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Abstract. The automata-theoretic approach to linear temporal logic uses the
theory of automata as a unifying paradigm for program specification, verification,
and synthesis. Both programs and specifications are in essence descriptions of
computations. These computations can be viewed as words over some alphabet.
Thus, programs and specifi cationscan be viewed as descriptions of languagesover
some alphabet. The automata-theoretic perspective considers the relationships
between programs and their specificationsasrel ationships between languages. By
translating programs and specificationsto automata, questionsabout programsand
their specificationscan be reduced to questionsabout automata. More specifically,
questions such as satisfiability of specificationsand correctness of programs with
respect to their specifications can be reduced to questions such as nonemptiness
and containment of automata.

Unlike classical automata theory, which focused on automataon finite words, the
applications to program specification, verification, and synthesis, use automata
on infinite words, since the computationsin which we are interested are typically
infinite. This paper provides an introduction to the theory of automata on infinite
words and demonstrates its applications to program specification, verification,
and synthesis.

1 Introduction

While program verification was alwaysadesirable, but never an easy task, the advent of
concurrent programming has made it significantly more necessary and difficult. Indeed,
the conceptual complexity of concurrency increases the likelihood of the program con-
taining errors. To quote from [OL82]: “Thereisarather large body of sad experienceto
indicatethat aconcurrent program can withstand very careful scrutiny without revealing
itserrors.”

Thefirst step in program verification isto come up with aformal specification of the
program. One of the more widely used specification languages for concurrent programs
istemporal logic[Pnu77, MP92]. Temporal logic comesintwo varieties: linear timeand
branching time ([EH86, Lam80]); we concentrate here on linear time. A linear temporal
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specification describes the computations of the program, so a program satisfies the
specification (is correct) if all its computations satisfy the specification. Of course, a
specification is of interest only if it is satisfiable. An unsatisfiable specification cannot
be satisfied by any program. An often advocated approach to program development isto
avoid the verification step altogether by using the specification to synthesize a program
that is guaranteed to be correct.

Our approach to specification, verification, and synthesisis based on an intimate
connection between linear temporal logic and automata theory, which was discussed
explicitly first in [WVS83] (see aso [LPZ85, Pei85, Sis83, SYW87, VW9]). This
connection is based on the fact that a computation is essentially an infinite sequence
of states. In the applications that we consider here, every state is described by a finite
set of atomic propositions, so a computation can be viewed as an infinite word over
the alphabet of truth assignments to the atomic propositions. The basic result in this
area is the fact that tempora logic formulas can be viewed as finite-state acceptors.
More precisely, given any propositional temporal formula, one can construct a finite
automaton on infinite words that accepts precisely the computations satisfied by the
formula [VW94]. We will describe the applications of this basic result to satisfiability
testing, verification, and synthesis. (For an extensive treatment of the automata-theoretic
approach to verification see [Kur94]).

Unlike classical automata theory, which focused on automata on finite words, the
applicationsto specification, verification, and synthesis, use automata on infinite words,
since the computations in which we are interested are typically infinite. Before going
into the applications, we give a basic introduction to the theory of automata on infinite
words. To help the readers build their intuition, we review the theory of automata on
finite words and contrast it with the theory of automata on infinite words. For a more
advanced introduction to the theory of automata on infinite objects, the readers are
referred to [Tho90].

2 Automata Theory

We are given a finite nonempty alphabet >. A finite word is an element of 2*, i.e, a
finite sequence ao, . . ., a,, of symbolsfrom X'. An infinite word is an element of X*,
i.e, an w-sequence’ ag, ag, . .. of symbols from ¥. Automata on finite words define
(finitary) languages, i.e., sets of finite words, while automata on infinite words define
infinitary languages, i.e., sets of infinite words.

2.1 Automataon Finite Words— Closure

A (nondeterminigtic finite) automaton A isatuple (X, S, SO, p, F'), where ¥ is afinite
nonempty alphabet, S is afinite nonempty set of states, S° C S is a nonempty set of
initial states, /' C S isthe set of accepting states, and p : S x ¥ — 2 isatransition
function. Intuitively, p(s, a) isthe set of statesthat A can move into when itisin state
s and it reads the symbol «. Note that the automaton may be nondeterministic, since
it may have many initia states and the transition function may specify many possible
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transitionsfor each state and symbol. The automaton A is deterministicif |S°| = 1 and
lp(s,a)| < 1fordl states s € S and symbols e € X'. An automaton is essentially an
edge-labeled directed graph: the states of the automaton are the nodes, the edges are
labeled by symbolsin X, acertain set of nodesis designated asinitial, and a certain set
of nodes s designated as accepting. Thus, ¢ € p(s, @) meansthat that thereisedge from
stot labeled with a. When A is deterministic, the transition function p can be viewed
as a partial mapping from S x X' to S, and can then be extended to a partial mapping
from S x X* to S asfollows: p(s,¢) = s and p(s, zw) = p(p(s, z), w) forz € ¥ and
we X,

A runr of A onafinitewordw = ao,...,a,_1 € X* iSasequence s, . . ., s, Of
n+ 1 daesin S such that so € S°, and s;11 € p(si, a;) for 0 < i < n. Notethat a
nondeterministic automaton can have many runs on a given input word. In contrast, a
deterministic automaton can have at most one run on a given input word. Therun r is
accepting if s,, € F'. One could picture the automaton as having a green light that is
switched on whenever the automaton isin an accepting state and switched off whenever
the automaton is in a non-accepting state. Thus, the run is accepting if the green light
ison at the end of the run. The word w is accepted by A if A has an accepting run on
w. When A isdeterministic, w € L(A) if and only if p(s°, w) € F, where S° = {s°}.
The (finitary) language of A, denoted L(A), isthe set of finite words accepted by A.

An important property of automata is their closure under Boolean operations. We
start by considering closure under union and intersection.

Proposition 1. [RS59] Let A;, A, beautomata. Then thereisan automaton A such that
L(A) = L(A]_) U L(Az)

Proof: Let A1 = (X, 51,59, p1, F1) and Ay = (X, 5,59, p2, F). Without loss of
generality, we assume that 51 and .S, are digoint. Intuitively, the automaton A nonde-
terministically chooses 4; or A, and runsit on the input word.

Let A= (X,5,5%p, F),where S = S; U Sp, 5% =590 S, F = F; U Fy, and

{pl(s, a)ifs e S

pls,a) = pa(s,a)ifs € Sy

Itiseasy toseethat L(A) = L(A1) U L(42).1
We call A inthe proof above the union of A; and A,, denoted A1 U A».

Proposition2. [RS59] Let A;, A, beautomata. Then thereisan automaton A such that
L(A) = L(A]_) N L(Az)

Proof: Let Ay = (X,51,59 p1, F1) and Ay = (X, 52,59, p2, F2). Intuitively, the
automaton A runsboth 4; and A, on the input word.

Let A = (Z,S,So,p,F),WhereS = 51 X Sy, SO = S?_ X S(ZJ,F = F1 x Fp,and
p((s,1),a) = pa(s,a) x pa(t,a). Itiseasy toseethat L(A) = L(A1) N L(A42).1

We call A inthe proof above the product of A1 and A,, denoted A; x As.
Note that both the union and the product constructions are effective and polynomial
inthe size of the constituent automata.



Let us consider now the issue of complementation. Consider first deterministic
automata

Proposition 3. [RS59] Let A = (X, S, S0 p, F') be a deterministic automaton, and let
A=(X,55%p,5— F) then L(A) = ¥* — L(A).

That is, it is easy to complement deterministic automata; we just have to complement
the acceptance condition. This will not work for nondeterministic automata, since a
nondeterministic automaton can have many runson a given input word; it is not enough
that some of these runs reject (i.e., not accept) the input word, all runs should reject
the input word. Thus, it seems that to complement nondeterministic automaton we first
have to determinize it.

Proposition 4. [RS59] Let A be a nondeter ministic automaton. Then there is a deter-
ministic automaton A, such that L(A4) = L(A4).

Proof: Let A = (X,5,5% p, F). Then Ay = (X,2%,{5°}, pa, Fa). The state set of
Ay congists of all sets of states in S and it has a single initia state. The set F; =
{T'|TNF # 0} isthe collection of sets of states that intersect ' nontrivialy. Finaly,
pa(T,a) = {t|t € p(s,a) forsomes € T}.1

Intuitively, A; collapses al possible runs of A on a given input word into one run
over alarger state set. Thisconstructioniscalled the subset construction. By combining
Propositions 4 and 3 we can complement anondetermini sticautomata. The construction
is effective, but it involves an exponential blow-up, since determinization involves an
exponential blow-up (i.e., if A hasn states, then A has2” states). Asshownin[MF71],
this exponentia blow-up for determinization and complementation is unavoidable.

For example, fix some n > 1. The set of all finite words over the aphabet > =
{a, b} that have an « at the nth position from the right is accepted by the automaton
A= (2{0,1,2,...,n},{0},p,{n}), where p(0,a) = {0,1}, p(0,b) = {0}, and
pliya) = p(i,b) = {i+ 1} for 0 < ¢ < n. Intuitively, A guesses a positionin theinput
word, checks that it contains a, and then checks that it is a distance n from the right
end of theinput.

