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Abstract. The automata-theoretic approach to linear temporal logic uses the
theory of automata as a unifying paradigm for program specification, verification,
and synthesis. Both programs and specifications are in essence descriptions of
computations. These computations can be viewed as words over some alphabet.
Thus,programs and specificationscan be viewed as descriptions of languagesover
some alphabet. The automata-theoretic perspective considers the relationships
between programs and their specifications as relationships between languages.By
translating programs and specifications to automata, questions about programs and
their specifications can be reduced to questions about automata. More specifically,
questions such as satisfiability of specifications and correctness of programs with
respect to their specifications can be reduced to questions such as nonemptiness
and containment of automata.
Unlike classical automata theory, which focused on automata on finite words, the
applications to program specification, verification, and synthesis, use automata
on infinite words, since the computations in which we are interested are typically
infinite. This paper provides an introduction to the theory of automata on infinite
words and demonstrates its applications to program specification, verification,
and synthesis.

1 Introduction

While program verification was always a desirable, but never an easy task, the advent of
concurrent programming has made it significantly more necessary and difficult. Indeed,
the conceptual complexity of concurrency increases the likelihood of the program con-
taining errors. To quote from [OL82]: “There is a rather large body of sad experience to
indicate that a concurrent program can withstand very careful scrutiny without revealing
its errors.”

The first step in program verification is to come up with a formal specification of the
program. One of the more widely used specification languages for concurrent programs
is temporal logic [Pnu77, MP92]. Temporal logic comes in two varieties: linear time and
branching time ([EH86, Lam80]); we concentrate here on linear time. A linear temporal? Part of this work was done at the IBM Almaden Research Center.



specification describes the computations of the program, so a program satisfies the
specification (is correct) if all its computations satisfy the specification. Of course, a
specification is of interest only if it is satisfiable. An unsatisfiable specification cannot
be satisfied by any program. An often advocated approach to program development is to
avoid the verification step altogether by using the specification to synthesize a program
that is guaranteed to be correct.

Our approach to specification, verification, and synthesis is based on an intimate
connection between linear temporal logic and automata theory, which was discussed
explicitly first in [WVS83] (see also [LPZ85, Pei85, Sis83, SVW87, VW94]). This
connection is based on the fact that a computation is essentially an infinite sequence
of states. In the applications that we consider here, every state is described by a finite
set of atomic propositions, so a computation can be viewed as an infinite word over
the alphabet of truth assignments to the atomic propositions. The basic result in this
area is the fact that temporal logic formulas can be viewed as finite-state acceptors.
More precisely, given any propositional temporal formula, one can construct a finite
automaton on infinite words that accepts precisely the computations satisfied by the
formula [VW94]. We will describe the applications of this basic result to satisfiability
testing, verification, and synthesis. (For an extensive treatment of the automata-theoretic
approach to verification see [Kur94]).

Unlike classical automata theory, which focused on automata on finite words, the
applications to specification, verification, and synthesis, use automata on infinite words,
since the computations in which we are interested are typically infinite. Before going
into the applications, we give a basic introduction to the theory of automata on infinite
words. To help the readers build their intuition, we review the theory of automata on
finite words and contrast it with the theory of automata on infinite words. For a more
advanced introduction to the theory of automata on infinite objects, the readers are
referred to [Tho90].

2 Automata Theory

We are given a finite nonempty alphabet �. A finite word is an element of ��, i.e., a
finite sequence a0; : : : ; an of symbols from �. An infinite word is an element of �! ,
i.e., an !-sequence2 a0; a1; : : : of symbols from �. Automata on finite words define
(finitary) languages, i.e., sets of finite words, while automata on infinite words define
infinitary languages, i.e., sets of infinite words.

2.1 Automata on Finite Words – Closure

A (nondeterministic finite) automaton A is a tuple (�;S; S0; �; F ), where � is a finite
nonempty alphabet, S is a finite nonempty set of states, S0 � S is a nonempty set of
initial states, F � S is the set of accepting states, and � : S � � ! 2S is a transition
function. Intuitively, �(s; a) is the set of states that A can move into when it is in states and it reads the symbol a. Note that the automaton may be nondeterministic, since
it may have many initial states and the transition function may specify many possible

2 ! denotes the first infinite ordinal.



transitions for each state and symbol. The automatonA is deterministic if jS0j = 1 andj�(s; a)j � 1 for all states s 2 S and symbols a 2 �. An automaton is essentially an
edge-labeled directed graph: the states of the automaton are the nodes, the edges are
labeled by symbols in �, a certain set of nodes is designated as initial, and a certain set
of nodes is designated as accepting. Thus, t 2 �(s; a) means that that there is edge froms to t labeled with a. When A is deterministic, the transition function � can be viewed
as a partial mapping from S � � to S, and can then be extended to a partial mapping
from S ��� to S as follows: �(s; ") = s and �(s; xw) = �(�(s; x); w) for x 2 � andw 2 ��.

A run r of A on a finite word w = a0; : : : ; an�1 2 �� is a sequence s0; : : : ; sn ofn + 1 states in S such that s0 2 S0, and si+1 2 �(si; ai) for 0 � i < n. Note that a
nondeterministic automaton can have many runs on a given input word. In contrast, a
deterministic automaton can have at most one run on a given input word. The run r is
accepting if sn 2 F . One could picture the automaton as having a green light that is
switched on whenever the automaton is in an accepting state and switched off whenever
the automaton is in a non-accepting state. Thus, the run is accepting if the green light
is on at the end of the run. The word w is accepted by A if A has an accepting run onw. When A is deterministic, w 2 L(A) if and only if �(s0; w) 2 F , where S0 = fs0g.
The (finitary) language of A, denoted L(A), is the set of finite words accepted by A.

An important property of automata is their closure under Boolean operations. We
start by considering closure under union and intersection.

Proposition 1. [RS59] Let A1; A2 be automata. Then there is an automatonA such thatL(A) = L(A1) [ L(A2).
Proof: Let A1 = (�;S1; S0

1 ; �1; F1) and A2 = (�;S2; S0
2 ; �2; F2). Without loss of

generality, we assume that S1 and S2 are disjoint. Intuitively, the automaton A nonde-
terministically chooses A1 or A2 and runs it on the input word.

Let A = (�;S; S0; �; F ), where S = S1 [ S2, S0 = S0
1 [ S0

2 , F = F1 [F2, and�(s; a) = ��1(s; a) if s 2 S1�2(s; a) if s 2 S2

It is easy to see that L(A) = L(A1) [ L(A2).
We call A in the proof above the union ofA1 and A2, denoted A1 [A2.

