transitive relation

�
such that g

�
g·h; h

�
g·h; and g

�
{|g|}K .

In particular, K 6
�
{|g|}K unless K

�
g.

By contrast, we say that a parameter X occurs in a term t if either
X

�
t or {|t′|}X

�
t. That is, a parameter occurs in a term also if it is in

key position.
The possible choices of values for parameters are given by assignment

functions associating an atom in Batom with each parameter. We allow each
parameter to carry a type indicator such as nonce or name, in which case
we consider only assignments in which these parameters take values in the
appropriate subset of Batom. In particular, if a parameter ranges over crypto-
values (i.e. nonces or keys), then we call that parameter a cryptoparameter.
If t ∈ A(X) and α is an assignment, then πα is defined as the canonical
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partial map A(X)→ B which extends π and such that πα(X) = α(X).
By a substitution, we mean a function σ on parameters such that σ(X)

is always either a parameter of the same type as X or else a value of suitable
type in Batom.

Fix a set X of parameters. If t ∈ A(X), then a pair 〈+, t〉 or 〈−, t〉, is a
signed term, which we also write +t and −t. We regard +t as transmission
of the message t, and −t as reception of the message t.

A parametric strand over X is a finite sequence s of signed terms in
A(X); we carry over the same terminology of nodes, etc. from parameter-
free strands (Definition A.2).

X has a primary occurrence in a node n on s if (1) n is positive; (2) X
occurs in term(n); and (3) if n′ ⇒+ n, then X does not occur in term(n′).
This definition differs from the definition of origination because it uses occurs
rather than subterm. Primary occurrence is to point of origination as occurs
is to subterm. A primary occurrence of X is thus either a point of origination
for X, if X is actually a subterm of the message transmitted, or else X
is being used for the first time as the key to construct some encrypted
ingredient of the message.

2.3 Representing Protocols in Strand Spaces

A protocol requires regular participants to play a number of different roles,
such as initiator, responder, or key server. The protocol itself consists of a
number of parametric strands, one for each role played by the regular prin-
cipals. These parametric strands may be determined by programs executed
by the principals against their local state; our concern is exclusively with
the resulting behaviors.

For instance, the parametric strand map1Initf [A,B,Na, Nb] that has
parameters A,B,Na, Nb and signed terms

〈+Na, −[[B·A·Na·Nb ]]f , +[[A·Nb ]]f 〉

defines the map1 initiator’s behavior. The complementary parametric strand
with behavior

〈−Na, +[[B·A·Na·Nb ]]f , −[[A·Nb ]]f 〉.

defines the responder’s behavior map1Respf [A,B,Na, Nb]. The parameters
A,B range over names, while the parameters Na, Nb range over nonces. No
parameter ranges over concatenated terms such as A·Na.

Given some particular algebra of messages A, we may instantiate a
parametric strand by choosing suitable values from A for the parameters
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X1, . . . , Xn. The result is a strand. The messages sent and received are the
results of filling in these values in place of the parameters in the successive
signed parametric terms.

A protocol may also have parameters. In map1, the shared secret f
is a parameter of the protocol itself; given a value for f , a set of regular
participants agree on that value. That is why f is not listed as a parameter
of the parametric strands. The parameter f is private value; adversaries
presumably cannot guess it, to emit the same value themselves. In other
protocols, parameters to the protocol may be public, such as public keys for
the participants, which are known to adversaries and also regular partici-
pants.

We regard a protocol as a structure 〈S, secret, public〉, where S is a set
of parametric strands, secret is a set of parameters containing the secret
protocol-wide parameters occurring in members of S, and public is a set
of parameters containing the secret protocol-wide parameters occurring in
members of S.

Thus, map1, acting with shared secret f , is the structure 〈Sf , {f}, ∅〉,
where Sf = {map1Initf [A,B,Na, Nb],map1Respf [A,B,Na, Nb]}.

Given a message algebra A, a protocol 〈S, secret, public〉 determines strand
spaces Σ, which we call parameter-free strand spaces generated by that pro-
tocol over A. These strand spaces Σ are defined in three steps:

1. Assign a value of compatible type to each parameter in secret∪public;

2. The regular strands of Σ are all sequences of signed parameter-free
terms obtained from a parametric strand s[Y1, . . . , Yk] by a (type-
compatible) assignment α.

3. The adversary strands of Σ are the strands of Definition A.6 over the
algebra A.

Similarly, we can define the strand space with parameters generated by a
protocol over A(X). There is only one such space Σ(X), defined by:

1. The regular strands of Σ are all sequences of signed terms obtained
from a parametric strand s[Y1, . . . , Yk] by a (type-compatible) substi-
tution σ; that is, for each parameter, we can plug in either an atom in
A or another parameter.

2. The adversary strands of Σ are the strands of Definition A.6 over the
algebra A(X).
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The protocol-wide parameters need no instantiation, but instead remain as
(free) parameters.

Because there are no public, protocol-wide parameters in the example
we will consider here, we will omit public parameters in the remainder of
our discussion.