Suppose that we have a deterministic automaton A; = (X, 5, {s°}, pa, ') with
fewer than 2" states that accepts this same language. Recall that p; can be viewed as a
partial mapping from S x £* to S. Since | S| < 27, there must be two words uav; and
ubv, of length n for which p,(s°, uavi) = pa(s°, ubvy). But then we would have that
pa(s%, uaviu) = pa(s®, ubvau); that is, either both uaviu and ubvyu are members of
L(Aq) or neither are, contradicting the assumption that Z(A;) consists of exactly the
wordswith an a at the nth position from theright, since |aviu| = |bvou| = n.

2.2 Automataon Infinite Words— Closure

Suppose now that an automaton A = (X, S, SO, p, F) isgiven asinput an infiniteword
w = ag, ay, ...over X. A runr of A onw isasequence so, s1, . . ., where sg € S° and
si+1 € p(s;,a;), for dl ¢ > 0. Since the run isinfinite, we cannot define acceptance by
the type of the final state of the run. Instead we have to consider the limit behavior of



therun. We definelim(r) tobetheset {s | s = s; for infinitely many i’s}, i.e,, the set of
states that occur in » infinitely often. Since S isfinite, lim(r) is necessarily nonempty.
Therun r isaccepting if there is some accepting state that repeats in » infinitely often,
i.e, lim(ryn F # 0. 1f we picture the automaton as having agreen light that is switched
on precisely when the automaton isin an accepting state, then the run isaccepting if the
green light is switched on infinitely many times. The infinite word w is accepted by A
if there isan accepting run of A on w. Theinfinitary language of A4, denoted Z,,(A), is
the set of infinite words accepted by A.

Thus, A can be viewed both as an automaton on finite words and as an automaton
on infinite words. When viewed as an automaton on infinite words it is called a Bichi
automaton [BUc62].

Do automata on infinite words have closure properties similar to those of automata
on finite words? In most cases the answer is positive, but the proofs may be more
involved. We start by considering closure under union. Here the union construction does
theright thing.

Proposition 5. [Cho74] Let A1, A, beBichi automata. Then L, (A1UA2) = Ly, (A1)U
Ly (A2).

Onemight betempted to think that similarly wehavethat L, (A1 x A2) = L, (A1)N
L. (A2), but thisis not the case. The accepting set of A; x A isthe product of the
accepting sets of A1 and A,. Thus, A; x A, accepts an infinite word w if there are
accepting runs 1 and r, of Ay and A,, respectively, on w, where both runsgo infinitely
often and simultaneously through accepting states. This requirement istoo strong. Asa
result, L., (A1 x A2) couldbeastrict subset of L, (A1)N L, (Az). For example, definethe
two Biichi automata A1 = ({a}, {s,t}, {s},p, {s}) and A2 = ({a}, {s,t}, {s},p, {t})
withp(s,a) = {t} andp(t, @) = {s}.Clearlywehavethat L, (A1) = L,(A2) = {a*},
but L., (Al X Az) = 0.

Nevertheless, closure under intersection does hold.

Proposition 6. [Cho74] Let A;, A, beBuchi automata. Then thereisa Biichi automaton
Asuchthat L, (A) = Ly (A1) N L, (A2).

Proof: Let A3 = (Z, S1, Sg, £1, F]_) and A, = (Z, So, 5(2), P2, Fz).LdA = (Z, S, SO, 2, F),
where S = S1 x S x {1,2}, SO = 89 x S§ x {1}, F = F1 x S, x {1}, and
(s",t,7) € p((s,t,4),a) if s' € pi(s,a), t' € po(t,a), and i = j, unlessi = 1 and

s € F1,inwhichcasej = 2,0ri =2andt € I, inwhichcasej = 1.

Intuitively, the automaton A runs both A; and A, on the input word. Thus, the
automaton can be viewed has having two “tracks’, one for each of A; and A,. In
addition to remembering the state of each track, A also has a pointer that pointsto one
of the tracks (1 or 2). Whenever a track goes through an accepting state, the pointer
moves to the other track. The acceptance condition guarantees that both tracks visit
accepting states infinitely often, since a run accepts iff it goes infinitely often through
F1 x S x {1}. Thismeans that the first track visitsinfinitely often an accepting state
with the pointer pointing to the first track. Whenever, however, the first track visitsan
accepting state with the pointer pointingto thefirst track, the pointer is changed to point
to the second track. The pointer returns to point to the first track only if the second



track visits an accepting state. Thus, the second track must also visit an accepting state
infinitely often. il

Thus, Biichi automata are closed under both union and intersection, though the con-
structionfor intersectionissomewhat moreinvolved than asimpleproduct. Thesituation
is considerably more involved with respect to closure under complementation. First, as
we shall shortly see, Biichi automata are not closed under determinization, i.e., non-
deterministic Biichi automata are more expressive than deterministic Biichi automata.
Second, it is not even obvious how to complement deterministic Buchi automata. Con-
sider the deterministic Biichi automaton A = (X, S, 59, p, F'). One may think that it
suffices to complement the acceptance condition, i.e., toreplace 7' by S — F" and define
A =(X,8,58%p,S — F). Not going infinitely often through F', however, is not the
same as going infinitely often through .S — #'. A run might go through both /' and S — F
infinitely often. Thus, L, (A) may be a strict superset of X% — L, (A). For example,
Consider the Buchi automaton A = ({a}, {s,t}, {s}, p, {s}) with p(s,a) = {¢t} and
p(t,a) = {s}. Wehavethat L, (A) = L,(A) = {a*}.

Nevertheless, Biichi automata (deterministic aswell as nondeterministic) are closed
under complementation.

Proposition 7. [Buc62] Let A bea Buchi automaton over an alphabet . Then thereis
a (possibly nondeterministic) Buichi automaton A such that L., (A) = 2% — L, (4).

The construction in [Biic62] isdoubly exponential. Thisisimproved in [SVW87] to
asingly exponential constructionwith aquadratic exponent (i.e., if A hasn statesthen A
has ¢ states, for some constant ¢ > 1). In contrast, the exponent in the construction of
Proposition 4 islinear. We will come back later to the complexity of complementation.

Let us return to the issue of determinization. We now show that nondeterministic
Biichi automata are more expressive than deterministic Biichi automata. Consider the
infinitary language I = (0+1)*1“,i.e., I" consistsof al infinitewordsinwhich 0 occurs
only finitely many times. It is easy to see that I" can be defined by a nondeterministic
Buchi automaton. Let Ag = ({0, 1}, {s,¢}, {s}, p,{t}), where p(s,0) = p(s,1) =
{s,t}, p(t,1) = {¢} and p(t,0) = 0. That is, the states are s and ¢ with s the initial
state and ¢ the accepting state, Aslong asit isin the state s, the automaton Aq can read
both inputs 0 and 1. At some point, however, Ao makes a nondeterministic transition
to the state ¢, and from that point on it can read only the input 1. It is easy to see that
I' = L, (Aop). Incontrast, I' cannot be defined by any deterministic Biichi automaton.

Proposition 8. Let I" = (04 1)*1“. Then thereisno deterministic Biichi automaton A
suchthat I' = L, (A).

Proof: Assume by way of contradictionthat I' = L,,(A), where A = (2, S, {s°},p, F')
for ¥ = {0, 1}, and A isdeterministic. Recall that » can be viewed as apartial mapping
fromS x Y*to S.

Consider the infinite word wo = 1¢. Clearly, wq is accepted by A4, so A has an
accepting run on wo. Thus, wo has afinite prefix uo such that p(s°, ug) € F. Consider
now the infinite word w1 = up01*. Clearly, w; is aso accepted by A, so A has an
accepting run on wy. Thus, w; has afinite prefix uo0uy such that p(so, uoOu1) € Fl.Ina



similar fashionwe can continueto find finitewords «; such that p(so, uo0u10...0u;) €
F.Since S isfinite, there are i, j, where 0 < i < j, such that p(s°, ugOu10. .. Ou;) =
p(s°% uo0us0. .. 0u;0. . .Ou;). It followsthat A has an accepting run on

UOOU]_O. . OuZ(O . .Ou]')w.
But the latter word has infinitely many occurrences of 0, soitisnotin I".11

Notethat thecomplementary language £« — I' = ((0+1)*0)* (theset of infinitewords
in which 0 occurs infinitely often) is acceptable by the deterministic Biichi automaton
A= ({0,1},{s,1}, {s},p. {s}),wherep(s,0) = p(t,0) = {s} andp(s, 1) = p(t,1) =
{t}. That is, the automaton starts a the state s and then it simply remembers the
last symbol it read (s corresponds to O and ¢ corresponds to 1). Thus, the use of
nondeterminismin Proposition 7 is essential.

To understand why the subset construction does not work for Biichi automata, con-
sider thefollowing two automataover asingletonaphabet: A1 = ({a}, {s,t}, {s}, p1, {t})
and A; = ({a}a {Sa t}a {S}a P2, {t})' where pl(s’ Cl) = {Sa t}' p]_(t, Cl) =0, pz(s, Cl) =
{s,t},and pa(t,a) = {s}. It iseasy to see that A1 does not accept any infinite word,
since no infinite run can visit the state ¢. In contrast, 4, accepts the infinite word a*,
since therun (st)* isaccepting. If we apply the subset construction to both automata,
thenin both casestheinitial stateis{s}, pa({s}, a) = {s,t},and pa({s,t},a) = {s,t}.
Thus, the subset construction can not distinguish between A; and A».