Proposition 2. [RS59] Let A1; A2 be automata. Then there is an automatonA such thatL(A) = L(A1) \ L(A2).
Proof: Let A1 = (�;S1; S0

1 ; �1; F1) and A2 = (�;S2; S0
2 ; �2; F2). Intuitively, the

automatonA runs bothA1 and A2 on the input word.
Let A = (�;S; S0; �; F ), where S = S1 � S2, S0 = S0

1 � S0
2 , F = F1 � F2, and�((s; t); a) = �1(s; a) � �2(t; a). It is easy to see that L(A) = L(A1) \ L(A2).

We call A in the proof above the product of A1 and A2, denoted A1 �A2.
Note that both the union and the product constructions are effective and polynomial

in the size of the constituent automata.



Let us consider now the issue of complementation. Consider first deterministic
automata.

Proposition 3. [RS59] Let A = (�;S; S0; �; F ) be a deterministic automaton, and letA = (�;S; S0; �; S � F ), then L(A) = �� � L(A).
That is, it is easy to complement deterministic automata; we just have to complement
the acceptance condition. This will not work for nondeterministic automata, since a
nondeterministic automaton can have many runs on a given input word; it is not enough
that some of these runs reject (i.e., not accept) the input word, all runs should reject
the input word. Thus, it seems that to complement nondeterministic automaton we first
have to determinize it.

Proposition 4. [RS59] Let A be a nondeterministic automaton. Then there is a deter-
ministic automatonAd such that L(Ad) = L(A).
Proof: Let A = (�;S; S0; �; F ). Then Ad = (�; 2S ; fS0g; �d; Fd). The state set ofAd consists of all sets of states in S and it has a single initial state. The set Fd =fT jT \ F 6= ;g is the collection of sets of states that intersect F nontrivially. Finally,�d(T; a) = ft j t 2 �(s; a) for some s 2 Tg.

Intuitively, Ad collapses all possible runs of A on a given input word into one run
over a larger state set. This construction is called the subset construction. By combining
Propositions 4 and 3 we can complement a nondeterministicautomata. The construction
is effective, but it involves an exponential blow-up, since determinization involves an
exponential blow-up (i.e., ifA has n states, thenAd has 2n states). As shown in [MF71],
this exponential blow-up for determinization and complementation is unavoidable.

For example, fix some n � 1. The set of all finite words over the alphabet � =fa; bg that have an a at the nth position from the right is accepted by the automatonA = (�; f0; 1; 2; : : :; ng; f0g; �; fng), where �(0; a) = f0; 1g, �(0; b) = f0g, and�(i; a) = �(i; b) = fi+ 1g for 0 < i < n. Intuitively,A guesses a position in the input
word, checks that it contains a, and then checks that it is at distance n from the right
end of the input.

Suppose that we have a deterministic automaton Ad = (�;S; fs0g; �d; F ) with
fewer than 2n states that accepts this same language. Recall that �d can be viewed as a
partial mapping from S ��� to S. Since jSj < 2n, there must be two words uav1 andubv2 of length n for which �d(s0; uav1) = �d(s0; ubv2). But then we would have that�d(s0; uav1u) = �d(s0; ubv2u); that is, either both uav1u and ubv2u are members ofL(Ad) or neither are, contradicting the assumption that L(Ad) consists of exactly the
words with an a at the nth position from the right, since jav1uj = jbv2uj = n.

2.2 Automata on Infinite Words – Closure

Suppose now that an automatonA = (�;S; S0; �; F ) is given as input an infinite wordw = a0; a1; : : : over �. A run r of A on w is a sequence s0; s1; : : :, where s0 2 S0 andsi+1 2 �(si; ai), for all i � 0. Since the run is infinite, we cannot define acceptance by
the type of the final state of the run. Instead we have to consider the limit behavior of



the run. We define lim(r) to be the set fs j s = si for infinitely many i’sg, i.e., the set of
states that occur in r infinitely often. Since S is finite, lim(r) is necessarily nonempty.
The run r is accepting if there is some accepting state that repeats in r infinitely often,
i.e., lim(r)\F 6= ;. If we picture the automaton as having a green light that is switched
on precisely when the automaton is in an accepting state, then the run is accepting if the
green light is switched on infinitely many times. The infinite word w is accepted by A
if there is an accepting run of A on w. The infinitary language of A, denoted L!(A), is
the set of infinite words accepted by A.

Thus, A can be viewed both as an automaton on finite words and as an automaton
on infinite words. When viewed as an automaton on infinite words it is called a Büchi
automaton [Büc62].

Do automata on infinite words have closure properties similar to those of automata
on finite words? In most cases the answer is positive, but the proofs may be more
involved. We start by considering closure under union. Here the union construction does
the right thing.

Proposition 5. [Cho74] LetA1; A2 be Büchi automata. ThenL!(A1[A2) = L!(A1)[L!(A2).
One might be tempted to think that similarly we have thatL!(A1�A2) = L!(A1)\L!(A2), but this is not the case. The accepting set of A1 � A2 is the product of the

accepting sets of A1 and A2. Thus, A1 � A2 accepts an infinite word w if there are
accepting runs r1 and r2 ofA1 andA2, respectively, on w, where both runs go infinitely
often and simultaneously through accepting states. This requirement is too strong. As a
result,L!(A1�A2) could be a strict subset ofL!(A1)\L!(A2). For example, define the
two Büchi automata A1 = (fag; fs; tg; fsg; �; fsg) and A2 = (fag; fs; tg; fsg; �; ftg)
with�(s; a) = ftg and �(t; a) = fsg. Clearly we have thatL!(A1) = L!(A2) = fa!g,
but L!(A1 �A2) = ;.

Nevertheless, closure under intersection does hold.

Proposition 6. [Cho74] LetA1; A2 be Büchi automata. Then there is a Büchi automatonA such that L!(A) = L!(A1) \L!(A2).
Proof: LetA1 = (�;S1; S0

1 ; �1; F1) andA2 = (�;S2; S0
2 ; �2; F2). LetA = (�;S; S0; �; F ),

where S = S1 � S2 � f1; 2g, S0 = S0
1 � S0

2 � f1g, F = F1 � S2 � f1g, and(s0; t0; j) 2 �((s; t; i); a) if s0 2 �1(s; a), t0 2 �2(t; a), and i = j, unless i = 1 ands 2 F1, in which case j = 2, or i = 2 and t 2 F2, in which case j = 1.
Intuitively, the automaton A runs both A1 and A2 on the input word. Thus, the

automaton can be viewed has having two “tracks”, one for each of A1 and A2. In
addition to remembering the state of each track, A also has a pointer that points to one
of the tracks (1 or 2). Whenever a track goes through an accepting state, the pointer
moves to the other track. The acceptance condition guarantees that both tracks visit
accepting states infinitely often, since a run accepts iff it goes infinitely often throughF1 � S2 � f1g. This means that the first track visits infinitely often an accepting state
with the pointer pointing to the first track. Whenever, however, the first track visits an
accepting state with the pointer pointing to the first track, the pointer is changed to point
to the second track. The pointer returns to point to the first track only if the second



track visits an accepting state. Thus, the second track must also visit an accepting state
infinitely often.