In map1, the parameters range only over names and nonces, not over
concatenated or tagged terms. This is the case for all (natural) pure au-
thentication protocols, so we will assume it throughout the remainder of
the paper. The assumption would not hold for other protocols, particu-
larly shared-key protocols using a key server, such as Otway-Rees [23] or
Carlsen [10]; see [17, Section 5.1.3].

3 Bundles and Skeletons

Fix a protocol and let B be a bundle in Σ(X), the strand space with pa-
rameters over A(X). The B-height of a strand s is the number of nodes of s
belonging to B; the B-height of s is less than the length of s if some nodes
at the end of s are not included in B. This represents their “not having
happened yet” at the time the bundle represents; possibly they will never
happen. We define �B to be the reflexive transitive closure of the arrows of
both kinds in B, so that m �B n means that there is a sequence of arrows
leading from m to n in B.

A bundle B is generic for a protocol if:

1. If a cryptoparameter X originates on a regular strand s in B, then X
originates nowhere else in B; and

2. If a cryptoparameter X is a secret parameter to the protocol, then X
originates nowhere in B.

Our notion of subterm excludes the keys used in encryption, so a non-
originating parameter is not useless. It may occur as a key used by one
or more participants.

We do not expect the same cryptoparameter to originate on more than
one strand, as this would suggest that independent choices are perfectly
correlated, with no visible causal connection. A non-generic bundle would
have a magic correlation between the values chosen for cryptoparameters at
apparently unrelated points. There is a causally inexplicable link between
values chosen independently on different strands, or between a value chosen
on some strand and a value chosen as a parameter to the protocol. Hence,
we restrict our attention in this paper to generic bundles.
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Definition 3.1 (Skeleton) An unordered skeleton is a pair (R, h) where
R is a set of regular strands over X, and h : R →

�
is a height function such

that s ∈ R implies h(s) ≤ length(s). A node n of the unordered skeleton is
a pair n = (s, i) where s ∈ R and 1 ≤ i ≤ h(s).

An unordered skeleton is generic if its nodes satisfy the conditions (1)
and (2) above.

An (ordered) skeleton � is a generic unordered skeleton (R, h) together
with a weak partial ordering � � on nodes of (R, h), where � � is compatible
with the strand order. That is, (s, i) � � (s, j) when s ∈ R and 1 ≤ i ≤ j ≤
h(s).

If B is a generic bundle, then the (ordered) skeleton of B is the triple
(R, h,� � ), where R is the set of regular strands with at least one node in
B, and h(s) is the B-height of s; we let � � be the restriction of �B to the
nodes of R.

We typically omit the word “ordered.” Observe that if B is a generic bundle,
then the ordered skeleton of B is generic.

3.1 Security Properties

For the purposes of this paper, we define:

Definition 3.2 A security property is a set φ of generic bundles such that
if B1 and B2 have the same (ordered) skeleton, then B1 ∈ φ iff B2 ∈ φ.

Authentication properties such as those proved in previous papers [31,
17, 14] are security properties in this sense, including assertions of recency.

Secrecy properties are not exactly of the right form, because they typi-
cally state that the adversary does not extract a particular value v. However,
they may be brought to a satisfactory form in more than one way. For in-
stance, one could declare a value v to be compromised in a bundle B if there
is a bundle B′ differing from B only in having additional adversary strands,
such that B′ contains a node n where term(n) = v. Then v being uncom-
promised is a security property in our sense. Alternatively, one can regard
a principal, having used a secret value v, as offering an event −v in which it
receives the secret; this event (conceptually) admits that the adversary has
captured the secret. Then a skeleton that contains a regular node of this
kind is an example of a failure of secrecy.
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3.2 Dolev-Yao Realizability

The question whether a security goal is achieved by a particular protocol is
essentially the question whether, in a set of skeletons representing failures
of that goal, there are any that can be completed to a generic bundle by
adding adversary activity. The answer may depend on a particular model
of the adversary, and perhaps also on models of the particular forms of
cryptography in use.

A set S = {s1, · · · , sj} of standard adversary strands (as in Defini-
tion A.6) derives a term t from a set of terms T if it is possible to connect
positive and negative nodes of S by arrows → so that:

1. the resulting graph (with the added → edges and the ⇒ edges of the
strands in S) is acyclic;

2. t occurs on a positive node on this graph;

3. if n is any node without an incoming → arrow, then term(n) ∈ T .

Given a skeleton defining potential behavior of the regular principals, the
adversary may want to “realize” it (complete it to a bundle) to show that
the regular principals can be forced to behave in this way. If this can be
done using only standard adversary strands, then we say that the skeleton
is (Dolev-Yao) realizable.

Definition 3.3 (Dolev-Yao Realizable) Let � be a skeleton, and let n
be a negative (regular) node in � . Node n is Dolev-Yao realizable in � if
there are positive nodes m1, . . . ,mk in � and standard adversary strands
s1, . . . , sj such that:

1. mi ≺ � n for all 1 ≤ i ≤ k;

2. any parameter on a M or K strand in s1, . . . , sj has no primary occur-
rence in � ;

3. s1, . . . , sj derive term(n) from {term(m1), . . . , term(mk)}.

