
Operating R. Stockton Gaines
Systems Editor

Password Security:
A Case History
R o b e r t M o r r i s a n d K e n T h o m p s o n
Bel l L a b o r a t o r i e s

This paper describes the history of the design of the
password security scheme on a remotely accessed time-
sharing system. The present design was the result of
countering observed attempts to penetrate the system.
The result is a compromise between extreme security
and ease of use.

Key Words and Phrases: operating systems,
passwords, computer security

CR Categories: 2.41, 4.35

Introduction

Password security on the UNIX (a trademark of Bell
Laboratories) time-sharing system [3] is provided by a
collection of programs whose elaborate and strange de-
sign is the outgrowth of many years of experience with
earlier versions. To help develop a secure system, we
have had a continuing competition to devise new ways
to attack the security of the system (the bad guy) and, at
the same time, to devise new techniques to resist the new
attacks (the good guy). This competition has been in the
same vein as the competition of long standing between
manufacturers of armor plate and those of armor-pierc-
ing shells. For this reason, the description that follows
will trace the history of the password system rather than
simply presenting the program in its current state. In this
way, the reasons for the design will be made clearer, as
the design cannot be understood without also under-
standing the potential attacks.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Authors' present address: R. Morris and K. Thompson, Bell Lab-
oratories, 600 Mountain Avenue, Murray Hill, NJ 07974.
© 1979 ACM 0001-0782/79/1100-0594 $00.75.

594

An underlying goal has been to provide password
security at minimal inconvenience to the users of the
system. For example, those who want to run a completely
open system without passwords, or to have passwords
only at the option of the individual users, are able to do
so, while those who require all of their users to have
passwords gain a high degree of security against penetra-
tion of the system by unauthorized users.

The password system must be able not only to pre-
vent any access to the system by unauthorized users (i.e.,
prevent them from logging in at all), but it must also
prevent users who are already logged in from doing
things that they are not authorized to do. The so-called
"super-user" password on the UNIX system, for exam-
ple, is especially critical because the super-user has all
sorts of permissions and has essentially unlimited access
to all system resources.

Password security is of course only one component
of overall System security, but it is an essential compo-
nent. Experience has shown that attempts to penetrate
remote-access systems have been astonishingly sophisti-
cated.

Remote-access systems are peculiarly vulnerable to
penetration by outsiders as there are threats at the remote
terminal, along the communications link, as well as at
the computer itself. Although the security of a password
encryption algorithm is an interesting intellectual and
mathematical problem, it is only one tiny facet of a very
large problem. In practice, physical security of the com-
puter, communications security of the communications
link, and physical control of the computer itself loom as
far more important issues. Perhaps most important of all
is control over the actions of ex-employees, since they
are not under any direct control and they may have
intimate knowledge about the system, its resources, and
methods of access. Good system security involves real-
istic evaluation of the risks not only of deliberate attacks
but also of casual authorized access and accidental dis-
closure.

Prologue

The UNIX system was first implemented with a
password file that contained the actual passwords of all
the users, and for that reason the password file had to be
heavily protected against being either read or written.
Although historically, this had been the technique used
for remote-access systems, it was completely unsatisfac-
tory for several reasons.

The technique is excessively vulnerable to lapses in
security. Temporary loss of protection can occur when
the password file is being edited or otherwise modified.
There is no way to prevent the making of copies by
privileged users. Experience with several earlier remote-
access systems showed that such lapses occur with
frightening frequency. Perhaps the most memorable such
occasion occurred in the early 60s at a time when one of

Communications November 1979
of Volume 22
the ACM Number 11

the authors (Morris) happened to be using the system. A
system administrator on the CTSS system at MIT was
editing the password file and another system administra-
tor was editing the daily message that is printed on
everyone's terminal on login. Due to a software design
error, the temporary editor files of the two users were
interchanged and thus, for a time, the password file was
printed on every terminal when it was logged in.

Once such a lapse in security has been discovered,
everyone's password must be changed, usually simulta-
neously, at a considerable administrative cost. This is not
a great matter, but far more serious is the high probability
of such lapses going unnoticed by the system administra-
tors.

Security against unauthorized disclosure of the pass-
words was, in the last analysis, impossible with this
system because, for example, if the contents of the file
system are put on to magnetic tape for backup, as they
must be, then anyone who has physical access to the tape
can read anything on it with no restriction.