Thus, Büchi automata are closed under both union and intersection, though the con-
struction for intersection is somewhat more involved than a simple product. The situation
is considerably more involved with respect to closure under complementation. First, as
we shall shortly see, Büchi automata are not closed under determinization, i.e., non-
deterministic Büchi automata are more expressive than deterministic Büchi automata.
Second, it is not even obvious how to complement deterministic Büchi automata. Con-
sider the deterministic Büchi automaton A = (�;S; S0; �; F ). One may think that it
suffices to complement the acceptance condition, i.e., to replace F by S �F and defineA = (�;S; S0; �; S � F ). Not going infinitely often through F , however, is not the
same as going infinitely often throughS�F . A run might go through bothF and S�F
infinitely often. Thus, L!(A) may be a strict superset of �! � L!(A). For example,
Consider the Büchi automaton A = (fag; fs; tg; fsg; �; fsg) with �(s; a) = ftg and�(t; a) = fsg. We have that L!(A) = L!(A) = fa!g.

Nevertheless, Büchi automata (deterministic as well as nondeterministic) are closed
under complementation.

Proposition 7. [Büc62] Let A be a Büchi automaton over an alphabet�. Then there is
a (possibly nondeterministic) Büchi automatonA such that L!(A) = �! � L!(A).

The construction in [Büc62] is doubly exponential. This is improved in [SVW87] to
a singly exponential construction with a quadratic exponent (i.e., ifA has n states thenA
has cn2

states, for some constant c > 1). In contrast, the exponent in the construction of
Proposition 4 is linear. We will come back later to the complexity of complementation.

Let us return to the issue of determinization. We now show that nondeterministic
Büchi automata are more expressive than deterministic Büchi automata. Consider the
infinitary language� = (0+1)�1!, i.e.,� consists of all infinite words in which 0 occurs
only finitely many times. It is easy to see that � can be defined by a nondeterministic
Büchi automaton. Let A0 = (f0; 1g; fs; tg; fsg; �;ftg), where �(s; 0) = �(s; 1) =fs; tg, �(t; 1) = ftg and �(t; 0) = ;. That is, the states are s and t with s the initial
state and t the accepting state, As long as it is in the state s, the automaton A0 can read
both inputs 0 and 1. At some point, however, A0 makes a nondeterministic transition
to the state t, and from that point on it can read only the input 1. It is easy to see that� = L!(A0). In contrast, � cannot be defined by any deterministic Büchi automaton.

Proposition 8. Let � = (0+ 1)�1!. Then there is no deterministic Büchi automatonA
such that � = L!(A).
Proof: Assume by way of contradiction that� = L!(A), whereA = (�;S; fs0g; �; F )
for� = f0; 1g, andA is deterministic. Recall that � can be viewed as a partial mapping
from S ��� to S.

Consider the infinite word w0 = 1!. Clearly, w0 is accepted by A, so A has an
accepting run on w0. Thus, w0 has a finite prefix u0 such that �(s0; u0) 2 F . Consider
now the infinite word w1 = u001!. Clearly, w1 is also accepted by A, so A has an
accepting run on w1. Thus, w1 has a finite prefix u00u1 such that �(s0; u00u1) 2 F . In a



similar fashion we can continue to find finite words ui such that �(s0; u00u10 : : :0ui) 2F . Since S is finite, there are i; j, where 0 � i < j, such that �(s0; u00u10 : : :0ui) =�(s0; u00u10 : : :0ui0 : : :0uj). It follows that A has an accepting run onu00u10 : : :0ui(0 : : :0uj)!:
But the latter word has infinitely many occurrences of 0, so it is not in � .

Note that the complementary language�!�� = ((0+1)�0)! (the set of infinite words
in which 0 occurs infinitely often) is acceptable by the deterministic Büchi automatonA = (f0; 1g; fs; tg; fsg; �; fsg), where�(s; 0) = �(t; 0) = fsg and�(s; 1) = �(t; 1) =ftg. That is, the automaton starts at the state s and then it simply remembers the
last symbol it read (s corresponds to 0 and t corresponds to 1). Thus, the use of
nondeterminism in Proposition 7 is essential.

To understand why the subset construction does not work for Büchi automata, con-
sider the following two automata over a singleton alphabet:A1 = (fag; fs; tg; fsg; �1; ftg)
and A2 = (fag; fs; tg; fsg; �2; ftg), where �1(s; a) = fs; tg, �1(t; a) = ;, �2(s; a) =fs; tg, and �2(t; a) = fsg. It is easy to see that A1 does not accept any infinite word,
since no infinite run can visit the state t. In contrast, A2 accepts the infinite word a!,
since the run (st)! is accepting. If we apply the subset construction to both automata,
then in both cases the initial state is fsg, �d(fsg; a) = fs; tg, and �d(fs; tg; a) = fs; tg.
Thus, the subset construction can not distinguish between A1 and A2.

To be able to determinize automata on finite words, we have to consider a more
general acceptance condition. Let S be a finite nonempty set of states. A Rabin condi-
tion is a subset G of 2S � 2S , i.e., it is a collection of pairs of sets of states, written[(L1; U1); : : : ; (Lk; Uk)] (we drop the external brackets when the condition consists of
a single pair). A Rabin automatonA is an automaton on infinite words where the accep-
tance condition is specified by a Rabin condition, i.e., it is of the form (�;S; S0; �;G).
A run r ofA is accepting if for some iwe have that lim(r)\Li 6= ; and lim(r)\Ui = ;,
that is, there is a pair in G where the left set is visited infinitely often by r while the
right set is visited only finitely often by r.

Rabin automata are not more expressive than Büchi automata.