The skeleton � is Dolev-Yao realizable if every negative node in � is real-
izable in � .

Proposition 3.4 � is Dolev-Yao realizable if and only if there exists a
generic bundle B such that the skeleton of B is � .
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Thus, the strand space proof methods such as the authentication tests, safe
keys, and honest ideals, can be used to establish whether a skeleton is Dolev-
Yao realizable. A generic bundle provides a witness to the adversary’s ability
to break security goals that would rule out � .

In this paper we mainly investigate skeletons which are non Dolev-Yao
realizable

Corollary 3.5 If there is no generic bundle B such that the skeleton of B is
� , then there is a negative regular node n of � such that n is not realizable
in � .

Suppose that the skeleton � is not Dolev-Yao realizable: How can the ad-
versary construct a concrete bundle in which the regular strands are of the
form π(s) for s ∈ � ? Corollary 3.5 suggests a way to reduce this to local,
purely cryptographic questions about non-realizable nodes n.

4 Adversary Strategies

To make this suggestion more precise, we need a formalization of the adver-
sary’s approach to synthesizing the non-realizable terms needed to complete

� . Moreover, the adversary wants to maximize the probability that he can
produce a bundle with spoofed values in place of the messages that would
have been sent by regular participants in the intended run of the protocol.
To formalize this we will first introduce stochastic elements into our model.

4.1 Stochastic Elements

These elements consist of an underlying probability space, together with
some random variables1 that extract aspects of the behavior. We must
assume some constraints, which require either that a random variable is
uniformly distributed, or else that random variables are independent of one
another.

We call the probability space (Ω,Pr). For convenience, we assume that
it is finite, as we may do because the sets of messages (bitstrings of bounded
size) are finite and the size of the bundles of interest are bounded. (Ω,Pr)
encapsulates an array of information including the choice of nonces and of
interlocutors by the regular participants.

1A random variable (sometimes we write just “variable”) is a function on the underlying
probability space.
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We can give a probabilistic interpretation to skeletons � as follows: As-
sociated to each parameter X is a Batom-valued random variable X. We
will use the convention that if X is an parameter, X is the random variable
corresponding to X.

4.2 Strategies

An adversary strategy consists of a skeleton � and a synthesis function gn for
each negative regular node n. Synthesis functions are used by the adversary
to synthesize a value b ∈ B from previously seen values that will be regarded
as legitimate by the recipient. “Legitimate” means the recipient sees that
b has the right syntactic form and particular components within b match
previously seen values. It is natural to allow the synthesis functions to be
probabilistic functions.

Definition 4.1 A randomized adversary strategy (or simply adversary strat-
egy) G consists of

1. A skeleton � ;

2. A source of randomness R for the adversary; and

3. For each negative regular node n, a function gn : Bk×R→ B and a list
m1, . . . ,mk of positive nodes from � such that for each mi, mi ≺ � n.

Naturally, different adversaries may have different collections of synthesis
functions gn available. The minimal set of interest is encryption and de-
cryption with known keys; concatenation and separation; originating new
values; and compositions of these operations. This is the Dolev-Yao adver-
sary, and strategies using these synthesis functions can succeed only if � is
Dolev-Yao realizable. At the opposite end of the spectrum, the strongest
plausible adversary can select any probabilistic polynomial-time Turing ma-
chine to compute the synthesis function to derive term(n). In this paper,
we leave the class of possible functions unconstrained.

Our notion of strategy is more limited than allowing the adversary to
select as its strategy any polynomial time Turing machine, using regular
participants as oracles (cf. e.g. [6]). In our approach, adversary must start
by choosing a finite set of regular strands. The adversary must also choose,
for each of the negative regular nodes n, a particular set of earlier positive
regular nodes to furnish the materials needed to create a message to deliver
to n. These choices are made before any data values are observed.
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Consequently, the security guarantees that we establish are weaker. How-
ever, they are easier to establish and quite informative. Indeed, it is an open
question whether this difference in power has practical significance.

4.3 Model Assumption

We assume that parameters to the protocol are assigned values indepen-
dently of each other. We also expect regular participants to choose values
for cryptoparameters on their strands independently of other parameters
and of the protocol-wide parameters. Moreover, they should (ideally speak-
ing) be chosen according to a uniform distribution. Finally, the adversary’s
source of randomness should be independent of the protocol-wide secret pa-
rameters, and independent of the choices of regular participants. These rules
codify natural assumptions about lack of causal interactions in the choice of
cryptographic values.

Assumption 1 Let G be an adversary strategy with abstract skeleton � . Let
P contain the random variables for secret protocol-wide parameters secret,
and for the parameters to regular strands in � . We assume:

1. The adversary’s source of randomness R is stochastically independent
of the random variables for parameters in P, taken jointly.