Many programs must get information of various
kinds about the users of the system, and these programs
in general should have no special permission to read the
password file. The information which should have been
in the password file actually was distributed (or repli-
cated) into a number of files, all of which had to be
updated whenever a user was added to or dropped from
the system.

The First Scheme

The obvious solution is to arrange that the passwords
not appear in the system at all, and it is not difficult to
decide that this can be done by encrypting each user's
password, putting only the encrypted form in the pass-
word file, and throwing away his original password (the
one that he typed in). When the user later tries to log in
to the system, the password that he types is encrypted
and compared with the encrypted version in the pass-
word file. If the two match, his login attempt is accepted.
Such a scheme was first described in [4, p. 91ff.]. It also
seemed advisable to devise a system in which neither the
password file nor the password program itself needed to
be protected against being read by anyone.

All that was needed to implement these ideas was to
find a means of encryption that was very difficult to
invert, even when the encryption program is available.
Most of the standard encryption methods used (in the
past) for encryption of messages are rather easy to invert.
A convenient and rather good encryption program hap-
pened to exist on the system at the time; it simulated the
M-209 cipher machine [1] used by the U.S. Army during
World War II. It turned out that the M-209 program was
usable, but with a given key, the ciphers produced by
this program are trivial to invert. It is a much more
difficult matter to find out the key given the cleartext
input and the enciphered output of the program. There-

595

fore, the password was used not as the text to be en-
crypted but as the key, and a constant was encrypted
using this key. The encrypted result was entered into the
password file.

Attacks on the First Approach

Suppose that the bad guy has available the text of
the password encryption program and the complete pass-
word file. Suppose also that he has substantial computing
capacity at his disposal.

One obvious approach to penetrating the password
mechanism is to attempt to find a general method of
inverting the encryption algorithm. Very possibly this
can be done, but few successful results have come to
light, despite substantial efforts extending over a period
of more than five years. The results have not proved to
be very useful in penetrating systems.

Another approach to penetration is simply to keep
trying potential passwords until one succeeds; this is a
general cryptanalytic approach called key search. Human
beings being what they are, there is a strong tendency
for people to choose relatively short and simple pass-
words that they can remember. Given free choice, most
people will choose their passwords from a restricted
character set (e.g., all lower-case letters), and will often
choose words or names. This human habit makes the
key search job a great deal easier.

The critical factor involved in key search is the
amount of time needed to encrypt a potential password
and to check the result against an entry in the password
file. The running time to encrypt one trial password and
check the result turned out to be approximately 1.25
milliseconds on a PDP-11/70 when the encryption al-
gorithm was recoded for maximum speed. It takes essen-
tially no more time to test the encrypted trial password
against all the passwords in an entire password file, or
for that matter, against any collection of encrypted pass-
words, perhaps collected from many installations.

If we want to check all passwords of length n that
consist entirely of lower-case letters, the number of such
passwords is 26 n. If we suppose that the password consists
of printable characters only, then the number of possible
passwords is somewhat less than 95 n. (The standard
system "character erase" and "line kill" characters are,
for example, not prime candidates.) We can immediately
estimate the running time of a program that will test
every password of a given length with all of its characters
chosen from some set of characters. The following table
gives estimates of the running time required on a PDP-
11/70 to test all possible character strings of length n
chosen from various sets of characters: namely, all lower-
case letters, all lower-case letters plus digits, all alpha-
numeric characters, all 95 printable ASCII characters,
and finally all 128 ASCII characters.

Communications November 1979
of Volume 22
the ACM Number 11

36 62
26 lower-case alpha- 95 all 128

lower-case letters numeric printable ASCII
n letters and digits characters characters characters

1 30 msec. 40 msec. 80 msec. 120 msec. 160 msec.
2 800 msec. 2 sec. 5 sec, 11 sec. 20 sec.
3 22 sec. 58 sec. 5 min. 17 min. 44 min.

4 10 min. 35 min. 5 hrs. 28 hrs. 93 hrs.
5 4 hrs. 21 hrs. 318 hrs. 112 days 500 days
6 107 hrs. 760 hrs. 2.2 yrs. 29 yrs. 174 yrs.