To be able to determinize automata on finite words, we have to consider a more
general acceptance condition. Let S be afinite nonempty set of states. A Rabin condi-
tionisasubset G of 2° x 2°, i.e, it isacollection of pairs of sets of states, written
[(L1,U1),..., (L, Uy)] (wedrop the external brackets when the condition consists of
asinglepair). A Rabin automaton A isan automaton on infinitewordswhere the accep-
tance condition is specified by a Rabin condition, i.e,, itisof theform (2, S, S9, p, ).
Arunr of Aisacceptingif for some i wehavethatlim(r)NL; # G andlim(r)NU; = 0,
that is, there isa pair in G where the |eft set is visited infinitely often by » while the
right set isvisited only finitely often by r.

Rabin automata are not more expressive than Biichi automata.

Proposition9. [Cho74] Let A be a Rabin automaton, then there isa Bilichi automaton
Ap such that L, (A) =L, (Ab)

Proof: Let A = (X, 5,5% p,G), where G = [(L1,Un), ..., (L, Uy)]. It iseasy to
seethat L, (A) = UF_L.(4;), where 4; = (X,5,5° p,(Li, U;)). Since Buchi au-
tomataare closed under union, by Proposition 5, it suffices to prove the claim for Rabin
conditionsthat consists of asingle pair, say (L, U7).

The idea of the congtruction is to take two copies of A, say A; and A;. The
Biichi automaton A, startsin A; and staysthere aslong asit “wants’. At some point it
nondeterministically makesatransitioninto A, and it staysthereavoiding &/ and visiting
L infinitely often. Formally, 4, = (2, Sy, S, ps, L), where S, = S x {0} U (S — U),
59 = 89 x {0}, pp(s,a) = p(s,a) — U fors € S — U, and p;((s,0),a) = p(s,a) x
{0t U (p(s,a) = TU).1

Note that the construction in the proposition above is effective and polynomial in the
size of the given automaton.



If werestrict attention, however, to deterministic automata, then Rabin automataare
more expressive than Buchi automata. Recall theinfinitary language I" = (0 + 1)*1v.
We showed earlier that it isnot definabl e by adeterministic Biichi automaton. Itisessily
definable, however, by aRabin automaton. Let 4 = ({0, 1}, {s, ¢}, {s}, p, ({t}, {s})),
where p(s,0) = p(t,0) = {s}, p(s,1) = p(t,1) = {¢t}. That is, the automaton starts at
the state sand then it simply remembers the last symbol it read (s correspondsto 0 and
t correspondsto 1). Itiseasy toseethat I' = L, (4).

The additional expressive power of Rabin automata is sufficient to provide closure
under determinization.

Proposition 10. [McN66] Let A be a Blichi automaton. There isa deterministic Rabin
automaton A4 such that L, (A4) = L. (4).

Proposition 10 was first proven in [McN66], where a doubly exponential construc-
tionwas provided. Thiswasimproved in [Saf88], whereasingly exponential, with an al -
most linear exponent, constructionwasprovided (if A hasn states, then A4 has 207 1097)
statesand O(n) pairs). Furthermore, it wasshownin[Saf88, EJ89]) how the determiniza-
tion construction can be modified to yield a co-determinization construction, i.e., a con-
struction of a deterministic Rabin automaton A/, such that L., (44) = 2% — L, (Aq4),
where X isthe underlying a phabet. The co-determinization construction isaso singly
exponential with an almost linear exponent (again, if A has n states, then A/, has
20(nlogn) gates and O(n) pairs). Thus, combining the co-determinization construction
with the polynomial trandation of Rabin automata to Biichi automata (Proposition 9),
we get acomplementation construction whose complexity issingly exponentia with an
almost linear exponent. Thisimprovesthe previously mentioned bound on complemen-
tation (singly exponential with aquadratic exponent) and isessentially optimal [Mic88].
In contrast, complementation for automata.on finitewordsinvol vesan exponential blow-
up with alinear exponent (Section 2.1). Thus, complementation for automata on infinite
words is provably harder than complementation for automata on finite words. Both
congtructions are exponential, but in the finite case the exponent is linear, while in the
infinite case the exponent is nonlinear.

2.3 Automataon Finite Words— Algorithms

An automaton is “interesting” if it defines an “interesting” language, i.e., a language
that is neither empty nor contains all possible words. An automaton A is nonempty if
L(A) # 0; itisnonuniversal if L(A4) # 2*. One of the most fundamental agorithmic
issues in automata theory is testing whether a given automaton is “interesting”, i.e.,
nonempty and nonuniversal. The nonemptiness problemfor automataisto decide, given
an automaton A, whether A is nonempty. The nonuniversality problemfor automatais
to decide, given an automaton A, whether A is nonuniversal. It turns out that testing
nonemptinessis easy, while testing nonuniversality is hard.

Proposition 11. [RS59, Jon75]

1. The nonemptiness problem for automatais decidablein linear time.
2. The nonemptiness problem for automata is NLOGSPACE-compl ete.



Proof: Let A = (X, 5, S°, p, F') bethe given automaton. Let s, t be statesof .. We say
that ¢ is directly connected to s if thereisasymbol « € X such thatt € p(s,a). We
say that ¢ isconnected to s if thereisasequence sy, . . ., s, m > 1, of states such that
s1 = s, s, = t, and s;41 isdirectly connected to s; for 1 < ¢ < m. Essentidly, ¢ is
connected to s if thereisapathin A from s to¢, where A isviewed as an edge-labeled
directed graph. Note that the edge labels are ignored in this definition. It is easy to see
that L(A) is nonempty iff there are states s € 5% and ¢ € F such that ¢ is connected
to s. Thus, automata nonemptiness is equivalent to graph reachability. The claims now
follow from the following observations:

1. A breadth-first-search agorithm can construct in linear time the set of all states
conncected to a state in S° [CLR90]. A is nonempty iff this set intersects F'
nontrivialy.

2. Graph reachability can be tested in nondeterministic logarithmic space. The al-
gorithm simply guesses a state s € SY, then guesses a state s; that is directly
connected to sg, then guesses a state s, that is directly connected to s;, etc., until it
reaches astatet € F'. (Recal that anondeterministicagorithm acceptsif thereisa
sequence of guesses that leads to acceptance. We do not care here about sequences
of guessesthat do not lead to acceptance [GJ79].) At each step the algorithm needs
to remember only the current state and the next state; thus, if there are n states the
algorithm needsto keepin memory O(logn) bits, sincelogn bitssufficeto describe
one state. On the other hand, graph reachability isalso NLOGSPACE-hard [Jon75].

Proposition 12. [MS72]

1. The nonuniversality problem for automatais decidable in exponential time.
2. The nonuniversality problem for automata is PSPACE-complete.

Proof: Note that L(A) # X* iff ¥* — L(A) # 0 iff L(A) # 0, where A is the
complementary automaton of A (see Section 2.1). Thus, to test A for nonuniversality,
it suffices to test A for nonemptiness. Recall that A is exponentialy bigger than A.
Since nonemptiness can be tested in linear time, it follows that nonuniversality can be
tested in exponential time. Also, since nonemptiness can be tested in nondeterministic
logarithmic space, nonuniversality can be tested in polynomial space.

The latter argument requires some care. We cannot simply construct A and then test
it for nonemptiness, since A is exponentially big. Instead, we construct A “on-the-fly”;
whenever the nonemptiness algorithm wants to move from a state ¢1 of A to astate ¢,
the al gorithm guessest, and checksthat it isdirectly connected to ¢;. Oncethishasbeen
verified, the agorithm can discard ¢;. Thus, at each step the algorithm needs to keep in
memory at most two states of A and there is no need to generate al of A at any single
step of the algorithm.

This yields a nondeterministic polynomia space agorithm. To eliminate nonde-
terminism, we appea to a well-known theorem of Savitch [Sav70] which states that



NSPACE(f(n)) € DSPACE(f(n)?), for f(n) > logn; that is, any nondetermin-
istic algorithm that uses at least logarithmic space can be simulated by a determin-
istic algorithm that uses at most quadratically larger amount of space. In particular,
any nondeterministic polynomial-space a gorithm can be simulated by a deterministic
polynomial -space a gorithm.

To prove PSPACE-hardness, it can be shown that any PSPACE-hard problem can be
reduced to the nonuniversality problem. That is, there is alogarithmic-space algorithm
that given a polynomial-space-bounded Turing machine A and a word w outputs an
automaton Ay ., such that M accepts w iff Apr ., isnon-universal [MS72, HU79]. 11

24 Automataon Infinite Words— Algorithms

The results for Blichi automata are anal ogous to the resultsin Section 2.3.

Proposition 13.

1. [EL85b, EL85a] The nonemptiness problem for Bichi automata is decidable in
linear time.
2. [VW94] The nonemptiness problemfor Biichi automatais NLOGSPACE-compl ete.