2. If X ∈ P, then X is stochastically independent of all other random
variables Y ∈ P \X, taken jointly.

3. If X ∈ P, then X is uniformly distributed.

4.4 The Success Set for a Strategy

Given an adversary strategy G with skeleton � and a family of synthesis
functions {gn} indexed on the negative regular nodes of � , we obtain a
probabilistic realization of G by replacing each parameter in the abstract
skeleton with the corresponding random variable. This produces a random
abstract skeleton. For each node n of this random abstract skeleton, term(n)
is a random variable with values in some free cryptoalgebra. Applying π to
these random terms yields a “prebundle” BG(ω), that is a subgraph of a
strand space in which negative nodes may not be matched with positive
nodes with the same term. Each term π(term(n)) of this prebundle is an
element of the concrete cryptoalgebra.

We will use the notation tn to denote the random variable π(term(n)).
Some of these random variables are associated with positive nodes, while
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others are associated with negative nodes. We write t+
n when necessary to

emphasize that this random variable is associated with a positive node n.
This prebundle is a bundle if, for each negative node n in the abstract

skeleton, with associated list of earlier positive regular nodes m1, . . . ,mk,
the value synthesized by the adversary using gn is the same as the value
that the regular principal expected to receive at n. If the sample point for
the random variables is ω, then this means:

gn

(

tm1
(ω), . . . , tmk

(ω),R(ω)
)

= tn(ω). (1)

The success set for a strategy is the set of sample points ω for which BG(ω)
is actually a bundle, or equivalently the set of ω that (1) is true for all the
gn used in G.

If an adversary strategy G has abstract skeleton � , and � is Dolev-Yao
realizable, then the adversary can certainly find functions gn that solve all
the instances of equation (1) for all values of the parameters. The realization
of n from earlier nodes implies that the adversary can implement gn as a
composition of encryptions, decryptions, concatenations, and separations.

If G is not realizable, then there exists at least one node n for which the
adversary cannot implement gn in this way (Corollary 3.5).

For each remaining equation, the adversary wants to choose a function
gn that will solve the equation in a large set of cases. Thus, the probability
that the adversary wins with G is the maximum over all assignments of
the available functions to nodes n of the probability of satisfying all of the
remaining equations.

For a fixed skeleton � , one wants an upper bound for the probability
that (1) holds for all negative non-Dolev-Yao realizable nodes n. In the
example we will consider, an upper bound can be obtained which depends
only on the size of the skeleton � .

As the skeleton � varies, the set of equations changes, since the terms
tmi

available to use on the left hand side of equation (1) vary. However,
the terms will be messages transmitted in this protocol, by other strands
or by the same strand before n. Thus, analyzing the risk of a non-Dolev-
Yao failure for a protocol reduces to bounding the probability that formulas
of the form (1) are true, for terms emitted by the protocol. Again, some
limitation on the size of � may be reasonable.

Definition 4.2 Suppose that a protocol is defined over AB and implemented
via π : AB → B. Then π is ε-faithful to a security goal for a class of skeletons
if the probability that the goal fails is ≤ ε for penetrator strategies whose
skeletons are in that class.
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In Section 5, we illustrate the usefulness of our approach by showing
that a pure authentication protocol such as map1is ε-faithful for skeletons
of bounded size, when the message authentication codes are implemented
using universal classes of hash functions following Carter and Wegman [11].

One can also consider families of mappings {πi}i∈ � , taking values in a
family of concrete cryptoalgebras {Bi}i∈ � accommodating increasing large
keys and nonces. One could then show that asymptotically, ε shrinks very
fast as i increases, again using equation (1).

5 Pure Authentication Protocols

We will now apply the preceding approach to pure entity authentication
protocols.

In map1, regular strands use a single nonce, so Nn is defined only for the
initial node of a strand. Likewise, they send a single tagged message each.

Following the recipe described above that associates terms in the ab-
stract cryptoalgebra to B-valued random variables, we identify the following
random variables:

1. F : Ω→ F which selects the secret tagging function F ∈ F .

2. For each positive regular node n at which a nonce originated, a random
variable Nn : Ω→ N.

3. For each negative regular node n at which a tagged value is received,
a random variable Bn : Ω→ B representing the value that was tagged.

4. R : Ω→ {0, 1}
�

is the adversary’s source of randomness.

Considering the example of map1 again, Bn is certainly not independent
of Nn, since a fresh nonce is part of each tagged message sent by a regular
strand. Likewise, Bn is not independent of F, because the values Tn delivers
are pairs 〈b, f(b)〉.

5.1 Forgery

We use the concept of a randomized adversary strategy G, that is a skeleton
� and a family of synthesis functions {gn} ranging over negative nodes of
� . As explained earlier, these elements are used to construct a random
prebundle BG(ω). The terms received on negative nodes n have the form
bn·f(bn).
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In the general setup described earlier the inputs to each gn are values
transmitted by previous nodes m1, · · · ,mk in the skeleton � . In our analysis
here we will be very generous and allow the adversary to the synthesize a
value from any value ever transmitted by a regular participant,

Accordingly, the input to gn consists of the following random elements:

1. The vector ~t of values transmitted by regular participants and

2. The adversary’s own source of randomness R.

Observe that in ~t, we include only the random messages transmitted on
positive nodes n; we refer to the set of possible values from which ~t is
chosen as T . The synthesis functions gn in the strategy G can be regarded
as the adversary’s forgery attempts in the prebundle BG(ω).