One has to conclude that it is no great matter for someone
with access to a PDP-11 to test all lower-case alphabetic
strings up to length five and, given access to the machine
for, say, several weekends, to test all such strings up to
six characters in length. By using such a program against
a collection of actual encrypted passwords, a substantial
fraction of all the passwords will be found.

Another profitable approach for the bad guy is to use
the word list from a d!ctionary or to use a list of names.
For example, a large commercial dictionary contains
typically about 250,000 words; these words can be
checked in about five minutes. Again, a noticeable frac-
tion of any collection of passwords will be found. Im-
provements and extensions will be (and have been) found
by a determined bad guy. Some "good" things to try
are:

- - T h e dictionary with the words spelled backwards.
- - A list of first names (best obtained from some

mailing list). Last names, street names, and city
names also work well.

- - T h e above with initial upper-case letters.
- -Al l valid license plate numbers in your state. (This

takes about five hours in New Jersey.)
- - R o o m numbers, social security numbers, telephone

numbers, and the like.

The authors have conducted experiments to try to
determine typical users' habits in the choice of passwords
when no constraint is put on their choice. The results
were disappointing, except to the bad guy. In a collection
of 3,289 passwords gathered from many users over a
long period of time,

15 were a single ASCII character;
72 were strings of two ASCII characters;
464 were strings of three ASCII characters;
477 were strings of four alphamerics;
706 were five letters, all upper-case or all lower-case;
605 were six letters, all lower-case.

An additional 492 passwords appeared in various avail-
able dictionaries, name lists, and the like. A total of 2,831
or 86 percent of this sample of passwords fell into one of
these classes.

There was, of course, considerable overlap between
the dictionary results and the character string searches.
The dictionary search alone, which required only five
minutes to run, produced about one third of the pass-
words.

Users could be urged (or forced) to use either longer

passwords or passwords chosen from a larger character
set, or the system could itself choose passwords for the
users.

An Anecdote

An entertaining and instructive example is the at-
tempt made at one installation to force users to use less
predictable passwords. The users did not choose their
own passwords; the system supplied them. The supplied
passwords were eight characters long and were taken
from the character set consisting of lower-case letters and
digits. They were generated by a pseudorandom number
generator with only 21~ starting values. The time required
to search (again on a PDP-11/70) through all character
strings of length 8 from a 36-character alphabet is 112
years.

Unfortunately, only 21~ of them need be looked at,
because that is the number of possible outputs of the
random number generator. The bad guy did, in fact,
generate and test each of these strings and found every
one of the system-generated passwords using a total of
only about one minute of machine time. In this case, no
harm was done, as the bad guy happened to be a friendly
user.

Improvements to the First Approach

1. Slower Encryption
Obviously, the first algorithm used was far too fast.

The announcement of the DES encryption algorithm [2]
by the National Bureau of Standards was timely and
fortunate. The DES is, by design, hard to invert, but
equally valuable is the fact that it is extremely slow when
implemented in software. The DES was implemented
and used in the following way: The first eight characters
of the user's password are used as a key for the DES;
then the algorithm is used to encrypt a constant. Al-
though this constant is zero at the moment, it is easily
accessible and can be made installation-dependent. Then
the DES algorithm is iterated 25 times and the resulting
64 bits are repacked to become a string of 11 printable
characters.

2. Less Predictable Passwords
The password entry program was modified so as to

urge the user to use more obscure passwords. If the user
enters an alphabetic password (all upper-case or all
lower-case) shorter than six characters, or a password
from a larger character set shorter than five characters,
then the program asks him to enter a longer password.
This further reduces the efficacy of key search.

These improvements make it exceedingly difficult to
find any individual password. The user is warned of the
risks and if he cooperates, he is very safe indeed. On the
other hand, he is not prevented from using his spouse's
name if he wants to.

596 Communicat ions November 1979
of Volume 22
the ACM Number 11

3. Salted Passwords
The key search technique is still likely to turn up a

few passwords when it is used on a large collection of
passwords, and it seemed wise to make this task as
difficult as possible. To this end, when a password is first
entered, the password program obtains a 12-bit random
number (by reading the real-time clock) and appends
this to the password typed in by the user. The concate-
nated string is encrypted and both the 12-bit random
quantity (called the salt) and the 64-bit result of the
encryption are entered into the password file.