Proof: Let A = (X, 5,5% p, F) be the given automaton. We claim that L, (4) is
nonempty iff there are states so € S° and¢ € I such that ¢ is connected to so and ¢ is
connected to itself. Suppose first that L, (A) is nonempty. Then there is an accepting
run r = so, s1, ... of A on some input word. Clearly, s;,1 is directly connected to s;
foral ¢« > 0. Thus, s; is connected to s; whenever ¢ < j. Since r is accepting, some
t € F oceursinr infinitely often; in particular, thereare:, j, where 0 < ¢ < j, such that
t =s; = s;. Thus, tisconnected to sg € 59 and ¢ isalso connected toitself. Conversely,
suppose that there are states s € S° and ¢ € F such that ¢ is connected to so and ¢ is
connectedtoitself. Sincet isconnected to s, thereareasequenceof statess;, . . ., s and
aseguence of symbolsay, ..., a; suchthat sy =t ands; € p(s;_1,a;) forl <i < k.
Similarly, since ¢ is connected to itself, there are a sequence of states tg,1,...,%;
and a sequence of symbols b, ...,6; such that to = ¢ = ¢t and ¢t; € p(t;—1,b;) for
1 < i <[ Thus (so,81,...,88-1)(fo,t1,...,4-1)¥ IS an accepting run of A on
(a1,...,a5)(b1, ..., b;)¥, S0 A isnonempty.
Thus, Buchi automata nonemptinessis aso reducibleto graph reachability.

1. A depth-first-search algorithm can construct a decomposition of the graph into
strongly connected components[CLR90]. A isnonempty iff from acomponent that
intersects SO nontriviallyitispossibleto reach anontrivial component that intersects
I nontrivialy. (A strongly connected component is nontrivial if it containsan edge,
which means, sinceit is strongly connected, that it contains a cycle).

2. Thealgorithmsimply guesses astate so € S°, then guesses astate s; that isdirectly
connected to sg, then guesses a state s, that is directly connected to s;, etc., until it
reaches astate ¢ € F'. At that point the algorithm remembers ¢ and it continues to
move nondeterministically from a state s to a state s’ that is directly connected to
s until it reaches ¢ again. Clearly, the algorithm needs only a logarithmic memory,
since it needs to remember at most a description of three states at each step.



NLOGSPACE-hardness followsfrom NLOGSPACE-hardness of nonemptinessfor
automata on finite words.

Proposition 14. [SVW87]

1. The nonuniversality problem for Blichi automata is decidablein exponential time.
2. The nonuniversality problemfor Buchi automata is PSPACE-complete.

Proof: Again L, (A4) # X« iff T — L (A) # 0 iff L,(A) # 0, where 4 is the
complementary automaton of A (see Section 2.2). Thus, to test A for nonuniversality,
it suffices to test A for nonemptiness. Since A is exponentialy bigger than A and
nonemptinesscan betested in linear time, it followsthat nonuniversality can betested in
exponentia time. Also, since nonemptiness can betested in nondeterministic logarithmic
space, nonuniversality can be tested in polynomial space. Again, the polynomial -space
agorithm constructs A “on-the-fly”.

PSPACE-hardness follows easily from the PSPACE-hardness of the universality
problem for automata on finite words [Wol82]. I

2.5 Automataon Finite Words— Alternation

Nondeterminism gives acomputing device the power of existential choice. Itsdual gives
a computing device the power of universal choice. (Compare this to the complexity
classes NP and co-NP[GJ79]). It istherefore natural to consider computing devices that
have the power of both existentia choice and universal choice. Such devices are called
alternating. Alternation was studied in [CKS81] in the context of Turing machines
and in [BL80, CKS81] for finite automata. The alternation formalismsin [BL80] and
[CKS81] are different, though equivalent. We follow here the formalism of [BL80].

For agiven set X, let BT (X)) be the set of positive Boolean formulas over X (i.e,
Boolean formulas built from elements in X using A and V), where we also dlow the
formulas true and false. Let Y C X. We say that Y satisfiesaformulaé € B*(X)
if the truth assignment that assigns true to the members of Y and assigns false to the
members of X — Y satisfes §. For example, the sets {s1, s3} and {s1, s4} both satisfy
theformula(sy V s2) A (s3 V sa), whilethe set {s1, s»} does not satisfy thisformula

Consider a nondeterministic automaton A = (X, S, S, p, F). The transition func-
tion p mapsastate s € S and an input symbol a« € X' to a set of states. Each element
in this set is a possible nondeterministic choice for the automaton’s next state. We
can represent p using B*(.S); for example, p(s,a) = {s1,s2, s3} can be written as
p(s,a) = 51V 52V s3. In alternating automata, p( s, a) can be an arbitrary formulafrom
B*(S). Wecan have, for instance, atransition

8(s,a) = (s1 A s2) V (s3 A sa),

meaning that the automaton accepts theword aw, where « isasymbol and w isaword,
whenitisinthe state s, if it accepts the word w from both s; and s, or from both s3 and



s4. Thus, such atransition combines the features of existential choice (the digunction
in the formula) and universal choice (the conjunctionsin the formul a).

Formally, an alternating automaton is a tuple A = (%, S,s% p, F'), where ¥ is
a finite nonempty alphabet, S is a finite nonempty set of states, s° € S isthe initia
state (notice that we have a unique initial state), /' is a set of accepting states, and
p:S x ¥ — BT(S)isatransitionfunction.

Because of the universal choice in aternating transitions, a run of an aternating
automaton is a tree rather than a sequence. A tree is a (finite or infinite) connected
directed graph, with one node designated as the root and denoted by ¢, and in which
every non-root node has a unique parent (s isthe parent of ¢t and ¢ isachild of s if there
isan edge from s to t) and theroot = has no parent. Thelevel of anode =, denoted ||,
isitsdistance from theroot ¢; in particular, |¢| = 0. A branch 5 = g, z1, . .. of atree
isamaximal sequence of nodes such that =g isthe root ¢ and z; isthe parent of z;1
for al ¢ > 0. Notethat & can befinite or infinite. A X'-labeled tree, for afinite al phabet
X, isapair (r,7), where r isatree and 7 is a mapping from nodes(r) to X' that
assignsto every node of  alabel in 2. We oftenrefer to 7 asthelabeled tree. A branch
3 = xo, 21, ...0f T defines an infiniteword 7 (5) = 7 (x0), 7 (#1), . . . consisting of
the sequence of 1abels along the branch.

Formally, arun of A onafiniteword w = ag, ay, . . ., a,_1isafinite S-labeled tree
r such that r() = s° and the following holds:

if || =¢ < n,r(z)=s,andp(s,a;) = 0, then » has k children 1, ..., zy,
for somek < |S|, and {r(z1), ..., r(xy)} satisfiesd.

For example, if p(s°, ag) is(s1V s2) A (s3V s4), then the nodes of therun treeat level 1
includethelabel s; or thelabd s, and dso includethelabd s; or thelabel s4. Notethat
the depth of r (i.e., the maximal level of anodein ») isat most », but not all branches
need to reach such depth, since if p(r(x), a;) = true, then x does not need to have
any children. On the other hand, if |z| = ¢ < n and »(z) = s, then we cannot have
p(s, a;) = false, sincefalseisnot satisfiable.

Theruntree r is accepting if al nodes a depth n are labeled by statesin F'. Thus,
a branch in an accepting run has to hit the true transition or hit an accepting state after
reading all the input word.

What is the relationship between aternating automata and nondeterministic au-
tomata? It turns out that just as nondeterministic automata have the same expressive
power as deterministic automata but they are exponentially more succinct, alternating
automata have the same expressive power as nondeterministic automata but they are
exponentially more succinct.

We first show that alternating automata are at |east as expressive and as succinct as
nondeterministic automata

Proposition 15. [BL80, CKS81, Lei81] Let A be a nondeterministic automaton. Then
there isan alternating automaton A,, such that L(A,) = L(A).

Proof: Let A = (X,5,5% p, F). Then A, = (£, S U {s°},5° p,, F'), where s% isa
new state, and p,, isdefined asfollows, forb € > and s € S:

- Pa(soa b) = \/teSO,t'ep(t,b) ¢,



- pa(S, b) = \/tEp(s,b)t'

(We take an empty digunction in the definition of p, to be equivaent to false)) Es-
sentially, the transitions of A are viewed as digunctionsin A,. A specia treatment is
needed for the initial state, since we alow a set of initia states in nondeterministic
automata, but only asingleinitia statein aternating automata. il

Note that A, has essentially the same size as A; that is, the descriptionsof A, and A
have the same length.

We now show that aternating automata are not more expressive than nondetermin-
istic automata.

Proposition 16. [BL80, CKS81, Lei81] Let A be an alternating automaton. Then there
isa nondeterministic automaton A4,, such that L( A, ) = L(A).

Proof: Let A = (2, 5,s° p, F). Then A,, = (X, 5,,, {{s°}}, pn, F}n), where S,, = 27,
F, =2" and
pn(T,a) = {T"|T' satisfies /\ p(t,a)}.
teT

(We take an empty conjunction in the definition of p,, to be equivalent to true; thus,
0 € pn(0,a).)