Proposition 9. [Cho74] Let A be a Rabin automaton, then there is a Büchi automatonAb such that L!(A) = L!(Ab).
Proof: Let A = (�;S; S0; �;G), where G = [(L1; U1); : : : ; (Lk; Uk)]. It is easy to
see that L!(A) = [ki=1L!(Ai), where Ai = (�;S; S0; �; (Li; Ui)). Since Büchi au-
tomata are closed under union, by Proposition 5, it suffices to prove the claim for Rabin
conditions that consists of a single pair, say (L;U ).

The idea of the construction is to take two copies of A, say A1 and A2. The
Büchi automaton Ab starts in A1 and stays there as long as it “wants”. At some point it
nondeterministicallymakes a transition intoA2 and it stays there avoidingU and visitingL infinitely often. Formally, Ab = (�;Sb; S0b; �b; L), where Sb = S � f0g [ (S � U ),S0b = S0 � f0g, �b(s; a) = �(s; a) � U for s 2 S � U , and �b(hs; 0i; a) = �(s; a) �f0g [ (�(s; a) � U ).
Note that the construction in the proposition above is effective and polynomial in the
size of the given automaton.



If we restrict attention, however, to deterministic automata, then Rabin automata are
more expressive than Büchi automata. Recall the infinitary language � = (0 + 1)�1!.
We showed earlier that it is not definable by a deterministic Büchi automaton. It is easily
definable, however, by a Rabin automaton. Let A = (f0; 1g; fs; tg; fsg; �; (ftg; fsg)),
where �(s; 0) = �(t; 0) = fsg, �(s; 1) = �(t; 1) = ftg. That is, the automaton starts at
the state s and then it simply remembers the last symbol it read (s corresponds to 0 andt corresponds to 1). It is easy to see that � = L!(A).

The additional expressive power of Rabin automata is sufficient to provide closure
under determinization.

Proposition 10. [McN66] Let A be a Büchi automaton. There is a deterministic Rabin
automatonAd such that L!(Ad) = L!(A).

Proposition 10 was first proven in [McN66], where a doubly exponential construc-
tion was provided. This was improved in [Saf88], where a singly exponential, with an al-
most linear exponent, construction was provided (ifA hasn states, thenAdhas 2O(n logn)
states andO(n) pairs). Furthermore, it was shown in [Saf88, EJ89]) how the determiniza-
tion construction can be modified to yield a co-determinization construction, i.e., a con-
struction of a deterministic Rabin automaton A0d such that L!(Ad) = �! � L!(Ad),
where � is the underlying alphabet. The co-determinization construction is also singly
exponential with an almost linear exponent (again, if A has n states, then A0d has
2O(n logn) states and O(n) pairs). Thus, combining the co-determinization construction
with the polynomial translation of Rabin automata to Büchi automata (Proposition 9),
we get a complementation construction whose complexity is singly exponential with an
almost linear exponent. This improves the previously mentioned bound on complemen-
tation (singly exponential with a quadratic exponent) and is essentially optimal [Mic88].
In contrast, complementation for automata on finite words involves an exponential blow-
up with a linear exponent (Section 2.1). Thus, complementation for automata on infinite
words is provably harder than complementation for automata on finite words. Both
constructions are exponential, but in the finite case the exponent is linear, while in the
infinite case the exponent is nonlinear.

2.3 Automata on Finite Words – Algorithms

An automaton is “interesting” if it defines an “interesting” language, i.e., a language
that is neither empty nor contains all possible words. An automaton A is nonempty ifL(A) 6= ;; it is nonuniversal if L(A) 6= ��. One of the most fundamental algorithmic
issues in automata theory is testing whether a given automaton is “interesting”, i.e.,
nonempty and nonuniversal. The nonemptiness problem for automata is to decide, given
an automaton A, whether A is nonempty. The nonuniversality problem for automata is
to decide, given an automaton A, whether A is nonuniversal. It turns out that testing
nonemptiness is easy, while testing nonuniversality is hard.

Proposition 11. [RS59, Jon75]

1. The nonemptiness problem for automata is decidable in linear time.
2. The nonemptiness problem for automata is NLOGSPACE-complete.



Proof: Let A = (�;S; S0; �; F ) be the given automaton. Let s; t be states of S. We say
that t is directly connected to s if there is a symbol a 2 � such that t 2 �(s; a). We
say that t is connected to s if there is a sequence s1; : : : ; sm, m � 1, of states such thats1 = s, sn = t, and si+1 is directly connected to si for 1 � i < m. Essentially, t is
connected to s if there is a path in A from s to t, where A is viewed as an edge-labeled
directed graph. Note that the edge labels are ignored in this definition. It is easy to see
that L(A) is nonempty iff there are states s 2 S0 and t 2 F such that t is connected
to s. Thus, automata nonemptiness is equivalent to graph reachability. The claims now
follow from the following observations:

1. A breadth-first-search algorithm can construct in linear time the set of all states
conncected to a state in S0 [CLR90]. A is nonempty iff this set intersects F
nontrivially.

2. Graph reachability can be tested in nondeterministic logarithmic space. The al-
gorithm simply guesses a state s0 2 S0 , then guesses a state s1 that is directly
connected to s0, then guesses a state s2 that is directly connected to s1, etc., until it
reaches a state t 2 F . (Recall that a nondeterministic algorithm accepts if there is a
sequence of guesses that leads to acceptance. We do not care here about sequences
of guesses that do not lead to acceptance [GJ79].) At each step the algorithm needs
to remember only the current state and the next state; thus, if there are n states the
algorithm needs to keep in memoryO(logn) bits, since logn bits suffice to describe
one state. On the other hand, graph reachability is also NLOGSPACE-hard [Jon75].

Proposition 12. [MS72]

1. The nonuniversality problem for automata is decidable in exponential time.
2. The nonuniversality problem for automata is PSPACE-complete.

Proof: Note that L(A) 6= �� iff �� � L(A) 6= ; iff L(A) 6= ;, where A is the
complementary automaton of A (see Section 2.1). Thus, to test A for nonuniversality,
it suffices to test A for nonemptiness. Recall that A is exponentially bigger than A.
Since nonemptiness can be tested in linear time, it follows that nonuniversality can be
tested in exponential time. Also, since nonemptiness can be tested in nondeterministic
logarithmic space, nonuniversality can be tested in polynomial space.

The latter argument requires some care. We cannot simply constructA and then test
it for nonemptiness, since A is exponentially big. Instead, we construct A “on-the-fly”;
whenever the nonemptiness algorithm wants to move from a state t1 of A to a state t2,
the algorithm guesses t2 and checks that it is directly connected to t1. Once this has been
verified, the algorithm can discard t1. Thus, at each step the algorithm needs to keep in
memory at most two states of A and there is no need to generate all of A at any single
step of the algorithm.