When the user later logs in to the system, the 12-bit
quantity is extracted from the password file and ap-
pended to the typed password. The encrypted result is
required, as before, to be the same as the remaining 64
bits in the password file. This modification does not
increase the task of finding any individual password,
starting from scratch, but now the work of testing a given
character string against a large collection of encrypted
passwords has been multiplied by 4,096 (212). The reason
for this is that there are 4,096 encrypted versions of each
password and one of them has been picked more or less
at random by the system.

With this modification, it is likely that the bad guy
can spend days of computer time trying to find a pass-
word on a system with hundreds of passwords, and find
none at all. More important is the fact that it becomes
impractical to prepare an encrypted dictionary in ad-
vance. Such an encrypted dictionary could be used to
crack new passwords in milliseconds when they appear.

There is a (not inadvertent) side effect of this modi-
fication. It becomes nearly impossible to find out whether
a person with passwords on two or more systems has
used the same password on all of them, unless you
already know that.

4. The Threat of the DES Chip
Chips to perform the DES encryption are already

commercially available and they are very fast. The use
of such a chip speeds up the process of password hunting
by three orders of magnitude. To avert this possibility,
one of the internal tables of the DES algorithm (in
particular, the so-called E-table) is changed in a way that
depends on the 12-bit random number. The E-table is
inseparably wired into the DES chip, so that the com-
mercial chip cannot be used. Obviously, the bad guy
could have his own chip designed and built, but the cost
would be very high.

5. A Subtle Point
To log in successfully on the UNIX system, it is

necessary after dialing in to type a valid user name, and
then the correct password for that user name. It is poor
design to write the login command in such a way that it
tells an interloper when he has typed in an invalid user
name. The response to an invalid name should be iden-
tical to that for a valid name.

When the slow encryption algorithm was first imple-

597

mented, the encryption was done only if the user name
was valid, because otherwise there was no encrypted
password to compare with the supplied password. The
result was that the response was delayed by about one-
half second if the name was valid, but was immediate if
invalid. The bad guy could find out whether a particular
user name was valid. The routine was modified to do the
encryption in either case.

Conclusions

On the issue of password security, UNIX is probably
better than most systems. The use of encrypted pass-
words appears reasonably secure in the absence of seri-
ous attention of experts in the field.

It is also worth some effort to conceal even the
encrypted passwords. Some UNIX systems have insti-
tuted what is called an "external security code" that must
be typed when dialing into the system, but before logging
in. If this code is changed periodically, then someone
with an old password will likely be prevented from using
it.

Whenever any security procedure is set up to deny
access to unauthorized persons, it is wise to keep a record
of both successful and unsuccessful attempts to get at the
secured resource. For example, an out-of-hours visitor to
a computer center normally must not only identify him-
self, but a record is usually also kept of his entry. Just so,
it is a wise precaution to make and keep a record of all
attempts to log into a remote-access time-sharing system,
and certainly all unsuccessful attempts.

Bad guys fall on a spectrum whose one end is some-
one with ordinary access to a system and whose goal is
to find out a particular password (usually that of the
super-user) and, at the other end, someone who wishes
to collect as much password information as possible from
as many systems as possible. Most of the work reported
here serves to frustrate the latter type; our experience
indicates that the former type of bad guy never Was very
successful.

We recognize that a time-sharing system must oper-
ate in a hostile environment. We did not attempt to hide
the security aspects of the operating system, thereby
playing the customary make-believe game in which
weaknesses of the system are not discussed no matter
how apparent. Rather we advertised the password algo-
rithm and invited attack in the belief that this approach
would minimize future trouble. The approach has been
successful.

Received August 1978; revised August 1979

References
i. Hagelin, B. Ciphering Machine (M-209), U.S. Patent No.
2,089,603, Aug. 10, 1937.
2. Proposed federal information processing data encryption
standard. Federal Register (40FR12134), March 17, 1975.
3. Ritchie, D.M., and Thompson, K. The UNIX time-sharing
system. Comm. ACM 17, 7 (July 1974), 365-375.
4. Wilkes, M.V. Time-Sharing Computer Systems. American
Elsevier, New York, 1968.

Communications November 1979
of Volume 22
the ACM Number 11