Intuitively, A,, guessesaruntreeof A. Atagiven pointof arunof A,,, itkeepsinits
memory awholelevel of theruntree of A. Asit reads the next input symbol, it guesses
the next level of theruntreeof A. 1l

The trand ation from aternating automata to nondeterministic automata involves an
exponential blow-up. Asshown in [BL80, CKS81, Lei81], thisblow-upisunavoidable.
For example, fix somen > 1, and let ¥ = {a,b}. Let I, be the set of dl words that
have two different symbols at distance » from each other. That is,

I = {uavbw |u,w € Z* andv € T~} U {ubvaw | u,w € Z* andv € T~ 1}

Itiseasy to seethat I, isaccepted by the nondeterministicautomaton A = (X, {p, ¢} U
(L.} <2 {p}.p, {a}), wherep(p,a) = {p, (1,a)},p(p, ) = {p. (L, b)}.p({a. i), 2) =
Ha,i+ 1)} and p((b,i),z) = {{b,i+ 1)} forz € Y and0 < i < n, p({a,n),a) =0,
p({a,n),b) = {q}, p({b,n),b) = 0, p((b,n),a) = {q}, and p(q, z) = {q} forz € X.
Intuitively, A guessesapositionintheinput word, readstheinput symbol at that position,
moves n positionsto theright, and checksthat it containsadifferent symbol. Notethat A
has 2n + 2 states. By Propositions 15 and 17 (bel ow), thereis an alternating automaton
A, with 2n + 3 states that accepts the complementary language I, = X* — I,.

Suppose that we have anondeterministicautomaton A,,; = (X, S, S9, pnq, F) with
fewer than 2" states that accepts I,. Thus, 4,, accepts all words ww, where w € X7,

Let sO ..., 52" anaccepting run of A, 4 onww. Since|S| < 27, there are two distinct
wordu,v € X" suchthat s = s?. Thus, 50, ..., s s"+1 . 527 isan accepting run

of A, 4 onuv, butuv & I, sinceit must have two different symbols at distance n from
each other.

One advantage of aternating automata is that it is easy to complement them. We
first need to define the dual operation on formulasin B+ (.X). Intuitively, the dual ¢ of a



formula# isobtained from & by switching v and A, and by switchingtrue and false. For
example, z V (y A z) = z A(y V z). (Note that we are considering formulasin B* (X),
so we cannot ssimply apply negation to these formulas.) Formally, we define the dual
operation as follows:

—z=1zg,forzre X,
— true = falsg,
— false = true,
- (aAB)=(aVp)ad
~(@Vh) = (@A)
Suppose now that we are given an alternating automaton A = (%, S,s% p, F).

Define A = (X, S, 5%, 5, S — F),wherep(s, a) = p(s,a) foral s € Sanda € . That
is, p isthe dualized transition function.

Proposition 17. [BL80, CKS81, Lei8l] Let A be an alternating automaton. Then
L(A) =2 — L(A).

By combining Propositions 11 and 16, we can obtain a nonemptiness test for alter-
nating automata.

Proposition 18. [CKS81]

1. The nonemptiness problem for alternating automata is decidable in exponential
time.
2. The nonemptiness problem for alternating automata is PSPACE-compl ete.

Proof: All that remains to be shown is the PSPACE-hardness of nonemptiness. Recall
that PSPACE-hardness of nonuniversality was shown in Proposition 12 by a generic
reduction. That is, thereisalogarithmic-spacea gorithmthat given apolynomial-space-
bounded Turing machine A/ and aword w outputs an automaton A,z ,, such that A/
accepts w iff Aps ., isnonuniversal. By Proposition 15, thereisan dternating automaton
A, suchthat L(A,) = L(Anrw ) and A, hasthesamesizeas Ay .. By Proposition 17,
L(A) = ¥* — L(A,). Thus, Apy,, isnonuniversal iff A, isnonempty. Il

2.6 Automataon Infinite Words - Alternation

We saw earlier that anondeterministic automaton can be viewed both as an automaton on
finite words and as an automaton on infinitewords. Similarly, an aternating automaton
can aso be viewed as an automaton on infinite words, in which case it is called an
alternating Blichi automaton [M S87].

Let A = (X, 9,5 p, F') be an dternating Biichi automaton. A run of A on an
infiniteword w = ag, ay, . . . isa(possibly infinite) S-labeled tree r such that r(g) = s°
and the following holds:

if |¢] = ¢, r(z) = s, and p(s,a;) = 6, then  has k children z4, ..., zy, for
somek < [S], and {r(zl),..., r(xk)} saisfiesd.



Therun r isaccepting if every infinite branch in » includesinfinitely many labelsin F'.
Notethat therun can also havefinitebranches; if |«| = ¢, 7(x) = s,and p(s, a;) = true,
then 2 does not need to have any children.

We with aternating automata, alternating Bichi automata are as expressive as non-
deterministic Biichi automata. We first show that alternating automata are at least as
expressive and as succinct as nondeterministic automata. The proof of the following
propositionisidentical to the proof of Proposition 19.

Proposition 19. [MS87] Let A be a nondeterministic Blichi automaton. Then there is
an alternating Blichi automaton A, suchthat L., (A,) = Lo (A).

Asthereader may expect by now, alternating Biichi automataare not moreexpressive
than nondeterministic Biichi automata. The proof of thisfact, however, ismoreinvolved
than the proof in the finite-word case.

Proposition20. [MH84] Let A be an alternating Biichi automaton. Then there is a
nondeter ministic Blichi automaton A,, such that L., (A,) = L, (A4).

Proof: Asin thefinite-word case, 4,, guesses arun of A. At a given point of arun of
Ay, itkeepsinitsmemory awholelevel of therunof A (whichisatree). Asit readsthe
next input symbol, it guesses the next level of the run tree of A. The nondeterministic
automaton, however, also hasto keep information about occurrences of accepting states
in order to make sure that every infinite branch hits accepting states infinitely often. To
that end, A,, partitionsevery level of the run of A into two sets to distinguish between
branches that hit 7' recently and branches that did not hit /" recently.

Let A = (X,5,5°% p,F). Then A, = (¥, S, S°, pn, Frn), Where S, = 2° x 2°
(i.e, each stateisapair of setsof statesof 4), S° = {({s°},0)} (i.e, thesingleinitial
stateispair consisting of the singleton set {s°} and the empty set), 7, = {0} x 2°, and

— for U # 0,

e (U, V), a) = {(U', V") ] thereexist X, Y C S such that
X satisfies A\, ¢r p(t, @),

Y satisfies A\, ¢y p(2, a),
U'=X—F,andV' =Y U(X NF)},

pn((0,V),a) = {(U",V")]| thereexists Y C S such that
Y satisfies A,y plt, a),
U'=Y—F, andV' =Y NF}.

The proof that this construction is correct requires a careful analysis of accepting
runsof A. 1l

An important feature of this construction isthat the blowup is exponential .

While complementation of alternating automatais easy (Proposition 17), thisis not
the case for alternating Biichi automata. Here we run into the same difficulty that weran
intoin Section 2.2: not going infinitely often through accepting statesis not the same as
going infinitely often through non-accepting states. >From Propositions 7, 19 and 20.



it followsthat aternating Buichi automata are closed under complement, but the precise
complexity of complementation in this case is not known.

Finally, by combining Propositions 13 and 20, we can obtain a nonemptiness test
for aternating Buchi automata.

Proposition 21.

1. The nonemptiness problemfor alternating Buichi automata is decidablein exponen-
tial time.
2. The nonemptiness problem for alternating Blichi automata is PSPACE-compl ete.

Proof: All that remainsto be shown isthe PSPACE-hardness of nonemptiness. We show
that the nonemptiness problem for alternating automatais reduci bl e to the nonemptiness
problem for aternating Biichi automata. Let A = (X, 5, 5% p, F) be an alternating
automaton. Consider the aternating Biichi automaton A’ = (X, 5, 5% o', 0), where
p'(s,a) =p(s,a)forse S—Fanda € X,and p'(s,a) =truefors € Fanda € X.

We claim that L(A) # 0 iff L,(A4") # 0. Suppose first that w € L(A) for some
w € X*. Then thereis an accepting run » of A on w. But then » is aso an accepting
run of A’ on wu for al u € X, because p'(s,a) = truefors € Fanda € X, S0
wu € L, (A"). Suppose, on the other hand, that w € L, (A) for somew € ¥, Then
thereis an accepting run r of A’ on w. Since A’ has no accepting state, » cannot have
infinite branches, so by Konig'sLemma it must be finite. Thus, thereisafinite prefix u
of w such that » isan accepting run of A onu, sou € L(A). 11

3 Linear Temporal Logic and Automata on I nfinite Words

Formulas of linear-time propositional temporal logic (LTL) are built from a set Prop
of atomic propositions and are closed under the application of Boolean connectives,
the unary temporal connective X (next), and the binary temporal connective U (until)
[Pnu77, GPSS80]. LTL isinterpreted over computations. A computation is a function
7 : N — 2Pror which assignstruth valuesto the el ements of Prop at each timeinstant
(natural number). For acomputation = and apoint i € w, we have that:

— m,i = pforp e Propiff p € w(i).

—miEiAYiffriEfandn, i .

—milEpiffnotr i ¢

—miEXpiffr,i+1FE .

— w1 Uy iff forsomej > i, wehaver,j = ¢ andforal k,7 < k < j, wehave
mk ECE.

Thus, the formula truell ¢, abbreviated as F'¢, says that ¢ holds eventually, and
the formula —F'—¢, abbreviated Gy, says that ¢ holds henceforth. For example, the
formulaG(—request V (requestUgrant)) says that whenever arequest is made it holds
continuoudly until it is eventually granted. We will say that = satisfies a formula ¢,
denoted 7 |= ¢, iff 7,0 = .