This yields a nondeterministic polynomial space algorithm. To eliminate nonde-
terminism, we appeal to a well-known theorem of Savitch [Sav70] which states that



NSPACE(f(n)) � DSPACE(f(n)2), for f(n) � logn; that is, any nondetermin-
istic algorithm that uses at least logarithmic space can be simulated by a determin-
istic algorithm that uses at most quadratically larger amount of space. In particular,
any nondeterministic polynomial-space algorithm can be simulated by a deterministic
polynomial-space algorithm.

To prove PSPACE-hardness, it can be shown that any PSPACE-hard problem can be
reduced to the nonuniversality problem. That is, there is a logarithmic-space algorithm
that given a polynomial-space-bounded Turing machine M and a word w outputs an
automaton AM;w such that M accepts w iff AM;w is non-universal [MS72, HU79].

2.4 Automata on Infinite Words – Algorithms

The results for Büchi automata are analogous to the results in Section 2.3.

Proposition 13.

1. [EL85b, EL85a] The nonemptiness problem for Büchi automata is decidable in
linear time.

2. [VW94] The nonemptiness problem for Büchi automata is NLOGSPACE-complete.

Proof: Let A = (�;S; S0; �; F ) be the given automaton. We claim that L!(A) is
nonempty iff there are states s0 2 S0 and t 2 F such that t is connected to s0 and t is
connected to itself. Suppose first that L!(A) is nonempty. Then there is an accepting
run r = s0; s1; : : : of A on some input word. Clearly, si+1 is directly connected to si
for all i � 0. Thus, sj is connected to si whenever i < j. Since r is accepting, somet 2 F occurs in r infinitely often; in particular, there are i; j, where 0 < i < j, such thatt = si = sj . Thus, t is connected to s0 2 S0 and t is also connected to itself. Conversely,
suppose that there are states s0 2 S0 and t 2 F such that t is connected to s0 and t is
connected to itself. Since t is connected to s0, there are a sequence of states s1; : : : ; sk and
a sequence of symbols a1; : : : ; ak such that sk = t and si 2 �(si�1; ai) for 1 � i � k.
Similarly, since t is connected to itself, there are a sequence of states t0; t1; : : : ; tl
and a sequence of symbols b1; : : : ; bl such that t0 = tk = t and ti 2 �(ti�1; bi) for
1 � i � l. Thus, (s0; s1; : : : ; sk�1)(t0; t1; : : : ; tl�1)! is an accepting run of A on(a1; : : : ; ak)(b1; : : : ; bl)!, so A is nonempty.

Thus, Büchi automata nonemptiness is also reducible to graph reachability.

1. A depth-first-search algorithm can construct a decomposition of the graph into
strongly connected components [CLR90].A is nonempty iff from a component that
intersectsS0 nontriviallyit is possible to reach a nontrivial component that intersectsF nontrivially. (A strongly connected component is nontrivial if it contains an edge,
which means, since it is strongly connected, that it contains a cycle).

2. The algorithm simply guesses a state s0 2 S0, then guesses a state s1 that is directly
connected to s0, then guesses a state s2 that is directly connected to s1, etc., until it
reaches a state t 2 F . At that point the algorithm remembers t and it continues to
move nondeterministically from a state s to a state s0 that is directly connected tos until it reaches t again. Clearly, the algorithm needs only a logarithmic memory,
since it needs to remember at most a description of three states at each step.



NLOGSPACE-hardness follows from NLOGSPACE-hardness of nonemptiness for
automata on finite words.

Proposition 14. [SVW87]

1. The nonuniversality problem for Büchi automata is decidable in exponential time.
2. The nonuniversality problem for Büchi automata is PSPACE-complete.

Proof: Again L!(A) 6= �! iff �! � L!(A) 6= ; iff L!(A) 6= ;, where A is the
complementary automaton of A (see Section 2.2). Thus, to test A for nonuniversality,
it suffices to test A for nonemptiness. Since A is exponentially bigger than A and
nonemptiness can be tested in linear time, it follows that nonuniversality can be tested in
exponential time. Also, since nonemptiness can be tested in nondeterministic logarithmic
space, nonuniversality can be tested in polynomial space. Again, the polynomial-space
algorithm constructs A “on-the-fly”.

PSPACE-hardness follows easily from the PSPACE-hardness of the universality
problem for automata on finite words [Wol82].

2.5 Automata on Finite Words – Alternation

Nondeterminism gives a computing device the power of existential choice. Its dual gives
a computing device the power of universal choice. (Compare this to the complexity
classes NP and co-NP [GJ79]). It is therefore natural to consider computing devices that
have the power of both existential choice and universal choice. Such devices are called
alternating. Alternation was studied in [CKS81] in the context of Turing machines
and in [BL80, CKS81] for finite automata. The alternation formalisms in [BL80] and
[CKS81] are different, though equivalent. We follow here the formalism of [BL80].

For a given set X, let B+(X) be the set of positive Boolean formulas over X (i.e.,
Boolean formulas built from elements in X using ^ and _), where we also allow the
formulas true and false. Let Y � X. We say that Y satisfies a formula � 2 B+(X)
if the truth assignment that assigns true to the members of Y and assigns false to the
members of X � Y satisfes �. For example, the sets fs1; s3g and fs1; s4g both satisfy
the formula (s1 _ s2) ^ (s3 _ s4), while the set fs1; s2g does not satisfy this formula.

Consider a nondeterministic automaton A = (�;S; S0; �; F ). The transition func-
tion � maps a state s 2 S and an input symbol a 2 � to a set of states. Each element
in this set is a possible nondeterministic choice for the automaton’s next state. We
can represent � using B+(S); for example, �(s; a) = fs1; s2; s3g can be written as�(s; a) = s1 _ s2 _ s3. In alternating automata, �(s; a) can be an arbitrary formula fromB+(S). We can have, for instance, a transition�(s; a) = (s1 ^ s2) _ (s3 ^ s4);
meaning that the automaton accepts the word aw, where a is a symbol and w is a word,
when it is in the state s, if it accepts the wordw from both s1 and s2 or from both s3 and



s4. Thus, such a transition combines the features of existential choice (the disjunction
in the formula) and universal choice (the conjunctions in the formula).

Formally, an alternating automaton is a tuple A = (�;S; s0; �; F ), where � is
a finite nonempty alphabet, S is a finite nonempty set of states, s0 2 S is the initial
state (notice that we have a unique initial state), F is a set of accepting states, and� : S �� ! B+(S) is a transition function.