For the values of gn to be forgeries rather than replays, the messages
b must be different from those sent by the regular participants. Therefore
without loss of generality we assume that there is no message b and tags v, v ′

such that (b, v) is the value some synthesis function g and (b, v ′) = tn(ω) for
n a positive node.

The prebundle BG(ω) has a successful forgery if for some negative node
n of � the value of gn given the arguments ~t and R has the form b·f(b) where
f = F(ω). Thus, given a non-realizable node n, the solutions to equation 1
is the event:

forgen = {ω : gn(~t,R) =
(

Bn(ω),F(ω)(Bn(ω))
)

}.

Thus, if NR is the set of non-Dolev-Yao realizable nodes in � , then we want
to show that the event

forge =
⋂

n∈NR

forgen

has small probability.

5.2 Pure Authentication Protocol Model Assumptions

In the present protocol context, we can now state three more specific as-
sumptions that instantiate the content of Assumption 1 for the random
variables of pure authentication protocols. We regard Nn(ω) as a family of
nonce-valued random variables indexed by n.

Assumption 2 Any two different variables Nn(ω) and Nn′(ω) are inde-
pendent, and each variable Nn is uniformly distributed.
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This assumption is used only in Section 5.4.
Let fst be the function that delivers the first component of a pair, so

that fst ◦~t is the function that delivers the bodies but not the tags of the
tagged messages sent by regular participants.

Assumption 3 The variable F is stochastically independent of R and ~t′ =
fst ◦~t taken jointly:

Pr{F(ω) = f ∧~t′(ω) = t′ ∧R(ω) = r} =

Pr{F(ω) = f} · Pr{~t′(ω) = t′ ∧R(ω) = r}

Hence, F and R are pairwise independent, as are F and ~t′.

Assumption 4 The distribution of F on F is uniform, that is, for any
E ⊆ F

Pr{F(ω) ∈ E} =
card E

cardF

Evidently, Assumptions 2–4 are consequences of the main Assumption 1.
We also need to formalize F ’s being a good class of hash functions.

Assumption 5 For each message b and each t ∈ T and r ∈ R,

Pr{F(ω)b = v|~t(ω) = t ∧R(ω) = r} (2)

does not depend on v ∈ V.

We show in Section 5.5 that tagging functions achieve this equation if they
make up a universal class in the sense of Carter and Wegman [11, 32]. The
protocol limits the number of new nonces sent by a single regular strand. It
also limits the number of signed expressions sent by a single regular strand.
And it limits the number of signed expressions that can be received by a
single regular strand. In map1, all of these numbers equal 1, though in
another protocol they may have some maximum ν. Therefore, at most Λ
nonces are used where

Λ = ν × card
{

Regular Strands
}

.

It follows that the risk of two strands re-using a nonce can be easiliy bounded.
The number of samples of the tagging function f that the regular partici-
pants show the adversary is limited by Λ. And the number of forgeries that
the adversary may submit to the regular participants is bounded by Λ.
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Assumption 6 The number of nonces, tagged values sent, and tagged val-
ues received on regular nodes in � is bounded by some value Λ.

This assumption is part of the justification for taking Ω to be finite. The
existence of an upper bound on the number of regular strands is ultimately
justified by a re-keying schedule. We require the participants to agree on a
new value of f before the assumed upper bound on the number of sessions
can be attained.

5.3 The Probability of Forgery

Given a particular ω, the adversary may observe t = ~t(ω) and r = R(ω), the
first being the tagged messages chosen by the regular participants and the
second being the adversary’s source of randomness. Each forgery attempt
consists in generating and transmitting a tagged message b · v.

Proposition 5.1 For any t, r

Pr{F(ω)b = v|~t(ω) = t ∧R(ω) = r} = Pr{F(ω)b = v} =
1

card V
. (3)

Proof. Note that for any t and r:

∑

v∈V

Pr{F(ω)b = v|~t(ω) = t ∧R(ω) = r} = 1.

Since all terms in the sum have the same value,

Pr{F(ω)b = v|~t(ω) = t ∧R(ω) = r} = 1/ card V.

From this follows that for any b, v,

Pr{F(ω)b = v}

=
∑

t∈T ,r∈R

Pr{F(ω)b = v|~t(ω) = t ∧R(ω) = r} Pr{~t(ω) = t ∧R(ω) = r}

=
1

cardV

∑

t,r

Pr{~t(ω) = t ∧R(ω) = r} =
1

cardV

Corollary 5.2 The likelihood of forgery forge is at most

1

card V
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5.4 Likelihood of Anomalies

As we mentioned in Section 2.1, there are two ways that an authentication
goal may fail. One is that some attack on the protocol or underlying cryp-
tography occurs. The other is that a participants has (by bad luck) chosen
a nonce that has been used before, so that the adversary can re-use some
part of a message generated in a non-matching run. In case the protocol
is correct viewed abstractly, the first type of failure amounts to the event
forge.