Computationscan al so be viewed asinfinitewords over the al phabet 2777 . We shall
see that the set of computations satisfying a given formula are exactly those accepted



by some finite automaton on infinite words. This fact was proven first in [SPH84]. The
proof there is by induction on structure of formulas. Unfortunately, certain inductive
steps involve an exponentia blow-up (e.g., negation corresponds to complementation,
which we have seen to be exponentia). As a result, the complexity of that trandation
is nonelementary, i.e., it may involve an unbounded stack of exponentials (that is, the
complexity bound is of the form

on

2

bl

where the height of the stack is7.)
The following theorem establishes a very simpletrandation between LTL and alter-
nating Biichi automata.

Theorem 22. [MSS88, Var94] Given an LTL formula ¢, one can build an alternating
Blichi automaton A, = (X, S, s°, p, F), where & = 2P7°7 and | S| isin O(|¢]), such
that L., (A, ) isexactly the set of computations satisfying the formula ¢.

Proof: Theset S of states consistsof all subformulasof ¢ and their negation (weidentify
the formula—— with +»). Theinitial state s° is ¢ itself. The set I of accepting states
consists of dl formulasin S of the form —(£U+). It remains to define the transition
function p.

In this construction, we use a variation of the notion of dual that we used in Sec-
tion 2.5. Here, the dual @ of a formula is obtained from ¢ by switching v and A,
by switching true and false, and, in addition, by negating subformulas in S, eg.,
-pV (g AXq)ispA(—qV—-Xgq). Moreformaly,

—¢&=—¢, foré €8,
— true = falsg,
— false = true,

- (aApB)=(avp)ad
— (aVp) =(@np).

We can now define p:

— p(p,a) =trueifp € a,

— p(p,a) =falseifp € qa,

(f/\’l/), )_p(ga )/\p(’l/)aa)'

~ p(=t.a) = p(t,a),

PN, a) = 0,

—p(€U¢, a) = p(,a) V (p(&; a) NEU).

Notethat p(v, a) is defined by induction on the structure of .

Consider now arun r of A,. It iseasy to seethat » can have two types of infinite
branches. Each infinite branch is labeled from some point on by aformula of the form
EU or by aformulaof theform =(£U ). Since p(—=(EU ), a) = p(¢, a) A (p(€,a) V
—(&U+)), an infinite branch labeled from some point by —(£U¢) ensures that £U
indeed fails at that point, since ¢ failsfrom that point on. On the other hand, an infinite
branch labeled from some point by £+ does not ensure that £+ holds at that point,
since it does not ensure that +» eventually holds. Thus, while we should allow infinite




branches labeled by —(£U7), we should not alow infinite branches labeled by £U7+.
Thisiswhy we defined F' to consists of all formulasin S of theform —(&Uv). i

Examplel. Consider the formula ¢ = (X-p)Uq. The dternating Buchi automaton
associated with ¢ is A, = (2109}, {p, —p, X=p, = X=p, —p,p, 4,74}, ¢, p, {-¢}),
where p isdescribed in the following table.

s |leGs, {p, a)|eCs, {pD)p(s, {a3)|p(s,0) |

) true pAg [true pA @
—p false pV e [false pV e
X—p ||op p p p

- Xp|lp p p p

-p false false true true

p true true false false

q true false true false
—q false true false true

Inthe state ¢, if ¢ does not hold in the present state, then A, requires both X —p to
be satisfied in the present state (that is, —p hasto be satisfied in next state), and ¢ to be
satisfied in the next state. As ¢ ¢ F', A, should eventually reach a state that satisfies ¢.
Note that many of the states, e.g., the subformulas X —p and ¢, are not reachable; i.e,
they do not appear inany runof A,. I

By applying Proposition 20, we now get:

Corollary23. [VW94] Given an LTL formula ¢, one can build a Bichi automaton
A, = (2,8,8% p, F), where & = 2F7°P and | S| isin 2°U¢D such that L, (A,) is
exactly the set of computations satisfying the formula .

The proof of Corollary 23 in [VW94] isdirect and does not go through alternating
Bichi automata. The advantage of the proof here is that it separates the logic from
the combinatorics. Theorem 22 handles the logic, while Proposition 20 handles the
combinatorics.

Example2. Consider theformulay = F'Gp, which requires p to hold from some point
on. The Biichi automaton associated with ¢ is A, = (217}, {0, 1}, {0}, p, {1}), where
p isdescribed in the following table.

5||p(8,{p})|p(5,®)|
0({0,1} {0}
1{[{1} 0

The automaton A, can stay forever inthe state 0. Upon reading p, however, A, can
choose to go to the state 1. Once A,, has made that transition, it has to keep reading p,
otherwiseit regjects. Notethat A, has to make the transition to the state 1 at some point,
since the state O is not accepting. Thus, A, accepts precisely when p holds from some
point on. il




4 Applications
4.1 Satisfiability

An LTL formula ¢ is satisfiable if there is some computation 7 such that = |= ¢. An
unsatisfiable formula is uninteresting as a specification, so unsatisfiability most likely
indicates an erroneous specification. The satisfiability problem for LTL is to decide,
given an LTL formula ¢, whether ¢ is satisfiable.

Theorem 24. [SC85] The satisfiability problem for LTL is PSPACE-complete.

Proof: By Corollary 23, given an LTL formula, we can construct a Biichi automaton
A, ,whosesizeisexponentia inthelength of ¢, that accepts precisely the computations
that satisfy . Thus, ¢ is satisfisble iff A, is nonempty. This reduces the satisfiability
problem to the nonemptiness problem. Since nonemptiness of Biichi automata can
be tested in nondeterministic logarithmic space (Proposition 13) and since A, is of
exponential size, we get a polynomial-space a gorithm (again, the algorithm constructs
A, “on-the-fly”).

To prove PSPACE-hardness, it can be shown that any PSPACE-hard problem can be
reduced to the satisfiability problem. That is, there is alogarithmic-space a gorithm that
given a polynomial -space-bounded Turing machine A/ and a word w outputsan LTL
formulaeas,. suchthat A accepts w iff ¢p ., issatisfiable.

An LTL formula ¢ is valid if for every computation = we have that = = ¢. A
valid formulaisalso uninteresting as a specification. The validity problemfor LTL isto
decide, given an LTL formula ¢, whether ¢ isvalid. It iseasy to see that  isvalid iff
- isnot satisfiable. Thus, the validity problem for LTL isaso PSPACE-complete.

4.2 Verification

We focus here on finite-state programs, i.e., programs in which the variables range over
finite domains. The significance of this class follows from the fact that a significant
number of the communication and synchronization protocols studied in the literature
are in essence finite-state programs [Liu89, Rud87]. Since each state is characterized
by a finite amount of information, this information can be described by certain atomic
propositions. Thismeans that a finite-state program can be specified using propositional
temporal logic. Thus, we assume that we are given afinite-state program and an LTL
formulathat specifies the legal computations of the program. The problem is to check
whether al computations of the program are legal. Before going further, et us define
these notions more precisaly.

A finite-state program over aset Prop of atomic propositionsis a structure of the
form P = (W, wo, R, V'), where W is afinite set of states, wg € 1V istheinitial state,
R C W?isatota accessibility relation, and V' : W — 2FP7° assigns truth values
to propositionsin Prop for each state in I/, The intuition is that 17 describes all the
dtates that the program could be in (where a state includes the content of the memory,
registers, buffers, location counter, etc.), i describes all the possibletransitionsbetween
states (allowing for nondeterminism), and V' relates the states to the propositions (e.g.,
it tellsusin what states the proposition request istrue). The assumption that R istotal



(i.e., that every state hasa child) isfor technical convenience. We can view aterminated
execution as repeating forever itslast state.

Let u be an infinite sequence wug, v . .. of states in W such that up = wp, and
u; Ru;4q for all ¢ > 0. Then the sequence V (o), V(u1) . . . iSacomputation of P. We
say that P satisfiesan LTL formulay if all computationsof P satisfy ¢. The verification
problemisto check whether P satisfies .

The complexity of the verification problem can be measured in three different
ways. First, one can fix the specification ¢ and measure the complexity with respect to
the size of the program. We call this measure the program-complexity measure. More
precisely, the program complexity of the verification problem is the complexity of the
sets { P | P satisfies ¢} for afixed . Secondly, one can fix the program P and measure
the complexity with respect to the size of the specification. We call this measure the
specification-complexity measure. More precisely, the specification complexity of the
verification problem is the complexity of the sets {¢ | P satisfies} for a fixed P.
Finally, the complexity in the combined size of the program and the specification isthe
combined complexity.

Let C' beacomplexity class. We say that the program complexity of the verification
problemisin Cif {P | P satisfies o} € C for any formula . We say that the program
complexity of the verification problem is hard for C' if {P | P satisfies ¢} ishard for
¢ for some formula ¢. We say that the program complexity of the verification problem
iscompletefor C'if itisin C and ishard for C'. Similarly, we say that the specification
complexity of theverificationproblemisinC'if {¢ | P satisfies ¢} € C for any program
P, we say that the specification complexity of the verification problemis hard for C' if
{¢ | P satisfies ¢} ishard for C' for some program P, and we say that the specification
complexity of the verification problem is completefor C'if itisin C' and ishard for C'.