Because of the universal choice in alternating transitions, a run of an alternating
automaton is a tree rather than a sequence. A tree is a (finite or infinite) connected
directed graph, with one node designated as the root and denoted by ", and in which
every non-root node has a unique parent (s is the parent of t and t is a child of s if there
is an edge from s to t) and the root " has no parent. The level of a node x, denoted jxj,
is its distance from the root "; in particular, j"j = 0. A branch � = x0; x1; : : : of a tree
is a maximal sequence of nodes such that x0 is the root " and xi is the parent of xi+1

for all i > 0. Note that � can be finite or infinite. A �-labeled tree, for a finite alphabet�, is a pair (�; T ), where � is a tree and T is a mapping from nodes(� ) to � that
assigns to every node of � a label in�. We often refer to T as the labeled tree. A branch� = x0; x1; : : : of T defines an infinite word T (�) = T (x0); T (x1); : : : consisting of
the sequence of labels along the branch.

Formally, a run ofA on a finite word w = a0; a1; : : : ; an�1 is a finite S-labeled treer such that r(") = s0 and the following holds:

if jxj = i < n, r(x) = s, and �(s; ai) = �, then x has k children x1; : : : ; xk,
for some k � jSj, and fr(x1); : : : ; r(xk)g satisfies �.

For example, if �(s0; a0) is (s1 _ s2)^ (s3 _ s4), then the nodes of the run tree at level 1
include the label s1 or the label s2 and also include the label s3 or the label s4. Note that
the depth of r (i.e., the maximal level of a node in r) is at most n, but not all branches
need to reach such depth, since if �(r(x); ai) = true, then x does not need to have
any children. On the other hand, if jxj = i < n and r(x) = s, then we cannot have�(s; ai) = false, since false is not satisfiable.

The run tree r is accepting if all nodes at depth n are labeled by states in F . Thus,
a branch in an accepting run has to hit the true transition or hit an accepting state after
reading all the input word.

What is the relationship between alternating automata and nondeterministic au-
tomata? It turns out that just as nondeterministic automata have the same expressive
power as deterministic automata but they are exponentially more succinct, alternating
automata have the same expressive power as nondeterministic automata but they are
exponentially more succinct.

We first show that alternating automata are at least as expressive and as succinct as
nondeterministic automata.

Proposition 15. [BL80, CKS81, Lei81] Let A be a nondeterministic automaton. Then
there is an alternating automatonAn such that L(Aa) = L(A).
Proof: Let A = (�;S; S0; �; F ). Then Aa = (�;S [ fs0g; s0; �a; F ), where s0 is a
new state, and �a is defined as follows, for b 2 � and s 2 S:

– �a(s0; b) = Wt2S0;t02�(t;b) t0,



– �a(s; b) = Wt2�(s;b) t.
(We take an empty disjunction in the definition of �a to be equivalent to false.) Es-
sentially, the transitions of A are viewed as disjunctions in Aa. A special treatment is
needed for the initial state, since we allow a set of initial states in nondeterministic
automata, but only a single initial state in alternating automata.

Note that Aa has essentially the same size as A; that is, the descriptions of Aa and A
have the same length.

We now show that alternating automata are not more expressive than nondetermin-
istic automata.

Proposition 16. [BL80, CKS81, Lei81] Let A be an alternating automaton. Then there
is a nondeterministic automatonAn such that L(An) = L(A).
Proof: Let A = (�;S; s0; �; F ). Then An = (�;Sn; ffs0gg; �n; Fn), where Sn = 2S ,Fn = 2F , and �n(T; a) = fT 0 jT 0 satisfies t̂2T �(t; a)g:
(We take an empty conjunction in the definition of �n to be equivalent to true; thus,; 2 �n(;; a).)

Intuitively,An guesses a run tree ofA. At a given point of a run ofAn, it keeps in its
memory a whole level of the run tree of A. As it reads the next input symbol, it guesses
the next level of the run tree of A.

The translation from alternating automata to nondeterministic automata involves an
exponential blow-up. As shown in [BL80, CKS81, Lei81], this blow-up is unavoidable.
For example, fix some n � 1, and let � = fa; bg. Let �n be the set of all words that
have two different symbols at distance n from each other. That is,�n = fuavbw ju;w 2 �� and v 2 �n�1g [ fubvaw ju;w 2 �� and v 2 �n�1g:
It is easy to see that �n is accepted by the nondeterministic automatonA = (�; fp; qg[f1; : : : ; ng��; fpg; �; fqg), where�(p; a) = fp; h1; aig,�(p; b) = fp; h1; big,�(ha; ii; x) =fha; i+ 1ig and �(hb; ii; x) = fhb; i+ 1ig for x 2 � and 0 < i < n, �(ha; ni; a) = ;,�(ha; ni; b) = fqg, �(hb; ni; b) = ;, �(hb; ni; a) = fqg, and �(q; x) = fqg for x 2 �.
Intuitively,A guesses a position in the input word, reads the input symbol at that position,
moves n positions to the right, and checks that it contains a different symbol. Note thatA
has 2n+ 2 states. By Propositions 15 and 17 (below), there is an alternating automatonAa with 2n+ 3 states that accepts the complementary language �n = �� � �n.

Suppose that we have a nondeterministic automatonAnd = (�;S; S0; �nd; F ) with
fewer than 2n states that accepts �n. Thus, An accepts all words ww, where w 2 �n.
Let s0w; : : : ; s2nw an accepting run of And on ww. Since jSj < 2n, there are two distinct
word u; v 2 �n such that snu = snv . Thus, s0u; : : : ; snu; sn+1v ; : : : ; s2nv is an accepting run
ofAnd on uv, but uv 62 �n since it must have two different symbols at distance n from
each other.

One advantage of alternating automata is that it is easy to complement them. We
first need to define the dual operation on formulas in B+(X). Intuitively, the dual � of a



formula � is obtained from � by switching_ and^, and by switching true and false. For
example, x _ (y ^ z) = x^ (y _ z). (Note that we are considering formulas in B+(X),
so we cannot simply apply negation to these formulas.) Formally, we define the dual
operation as follows:

– x = x, for x 2 X,
– true = false,
– false = true,
– (� ^ �) = (� _ �), and
– (� _ �) = (� ^ �).

Suppose now that we are given an alternating automaton A = (�;S; s0; �; F ).
Define A = (�;S; s0; �; S�F ), where �(s; a) = �(s; a) for all s 2 S and a 2 �. That
is, � is the dualized transition function.