The Probability of Nonce Clash The second type of failure arises
when the regular participants choose clashing nonces, which we define:

clash = {ω : Nn(ω) = Nn′(ω)

where s 6= s′ or i 6= i′}

Since by Assumption 2 the random variables N(ω)(i, j) are uniformly dis-
tributed and mutually independent, determining a bound on the likelihood
of a nonce anomaly is a special case of the “birthday problem” [13]. The
total number of choices is bounded by Λ, so the likelihood of at least one
collision is

clash ≤ Λ(Λ− 1)/2 card(N) (4)

The Probability of Clashing or Forgery Putting Equation 4 together
with proposition 5.2, we have:

Proposition 5.3 Suppose for a pure authentication protocol that every Dolev-
Yao realizable skeleton has matching initiator and responder strands, and
Assumptions 2–6 hold.

Then the protocol is ε-faithful for

ε ≥
Λ(Λ− 1)

2 card(N)
+

1

cardV
.

As an example, consider a tolerance of ε = 2−31 for the likelihood of forgeries
and clashes together, where we will allocate half of ε for each type of anomaly.
If nonces are given by 64-bit strings, then card(N) = 264. To ensure that
independent choices of Λ nonces has probability of anomaly below ε/2, it
suffices to restrict Λ so that Λ2/2·264 ≤ 2−32, i.e., Λ ≤ 217, roughly 130, 000.
If, for example, we would like to use a shared secret choice of f without
change for a year, this would allow 300 strands per day, since 130000/365 >
300.
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For the case of forgeries, Pr(forge) ≤ 1/ card V. To ensure that 1/ card V ≤
2−32, we need card V ≥ 232, so that 32-bit tags are ample.

Thus with Λ = 216, the likelihood of an authentication failure is

ε ≤ Pr(forge) + Pr(clash) ≤ 2−32 + 2−32 = 2−31

Each tag calculation requires substantial computation, but the rekeying is
infrequent and the risk of authentication failure is very low. These numbers
are only illustrative; the point is that we have described a comprehensive
method that yokes abstract protocol design and verification using strand
spaces to low-level calculations of the risk of security compromise.

5.5 Achieving Assumption 5

The condition in Assumption 5 (equation 2) can be reformulated as follows.
Suppose b is a potential bogus message and v is a potential tag. Let t be a
sequence of message and message tag pairs and let t′ = fst t and t′′ = snd t.
By the uniformity assumption 4 and the independence Assumption 3 we
obtain the following sequence of identities:

Pr{F(ω)b = v|~t(ω) = t ∧R(ω) = r}

=
Pr{F(ω)b = v ∧~t(ω) = t ∧R(ω) = r}

Pr{~t(ω) = t ∧R(ω) = r}

=
Pr{F(ω)b = v ∧ F(ω)t′ = t′′ ∧~t′(ω) = t′ ∧R(ω) = r}

Pr{F(ω)t′ = t′′ ∧~t′(ω) = t′ ∧R(ω) = r}

=
Pr{F(ω)b = v ∧ F(ω)t′ = t′′}

Pr{F(ω)t′ = t′′}

=
card{g ∈ Ft : g(b) = v}

cardFt

where Ft is the set of hash functions f such that f(t′) = t′′. Using this
identity, we can reformulate the condition of Formula (2) in the following
way. For any potential bogus message b after the observations t,

card{g ∈ Ft : g(b) = v}

card(Ft)
(5)

is independent of v. Intuitively what this condition means is that the ad-
versary does no better after observing the sequence of message-tag pairs t
than pure random guessing. But this is precisely the property studied in the
classic papers by Carter and Wegman [11, 32], which we use in the form:
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Definition 5.4 A set of functions F ⊆ Y X is n-strongly universal just in
case the following two conditions are met: (1) card(X) is at least n, and (2)
if x1, . . . , xn are any n pairwise distinct values in X, then the distribution
of the evaluation mapping f 7→ 〈f(x1), . . . , f(xn)〉 is uniform.

See Appendix B for supplementary details, where Lemma B.5 produces an
example of an n-strongly universal class of functions.

6 Conclusion

In this conclusion, we briefly consider some of the related work, and then
restate what we take the current paper to have accomplished.

Related Work The current paper develops a method for supplementing
abstract protocol analysis with information about concrete cryptographic
primitives used in a particular implementation. Thus, one can quantify the
probability of the adversary succeeding at undermining a security goal which
the Dolev-Yao adversary cannot undermine.

The conclusions one would like to derive are akin to those of Bellare
and Rogaway [6], who studied protocols without abstracting from cryptog-
raphy, and established security results for specific protocols directly from
the way that specific cryptographic operators are used in them. However,
the newer work is a more convenient way to reach these results. The prob-
lem is split into a part specific to the protocol and a separate part specific
to the cryptographic primitives.