We now describe the automata-theoretic approach to the verification problem. A
finite-state program P = (W, wo, R, V') can be viewed as a Biichi automaton Ap =
(X, W, {wo}, p, W), where & = 2P7°P and s’ € p(s, a) iff (5,s') € Randa = V(s).
As this automaton has a set of accepting states equal to the whole set of states, any
infinite run of the automaton is accepting. Thus, L., (Ap) isthe set of computations of
P.

Hence, for afinite-state program P and an LTL formula, the verification problem
isto verify that all infinite words accepted by the automaton A p satisfy the formula .
By Corollary 23, we know that we can build a Bichi automaton A, that accepts exactly
the computations satisfying the formula . The verification problem thusreduces to the
automata-theoretic problem of checking that all computationsaccepted by the automaton
Ap are also accepted by the automaton A, that is L, (Ap) C L. (A, ). Equivaently,

we need to check that the automaton that accepts L., (Ap) N L, (A, ) isempty, where
Lu(Ay) = Tu(Ay) = 5 — Ly(Ay),

First, notethat, by Corollary 23, L,,(A,) = L, (A-,) and the automaton A, has
200¢l) gates. (A straightforward approach, starting with the automaton A, and then
using Proposition 7 to complement it, would result in a doubly exponentia blow-up.)
To get the intersection of the two automata, we use Proposition 6. Consequently, we
can build an automaton for L, (Ap) N L, (A-,) having || - 200¢D gtates. We need to
check thisautomaton for emptiness. Using Proposition 13, we get the following results.



Theorem 25. [LP85, SC85, VW86]

1. The program complexity of the verification problemis complete for NLOGSPACE.

2. The specification complexity of the verification problemis complete for PSPACE.

3. Checking whether a finite-state program P satisfiesan LTL formula ¢ can be done
intime O(|P| - 2°U¢Dy or in space O((|p| + log| P|)?).

We note that a time upper bound that is polynomia in the size of the program and
exponential in the size of the specification is considered here to be reasonable, since the
specification isusualy rather short [LP85]. For a practical verification algorithmthat is
based on the automata-theoretic approach see [CVWY 92].

4.3 Synthess

In the previous section we dealt with verification: we are given a finite-state program
and an LTL specification and we haveto verify that the program meets the specification.
A frequent criticism against this approach, however, isthat verification isdone after sig-
nificant resources have aready been invested in the devel opment of the program. Since
programs invariably contain errors, verification simply becomes part of the debugging
process. The critics argue that the desired god isto use the specification in the program
devel opment processin order to guarantee the design of correct programs. Thisiscalled
program synthesis. It turns out that to solve the program-synthesis problem we need to
use automata on infinitetrees.

Rabin Tree Automata Rabintree automatarunoninfinitelabeledtreeswithauniform
branching degree (recall the definition of labeled treesin Section 2.5). The (infinite) -
arytree 7y istheset {1,...,k}*, i.e, the set of al finite sequences over {1,..., k}.
The elements of 7, arethe nodes of thetree. If x and x7 are nodes of 7, then thereisan
edgefrom « to z¢, i.e., « isthe parent of xi and «¢ isthechild of «. The empty sequence
¢ istheroot of 7;,. A branch 8 = xg, 1, . . . Of 7, isan infinite sequence of nodes such
that o = ¢, and z; isthe parent of «; 1 for all ¢ > 0. A X-labeled k-ary tree 7, for a
finiteaphabet X, isamapping 7 : 7, — X that assignsto every node alabel. We often
refer to labeled trees as trees; the intention will be clear from the context. A branch
B = wo,x1,...0f T defines an infiniteword 7 (5) = 7 (x0), 7 (1), . . . consisting of
the sequence of labels along the branch.

A k-ary Rabin tree automaton A is atuple (2, S, S9, p, ), where ¥ is a finite
aphabet, S is afinite set of states, S° C S isa set of initid states, G C 2° x 2°
is a Rabin condition, and p : S x ¥ — 25" is atransition function. The automaton
A takes as input X-labeled k-ary trees. Note that p(s, a) is a set of k-tuples for each
state s and symbol «. Intuitively, when the automaton is in state s and it is reading a
node =, it nondeterministically chooses a k-tuple (s1, ..., sg) in p(s, 7 (¢)) and then
makes k copies of itself and moves to the node =i in the state s; for i = 1,... k. A
runr : 7, — S of AonaX-labeled k-ary tree 7 isan S-labeled k-ary tree such that
theroot is labeled by an initial state and the transitions obey the transition function p;
that is, »(¢) € S°, and for each node x we have (r(z1), ..., r(zk)) € p(r(z), T (x)).
Therunisaccepting if »(3) satisfies GG for every branch 3 = xg, #1, ... of 7,. That is,



for every branch 8 = g, z1, . . ., thereis some pair (L, U) € G such that 7(z;) € L
for infinitely many ¢'s, but »(x;) € U for only finitely many ¢'s. Note that different
branches might be satisfied by different pairsin . The languageof A4, denoted L, (A),
isthe set of trees accepted by A. It iseasy to see that Rabin automata on infinite words
are essentially 1-ary Rabin tree automata.

The nonemptiness problem for Rabin tree automata is to decide, given a Rabin
tree automaton A, whether L, (A) is nonempty. Unlike the nonemptiness problem for
automata on finite and infinite words, the nonemptiness problem for tree automata is
highly nontrivial. It was shown to be decidable in [Rab69], but the algorithm there had
nonel ementary time complexity; i.e., its time complexity could not be bounded by any
fixed stack of exponentia functions. Later on, elementary algorithms were described
in [HR72, Rab72]. The algorithm in [HR72] runsin doubly exponential time and the
algorithm in [Rab72] runs in exponential time. Several years later, in [Eme85, VS85],
it was shown that the nonemptiness problem for Rabin tree automataisin NP. Finally,
in [EJ88], it was shown that the problem is NP-compl ete.

There are two relevant size parameters for Rabin tree automata. The first is the
transition size, which is size of the transition function (i.e., the sum of the sizes of the
sets |p(s, a)| fors € S and a € X); thetransition size clearly takes into account the the
number of statesin .S. The second isthe number of pairsin the acceptance condition 5.
For our application here we need a complexity analysis of the nonemptiness problem
that takes into account separately the two parameters.

Proposition 26. [EJ88, PR89] For Rabin tree automata with transition size m and n
pairs, the nonemptiness problem can be solved in time (mn)°("),

In other words, the nonemptiness problem for Rabin tree automata can be solved intime
that is exponential in the number of pairs but polynomial in the transition size. As we
will see, thisdistinctionis quite significant.

Realizability Theclassical approachto program synthesisisto extract aprogramfrom
aproof that the specification is satisfiable. In[EC82, MW84], it isshown how to extract
programs from (finite representations of) models of the specification. In the late 1980s,
several researchers realized that the classical approach iswell suited to closed systems,
but not to open systems [Dil89, PR89, ALW89]. In open systems the program interacts
with the environment; such programs are called reactive programs [HP85]. A correct
reactive program should be able to handle arbitrary actions of the environment. If one
applies the techniques of [EC82, MW84] to reactive programs, one obtains programs
that can handle only certain actions of the environment. In[PR89, ALW89, Dil89], itis
argued that the right way to approach synthesis of reactive programsisto consider the
situation as an infinite game between the environment and the program.

We are given afiniteset W of statesand avaluation V : W — 2F7°P Theintuition
is that 1 describes al the observable states that the system can be in. (We will see
later why the emphasis here on observability.) A behavior » over 11 isan infiniteword
over the aphabet 177. The intended meaning isthat the behavior wo, w1, . . . describes a
sequence of states that the system goes through, where the transition from w; _1 to w;
was caused by the environment when i isodd and by the programwhen ¢ iseven. That is,



the program makes thefirst move (into thefirst state), the environment respondswith the
second move, the program counters with the third move, and so on. We associate with
r the computation V (r) = V(wg), V(w1), ..., and say that r satisfiesan LTL formula
¢ if V(r) satisfies ¢. The goa of the program is to satisfy the specification ¢ in the
face of every possible move by the environment. The program has no control over the
environment moves; it only controlsits own moves. Thus, the situation can be viewed
as an infinite game between the environment and the program, where the goa of the
program is to satisfy the specification . Infinite games were introduced in [GS53] and
they are of fundamental importance in descriptive set theory [Mos80].

Histories are finite words in W*. The history of arun r = wq, wy, . .. a the even
point ¢ > O, denoted hist(r, ), is the finite word w1, ws, . . ., w;_1 consisting of all
states moved to by the environment; the history is the empty sequence ¢ for ¢ = 0.
A program is a function f : W* — IV from histories to states. The idea is that if
the program is scheduled at a point at which the history is &, then the program will
cause a change into the state f(k). This captures the intuition that the program actsin
reaction to the environment’s actions. A behavior » over W isarun of the program f if
s; = f(hist(r,i)) for al even i. That is, al the state transitions caused by the program
are consistent with the program f. A program f satisfies the specification ¢ if every
run of f over W sdtisfies ¢. Thus, a correct program can be then viewed as a winning
strategy in the game against the environment. We say that ¢ is realizable with respect
toW and V if thereisaprogram f that satisfies ¢, in which case we say that f realizes
¢. (Inthe sequel, we often omit explicit mention of 1 and V' when it is clear from the
context.) It turnsout that satisfiability of ¢ isnot sufficient to guarantee realizability of

©L.