Proposition 17. [BL80, CKS81, Lei81] Let A be an alternating automaton. ThenL(A) = �� � L(A).
By combining Propositions 11 and 16, we can obtain a nonemptiness test for alter-

nating automata.

Proposition 18. [CKS81]

1. The nonemptiness problem for alternating automata is decidable in exponential
time.

2. The nonemptiness problem for alternating automata is PSPACE-complete.

Proof: All that remains to be shown is the PSPACE-hardness of nonemptiness. Recall
that PSPACE-hardness of nonuniversality was shown in Proposition 12 by a generic
reduction. That is, there is a logarithmic-space algorithm that given a polynomial-space-
bounded Turing machine M and a word w outputs an automaton AM;w such that M
acceptsw iffAM;w is nonuniversal. By Proposition 15, there is an alternating automatonAa such thatL(Aa) = L(AM;w) andAa has the same size asAM;w. By Proposition 17,L(Aa) = �� � L(Aa). Thus, AM;w is nonuniversal iffAa is nonempty.

2.6 Automata on Infinite Words - Alternation

We saw earlier that a nondeterministicautomaton can be viewed both as an automaton on
finite words and as an automaton on infinite words. Similarly, an alternating automaton
can also be viewed as an automaton on infinite words, in which case it is called an
alternating Büchi automaton [MS87].

Let A = (�;S; s0; �; F ) be an alternating Büchi automaton. A run of A on an
infinite wordw = a0; a1; : : : is a (possibly infinite) S-labeled tree r such that r(") = s0

and the following holds:

if jxj = i, r(x) = s, and �(s; ai) = �, then x has k children x1; : : : ; xk, for
some k � jSj, and fr(x1); : : : ; r(xk)g satisfies �.



The run r is accepting if every infinite branch in r includes infinitely many labels in F .
Note that the run can also have finite branches; if jxj = i, r(x) = s, and �(s; ai) = true,
then x does not need to have any children.

We with alternating automata, alternating Büchi automata are as expressive as non-
deterministic Büchi automata. We first show that alternating automata are at least as
expressive and as succinct as nondeterministic automata. The proof of the following
proposition is identical to the proof of Proposition 19.

Proposition 19. [MS87] Let A be a nondeterministic Büchi automaton. Then there is
an alternating Büchi automatonAa such that L!(Aa) = L!(A).

As the reader may expect by now, alternating Büchi automata are not more expressive
than nondeterministic Büchi automata. The proof of this fact, however, is more involved
than the proof in the finite-word case.

Proposition 20. [MH84] Let A be an alternating Büchi automaton. Then there is a
nondeterministic Büchi automatonAn such that L!(An) = L!(A).
Proof: As in the finite-word case, An guesses a run of A. At a given point of a run ofAn, it keeps in its memory a whole level of the run ofA (which is a tree). As it reads the
next input symbol, it guesses the next level of the run tree of A. The nondeterministic
automaton, however, also has to keep information about occurrences of accepting states
in order to make sure that every infinite branch hits accepting states infinitely often. To
that end, An partitions every level of the run of A into two sets to distinguish between
branches that hit F recently and branches that did not hit F recently.

Let A = (�;S; s0; �; F ). Then An = (�;Sn; S0; �n; Fn), where Sn = 2S � 2S
(i.e., each state is a pair of sets of states of A), S0 = f(fs0g; ;)g (i.e., the single initial
state is pair consisting of the singleton set fs0g and the empty set), Fn = f;g� 2S, and

– for U 6= ;,�n((U; V ); a) = f(U 0; V 0) j there exist X;Y � S such thatX satisfies
Vt2U �(t; a);Y satisfies
Vt2V �(t; a);U 0 = X � F; and V 0 = Y [ (X \ F )g;

– �n((;; V ); a) = f(U 0; V 0) j there exists Y � S such thatY satisfies
Vt2V �(t; a);U 0 = Y � F; and V 0 = Y \Fg:

The proof that this construction is correct requires a careful analysis of accepting
runs ofA.

An important feature of this construction is that the blowup is exponential.
While complementation of alternating automata is easy (Proposition 17), this is not

the case for alternating Büchi automata. Here we run into the same difficulty that we ran
into in Section 2.2: not going infinitely often through accepting states is not the same as
going infinitely often through non-accepting states. >From Propositions 7, 19 and 20.



it follows that alternating Büchi automata are closed under complement, but the precise
complexity of complementation in this case is not known.

Finally, by combining Propositions 13 and 20, we can obtain a nonemptiness test
for alternating Büchi automata.

Proposition 21.

1. The nonemptiness problem for alternating Büchi automata is decidable in exponen-
tial time.

2. The nonemptiness problem for alternating Büchi automata is PSPACE-complete.

Proof: All that remains to be shown is the PSPACE-hardness of nonemptiness. We show
that the nonemptiness problem for alternating automata is reducible to the nonemptiness
problem for alternating Büchi automata. Let A = (�;S; s0; �; F ) be an alternating
automaton. Consider the alternating Büchi automaton A0 = (�;S; s0; �0; ;), where�0(s; a) = �(s; a) for s 2 S �F and a 2 �, and �0(s; a) = true for s 2 F and a 2 �.

We claim that L(A) 6= ; iff L!(A0) 6= ;. Suppose first that w 2 L(A) for somew 2 ��. Then there is an accepting run r of A on w. But then r is also an accepting
run of A0 on wu for all u 2 �! , because �0(s; a) = true for s 2 F and a 2 �, sowu 2 L!(A0). Suppose, on the other hand, that w 2 L!(A) for some w 2 �! . Then
there is an accepting run r of A0 on w. Since A0 has no accepting state, r cannot have
infinite branches, so by König’s Lemma it must be finite. Thus, there is a finite prefix u
of w such that r is an accepting run of A on u, so u 2 L(A).
3 Linear Temporal Logic and Automata on Infinite Words

Formulas of linear-time propositional temporal logic (LTL) are built from a set Prop
of atomic propositions and are closed under the application of Boolean connectives,
the unary temporal connective X (next), and the binary temporal connective U (until)
[Pnu77, GPSS80]. LTL is interpreted over computations. A computation is a function� : N ! 2Prop , which assigns truth values to the elements of Prop at each time instant
(natural number). For a computation � and a point i 2 !, we have that:

– �; i j= p for p 2 Prop iff p 2 �(i).
– �; i j= � ^  iff �; i j= � and �; i j=  .
– �; i j= :' iff not �; i j= '
– �; i j= X' iff �; i+ 1 j= '.
– �; i j= �U iff for some j � i, we have �; j j=  and for all k, i � k < j, we have�; k j= �.