A number of recent papers have considered how to interrelate crypto-
graphic protocol analysis based on formal methods (roughly, the Dolev-Yao
tradition) with more precise results that are sensitive to the cryptographic
primitives in use. One of the first of these, by Pfitzmann, Schunter, and
Waidner [26], questions whether the Dolev-Yao model is cryptographically
sound. However, their somewhat tentative counterexample, which appears
to have achieved some acceptance, is hardly a fair presentation of how the
Dolev-Yao model would formalize the behavior they describe. More posi-
tively, the paper develops a state machine model that allows secure com-
position [27, 28] and formally justified implementations [3], as carried out
subsequently. They establish that somewhat complex state machines have
almost indistinguishable behavior when an “ideal” cryptographic substruc-
ture is replaced with a real cryptographic substructure satisfying one of a
family of properties. The notational burden of their state machine model
seems quite high, however, and it is questionable whether they will find it
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easy to reason abstractly about properties of particular protocols. By con-
trast, the present paper connects a strongly defined method for reasoning
about protocols with a way to bound the weakness introduced by a crypto-
graphic prinitive. Naturally, in this paper, we have illustrated our approach
only with a single primitive, and moreover one that is uncharacteristically
easy to reason about.

Abadi and Rogaway [2, 1] study types of concrete cryptography that do
not introduce additional attacks, beyond those predicted by the abstract pro-
tocol analysis. More precisely, any strategy of the adversary has a negligible
probability of producing an attack. “Negligible” is defined asymptotically
in this line of work, to mean that the probability of success decreases faster
than 1/p(k), for any polynomial p, as the security parameter k increases.
Abadi and Rogaway have focused however on a passive adversary, which
observes messages but never generates them.

Likewise, the “concrete security” line of work (e.g. [4, 5]) is relevant.
However, as with Abadi and Rogaway, it treats protocols with a more re-
stricted adversary model, and indeed with little or no attention to multi-
party interaction. Shoup approaches protocol verification from a primarily
cryptographic point of view [30], and the underlying formal model is less
sharply defined. Thus, it is hard to see exactly what forms of reasoning are
justified at the formal level.

Canetti and Krawczyk [9], following Canetti [8], have proposed a very
promising notion of security based on the idea that when a key agreement
protocol delivers a session key to some “application protocol,” then the ap-
plication protocol should be able to use it freely without undermining the
guarantees of the key agreement protocol. This approach leads to strong
guarantees of security, and also provides valuable protocol design guide-
lines. However, it remains necessary to carry out the full protocol analysis
within the cryptographic model; thus, this approach also does not furnish the
separation of concerns between formal protocol analysis and cryptographic
analysis of the primitives.

Summary In this paper we have shown that abstract message authenti-
cation codes are faithful in the sense that, when a protocol meets its security
goals in an abstract model like the strand space model, then the probability
that an adversary can defeat it is below a suitable ε such as 2−31. Specifically,
we have established this in the case in which the cryptographic primitive is
Carter-Wegman hashing. The core method, using Corollary 3.5 to reduce
protocol attacks to individual local forgeries, and equation 1 identify the
cryptographic problem that must be solved to achieve a forgery, appears to
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be more widely applicable.
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A Strands and the Adversary

In this appendix, we define the basic strand space notions used in the body
of the paper. This material is derived from [31, 17].

A.1 Strand Spaces

Consider a set A, the elements of which are the possible messages that can
be exchanged between principals in a protocol. We will refer to the elements
of A as terms. We assume that a subterm relation is defined on A. t0

�
t1

means t0 is a subterm of t1. We also assume that A has a concatenation
operator · and possibly also a cryptographic operator. We write {|t|}K for
the result of applying the cryptographic operator to t using the secret K.

In a protocol, principals can either send or receive terms. We represent
transmission of a term as the occurrence of that term with positive sign,
and reception of a term as its occurrence with negative sign.

Definition A.1 A signed term is a pair 〈σ, a〉 with a ∈ A and σ one of the
symbols +,−. We will write a signed term as +t or −t. (±A)∗ is the set of
finite sequences of signed terms. We will denote a typical element of (±A)∗

by 〈 〈σ1, a1〉, . . . , 〈σn, an〉 〉.
A strand space over A is a set Σ together with a trace mapping tr : Σ→

(±A)∗.
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By abuse of language, we will still treat signed terms as ordinary terms.
For instance, we shall refer to subterms of signed terms. We will usually
represent a strand space by its underlying set of strands Σ.

Definition A.2 Fix a strand space Σ.

1. A node is a pair 〈s, i〉, with s ∈ Σ and i an integer satisying 1 ≤ i ≤
length(tr(s)). The set of nodes is denoted by N . If n = 〈s, i〉 ∈ N
then index(n) = i and strand(n) = s. Define term(n) to be (tr(s))i,
i.e. the ith signed term in the trace of s.

2. There is an edge n1 → n2 if and only if term(n1) = +a and term(n2) =
−a for some a ∈ A. Intuitively, the edge means that node n1 sends the
message a, which is received by n2, recording a potential causal link
between those strands.

3. When n1 = 〈s, i〉 and n2 = 〈s, i + 1〉 are members of N , there is an
edge n1 ⇒ n2. Intuitively, the edge expresses that n1 is an immediate
causal predecessor of n2 on the strand s.

4. Suppose I is a set of unsigned terms. The node n ∈ N is an entry
point for I iff term(n) = +t for some t ∈ I, and whenever n′ ⇒+ n,
term(n′) 6∈ I.