Example3. Consider the case where Prop = {p}, W = {0,1}, V(0) = 0, and
V(1) = {p}. Consider the formula Gip. This formula requires that p always be true,
and it is clearly satisfiable. There is no way, however, for the program to enforce this
requirement, since the environment can always moves to the state 0, making p false.
Thus, Gip is not realizable. On the other hand, the formula G F'p, which requires p to
hold infinitely often, isrealizable; infact, it isrealized by the simple program that maps
every history to the state 1. This shows that realizability isa stronger requirement than
satisfiability. I

Consider now the specification ¢. By Corollary 23, we can build aBuchi automaton
A, = (5,8,5% p, F), where & = 2P and |S| isin 29U¢D) such that L, (A,) is
exactly the set of computations satisfying the formula ¢. Thus, given a state set W
and a vauation V : W — 27 we can also congtruct a Biichi automaton A, =
(W, 5,5° ', F)suchthat L, (Al,) isexactly theset of behaviors satisfying theformula
v, by simply taking p’ (s, w) = p(s, V(w)). It followsthat we can assume without |0ss
of generality that the winning condition for the game between the environment and the
program is expressed by a Biichi automaton A: the program f winsthe game if every
run of f isaccepted by A. We thus say that the program f realizes a Biichi automaton
Aif al itsruns are accepted by A. We also say then that A isrealizable.

It turns out that the realizability problem for Biichi automatais essentially the solv-
ability problem described in [Chu63]. (The winning condition in [Chu63] is expressed



in S1S, the monadic second-order theory of one successor function, but it is known
[Biic62] that S1S sentences can be trandated to Biichi automata.) The solvability prob-
lem was studied in [BL69, Rab72]. It is shown in [Rab72] that this problem can be
solved by using Rabin tree automata.

Consider aprogram f : W* — W. Suppose without loss of generdity that W =
{1,...,k}, for some k > 0. The program f can be represented by a 1¥-labeled k-ary
tree 7;. Consider anode x = g1 . . .%m, Wherel < ¢; < kforj = 0,..., m. Wenote
that =z is a history in W*, and define 7;(z) = f(x). Conversdly, a W-labeled k-ary
tree 7 defines a program fr. Consider a history & = igiy ... %, Where 1 < i; < &
for j = 0,...,m. Wenote that / is a node of 73, and define fr(h) = 7 (h). Thus,
W -labeled k-ary trees can be viewed as programs.

It is not hard to see that the runs of f correspond to the branches of 7;. Let
B = =o,x1,... be abranch, where 29 = ¢ and z; = x;_1i;_1 for j > 0. Then
r = T(»0),40,7 (#1),41,7 (x2),...isarun of f, denoted (7). Conversely, if r =
io, 41, ... isarun of f, then 7; contains a branch 3(r) = =z, 2z1,..., Where zg = ¢,
x; = xj_1izj41, and 7 (z;) = ip; for j > 0. Oneway to visuaize thisisto think of the
edge from the parent « toitschild «¢ aslabeled by . Thus, therun r(3) isthe sequence
of edge and node labels along j.

We thus refer to the behaviors »(3) for branches 3 of aWW-labeled k-ary tree 7 s
theruns of 7, and we say that 7 realizes aBuchi automaton A if all therunsof 7 are
accepted by A. We have thus obtained the following:

Proposition 27. A program f realizes a Blichi automaton A iff thetree 7, realizes A.

Wehavethusreduced therealizability problemfor LTL specificationsto an automata
theoretic problem: given a Biichi automaton A, decideif thereisatree 7 that realizes
A. Our next step is to reduce this problem to the nonemptiness problem for Rabin tree
automata. We will construct a Rabin automaton B that accepts precisely the trees that
redize A. Thus, L, (B) # 0 iff thereisatree that realizes A.

Theorem 28. Given a Buchi automaton A with n states over an alphabet W =
{1,...,k}, we can construct a k-ary Rabin tree automaton B with transition size
k20(n1%97) and O(n) pairssuch that L, (B) isprecisdly the set of trees that realize A.

Proof: Consider an input tree 7. The Rabin tree automaton B needs to verify that for
every branch g of 7 we havethat »(3) € L., (A). Thus, B needsto “run A in parale”
on all branches of 7. We first need to deal with the fact that the [abelsin 7 contain
information only about the actions of f (while the information on the actions of the
environment isimplicitin the edges). Supposethat A = (W, S, S°, p, F). Wefirst define
a Biichi automaton A’ that emulates A by reading pairs of input symbolsat atime. Let
A= (W? S x {0,1},5% x {0}, p, S x {1}), where

(5, (@, b)) = 1(t,0) [t € p(s/,b) — I for somess € p(s, @) — F}U
{{, 1) |t € p(s,b)forsomes’ € p(s,a) N F} U
{{, 1) |t e p(s’,b)yn F forsomes’ € p(s,a)}.



Intuitively, p’ appliestwo transitionsof A while remembering whether either transition
visited 7'. Note that this construction doubles the number of states. It is easy to prove
the following claim:
Claim: A’ accepts the infinite word (wo, w1), (w2, w3), . . . over the alphabet W2 iff A
accepts theinfiniteword wo, w1, wo, ws, . . . over W.

In order to be able to run A’ in parallel on al branches, we apply Proposition 10
to A’ and obtain a deterministic Rabin automaton A; such that L, (A4) = L. (A).
As commented in Section 2.2, A; has 20(?1997) gates and O(n) pairs. Let A; =
(W2,.Q,{¢°,6,G).

We can now construct a Rabin tree automaton that “runs A, in paralle” on all
branchesof 7. Let B = (W, Q, {¢°}, ¢, G), where ¢ is defined as follows:

& (g, a) = é(g, {a, 1)) x -+ 6(q, {a, k})).

Intuitively, B emulates A, by feeding it pairs consisting of a node label and an edge
label. Notethat if 6(q, (a,7)) = @ for some 1 < i < k, then §'(q,a) = 0.
Claim: L, (B) is precisely the set of trees that redlize A.

It remains to analyze the size of A. Itisclear that it has 20("'%97) gtates and O(n)
pairs. Sinceit is deterministic, itstransition sizeis k2°(71097)

We can now apply Proposition 26 to solve the realizability problem.

Theorem 29. [ALW89, PR89] The realizability problem for Biichi automata can be
solved in exponential time.

Proof: By Theorem 28, given a Biichi automaton A with »n states over an a phabet
W ={1,...,k}, wecan construct a k-ary Rabin tree automaton B with transition size
k20(n1097) and and O(n) pairssuch that L., ( B) is precisdly the set of treesthat redlize
A. By Proposition 26, we can test the nonemptiness of B in time £©(n)20(n’logn) g

Corollary 30. [PR89] The realizability problemfor LTL can be solved in doubly expo-
nential time.

Proof: By Corollary 23, given an LTL formula, one can build a Buchi automaton A,
with 20U¢D) gates such that L, (A,) is exactly the set of computations satisfying the
formula ¢. By combining this with the bound of Theorem 29, we get a time bound of

O (lel
kz (4’)..

In[PR89], it isshown that the doubly exponentia time bound of Corollary 30 is essen-
tially optimal. Thus, while the realizability problem for LTL is decidable, in the worst
case it can be highly intractable.

Example4. Consider again the situation where Prop = {p}, W = {0, 1}, V(0) = 0,
and V(1) = {p}. Let ¢ betheformulaGp. Wehave A, = (W, {1}, {1}, p, W), where
p(1,1) = {1}, and al other transitions are empty (e.g., p(1,0) = @, etc.). Note that
A, isdeterministic. We can emulate A, by an automaton that reads pairs of symbols:
Aip = (Wz’ W x {0,1}, {(1,0)}, o', W x {1}), where p((1,0),(1,1)) = {(1, 1)},
and al other transitions are empty. Finally, we construct the Rabin tree automaton



B = (W, W x {0,1},(1,0),6,(L,U)), where ¢'(s, a) is empty for al states s and
symbol a. Clearly, L,,(B) = §, whichimpliesthat Gp isnot realizable. Il

We note that Corollary 30 only tells us how to decide whether an LTL formulais
realizableor not. Itisshownin[PR89], however, that thealgorithm of Proposition 26 can
provide more than just a “yes/no” answer. When the Rabin automaton B is honempty,
the algorithm returnsafinite representation of an infinitetree accepted by B. It turnsout
that thisrepresentation can be converted into aprogram f that realizes the specification.
It even turns out that this program is a finite-state program. This means that there are
afiniteset v, afunctiong : W* — N, afunctiona; : N x W — N, and afunction
ay . N — W suchthat foral h €¢ W* and w € W we have:

= J(h) = az(g(h))
- g(hw) = a1(g(h),w)

Thus, instead of remembering the history A (which requires an unbounded memory),
the program needs only to remember ¢(h). It performs its action «1(#) and, when it
sees the environment’s action w, it updates its memory to a2(¢(h), w). Note that this
“memory” isinternal to the program and is not pertinent to the specification. Thisisin
contrast to the observable statesin 1 that are pertinent to the specification.
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