5. An unsigned term t originates on n ∈ N iff n is an entry point for the
set I = {t′ : t

�
t′}.

6. An unsigned term t is uniquely originating in a set of nodes S ⊂ N iff
there is a unique n ∈ S such that t originates on n.

7. An unsigned term t is non-originating in a set of nodes S ⊂ N iff there
is no n ∈ S such that t originates on n.

A.2 Bundles and Causal Precedence

A bundle is a finite subgraph of the graph 〈N , (→ ∪⇒)〉, for which we can
regard the edges as expressing the causal dependencies of the nodes.

Definition A.3 Suppose →C ⊂ →; suppose ⇒C ⊂ ⇒; and suppose C =
〈NC , (→C ∪ ⇒C)〉 is a subgraph of 〈N , (→ ∪⇒)〉. C is a bundle if:

1. NC and →C ∪ ⇒C are finite.
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2. If n2 ∈ NC and term(n2) is negative, then there is a unique n1 such
that n1 →C n2.

3. If n2 ∈ NC and n1 ⇒ n2 then n1 ⇒C n2.

4. C is acyclic.

In conditions 2 and 3, it follows that n1 ∈ NC, because C is a graph.

Definition A.4 If S is a set of edges, i.e. S ⊂→ ∪ ⇒, then ≺S is the
transitive closure of S, and �S is the reflexive, transitive closure of S.

The relations ≺S and �S are each subsets of NS ×NS , where NS is the set
of nodes incident with any edge in S.

Proposition A.5 Suppose C is a bundle. Then �C is a partial order, i.e. a
reflexive, antisymmetric, transitive relation. Every non-empty subset of the
nodes in C has �C-minimal members.

A.3 Adversary Strands

The actions available to the adversary in the abstract Dolev-Yao model are
relative to the set of keys that the adversary knows initially. We encode this
in a parameter, the set of adversary keys KP .

Definition A.6 A adversary trace relative to KP is one of the following:

Mt Text message: 〈+t〉 where t ∈ T

KK Key: 〈+K〉 where K ∈ KP

Cg,h Concatenation: 〈−g, −h, +g·h〉

Sg,h Separation: 〈−g·h, +g, +h〉

Eh,K Encryption: 〈−K, −h, +{|h|}K〉

Dh,K Decryption: 〈−K−1, −{|h|}K , +h〉

PΣ is the set of all strands s ∈ Σ such that tr(s) is an adversary trace.
A strand s ∈ Σ is a adversary strand if it belongs to PΣ, and a node is

a adversary node if the strand it lies on is an adversary strand. Otherwise
we will call it a regular strand or node.
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B Carter-Wegman Hash Functions

We now recall the concept of Carter-Wegman universal classes.

Definition B.1 φ : X → Y is uniformly distributed iff φ maps the uniform
distribution on X to the uniform distribution on Y . Thus,

card
(

φ−1(A)
)

card(X)
=

card(A)

card(Y )

for every A ⊆ Y .

Alternatively, φ is uniform iff the inverse image of each y ∈ Y has cardi-
nality card(X)/ card(Y ).

For any φ : X → Y , X is the disjoint union of the sets φ−1(y) for y ∈ Y .
Uniform distribution means that all these sets have the same cardinality.
Intuitively, uniformly distributed maps decompose X as a “product” Y ×H.

Example B.2 Let V,W be finite dimensional vector spaces over the finite
field

�
q . An linear map T : V → W is uniformly distributed iff it is surjec-

tive. This will be the case iff dimV − dimker T = dimW .

Proof. If T is surjective and w ∈ W , then T−1(w) is an subspace of
dimension T−1(0).

Definition B.3 A set of functions F ⊆ Y X is n-strongly universal iff
card(X) is at least n and for any pairwise distinct x1, . . . , xn ∈ X, the
evaluation mapping

f 7→ 〈f(x1), . . . , f(xn)〉

is uniform. Equivalently, for pairwise distinct x1, . . . , xn ∈ X

P{f ∈ F : 〈f(x1), . . . , f(xn)〉 = 〈y1, . . . , yn〉} =
1

(card Y )n

The definition requires that the x1, . . . , xn be pairwise distinct. If some
of the xi’s coincide, then 〈f(x1), . . . , f(xn)〉 lies on a proper subspace of Y n,
in which case the evaluation mapping is non-uniform.

Example B.4 If q ≥ n, the space of polynomial functions p :
�

q →
�

q with
deg(p) ≤ n − 1 is n-strongly universal. This follows from linearity of the
evaluation mapping p 7→ (p(θ1), . . . , p(θn)) and Lagrange interpolation.
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As a special case, the space of affine mappings x 7→ ax + b on finite fields is
2-strongly universal.

Note that the usual definition of n-strong universality does not require
that card(X) be at least n. However, without this assumption, the following
lemma fails.

Lemma B.5 If F ⊆ Y X is n-strongly universal then F is m strongly uni-
versal for m ≤ n.

Proof. If x1, . . . xm are pairwise distinct, extend to a pairwise distinct
sequence x1, . . . xn, which exists since card(X) is at least n, and use the fact
the composition of uniform mappings is uniform.

�
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