Thus, the formula trueU', abbreviated as F', says that ' holds eventually, and
the formula :F:', abbreviated G', says that ' holds henceforth. For example, the
formula G(:request _ (requestUgrant)) says that whenever a request is made it holds
continuously until it is eventually granted. We will say that � satisfies a formula ',
denoted � j= ', iff �; 0 j= '.

Computations can also be viewed as infinite words over the alphabet 2Prop. We shall
see that the set of computations satisfying a given formula are exactly those accepted



by some finite automaton on infinite words. This fact was proven first in [SPH84]. The
proof there is by induction on structure of formulas. Unfortunately, certain inductive
steps involve an exponential blow-up (e.g., negation corresponds to complementation,
which we have seen to be exponential). As a result, the complexity of that translation
is nonelementary, i.e., it may involve an unbounded stack of exponentials (that is, the
complexity bound is of the form

2:::2n ;
where the height of the stack is n.)

The following theorem establishes a very simple translation between LTL and alter-
nating Büchi automata.

Theorem 22. [MSS88, Var94] Given an LTL formula ', one can build an alternating
Büchi automatonA' = (�;S; s0; �; F ), where � = 2Prop and jSj is in O(j'j), such
that L!(A') is exactly the set of computations satisfying the formula '.

Proof: The set S of states consists of all subformulas of' and their negation (we identify
the formula :: with  ). The initial state s0 is ' itself. The set F of accepting states
consists of all formulas in S of the form :(�U ). It remains to define the transition
function �.

In this construction, we use a variation of the notion of dual that we used in Sec-
tion 2.5. Here, the dual � of a formula is obtained from � by switching _ and ^,
by switching true and false, and, in addition, by negating subformulas in S, e.g.,:p_ (q ^Xq) is p ^ (:q _ :Xq). More formally,

– � = :�, for � 2 S,
– true = false,
– false = true,
– (� ^ �) = (� _ �), and
– (� _ �) = (� ^ �).

We can now define �:

– �(p; a) = true if p 2 a,
– �(p; a) = false if p 62 a,
– �(� ^  ; a) = �(�; a) ^ �( ; a),
– �(: ; a) = �( ; a),
– �(X ; a) =  ,
– �(�U ; a) = �( ; a) _ (�(�; a) ^ �U ).

Note that �( ; a) is defined by induction on the structure of  .
Consider now a run r of A'. It is easy to see that r can have two types of infinite

branches. Each infinite branch is labeled from some point on by a formula of the form�U or by a formula of the form :(�U ). Since �(:(�U ); a) = �( ; a) ^ (�(�; a) _:(�U )), an infinite branch labeled from some point by :(�U ) ensures that �U 
indeed fails at that point, since  fails from that point on. On the other hand, an infinite
branch labeled from some point by �U does not ensure that �U holds at that point,
since it does not ensure that  eventually holds. Thus, while we should allow infinite



branches labeled by :(�U ), we should not allow infinite branches labeled by �U .
This is why we defined F to consists of all formulas in S of the form :(�U ).
Example 1. Consider the formula ' = (X:p)Uq. The alternating Büchi automaton
associated with ' is A' = (2fp;qg; f';:';X:p;:X:p;:p; p; q;:qg; '; �;f:'g),
where � is described in the following table.s �(s; fp; qg) �(s; fpg) �(s; fqg) �(s; ;)' true :p^ ' true :p ^ ':' false p _ :' false p _ :'X:p :p :p :p :p:X:p p p p p:p false false true truep true true false falseq true false true false:q false true false true

In the state ', if q does not hold in the present state, then A' requires bothX:p to
be satisfied in the present state (that is, :p has to be satisfied in next state), and ' to be
satisfied in the next state. As ' 62 F , A' should eventually reach a state that satisfies q.
Note that many of the states, e.g., the subformulas X:p and q, are not reachable; i.e.,
they do not appear in any run of A'.

By applying Proposition 20, we now get:

Corollary 23. [VW94] Given an LTL formula ', one can build a Büchi automatonA' = (�;S; S0; �; F ), where � = 2Prop and jSj is in 2O(j'j), such that L!(A') is
exactly the set of computations satisfying the formula '.

The proof of Corollary 23 in [VW94] is direct and does not go through alternating
Büchi automata. The advantage of the proof here is that it separates the logic from
the combinatorics. Theorem 22 handles the logic, while Proposition 20 handles the
combinatorics.

Example 2. Consider the formula ' = FGp, which requires p to hold from some point
on. The Büchi automaton associated with ' is A' = (2fpg; f0; 1g; f0g; �; f1g), where� is described in the following table.s �(s; fpg) �(s; ;)

0 f0,1g f0g
1 f1g ;

The automatonA' can stay forever in the state 0. Upon reading p, however, A' can
choose to go to the state 1. Once A' has made that transition, it has to keep reading p,
otherwise it rejects. Note that A' has to make the transition to the state 1 at some point,
since the state 0 is not accepting. Thus, A' accepts precisely when p holds from some
point on.



4 Applications

4.1 Satisfiability

An LTL formula ' is satisfiable if there is some computation � such that � j= '. An
unsatisfiable formula is uninteresting as a specification, so unsatisfiability most likely
indicates an erroneous specification. The satisfiability problem for LTL is to decide,
given an LTL formula ', whether ' is satisfiable.

Theorem 24. [SC85] The satisfiability problem for LTL is PSPACE-complete.

Proof: By Corollary 23, given an LTL formula ', we can construct a Büchi automatonA', whose size is exponential in the length of ', that accepts precisely the computations
that satisfy '. Thus, ' is satisfiable iff A' is nonempty. This reduces the satisfiability
problem to the nonemptiness problem. Since nonemptiness of Büchi automata can
be tested in nondeterministic logarithmic space (Proposition 13) and since A' is of
exponential size, we get a polynomial-space algorithm (again, the algorithm constructsA' “on-the-fly”).

To prove PSPACE-hardness, it can be shown that any PSPACE-hard problem can be
reduced to the satisfiability problem. That is, there is a logarithmic-space algorithm that
given a polynomial-space-bounded Turing machine M and a word w outputs an LTL
formula 'M;w such that M accepts w iff 'M;w is satisfiable.

An LTL formula ' is valid if for every computation � we have that � j= '. A
valid formula is also uninteresting as a specification. The validity problem for LTL is to
decide, given an LTL formula ', whether ' is valid. It is easy to see that ' is valid iff:' is not satisfiable. Thus, the validity problem for LTL is also PSPACE-complete.

4.2 Verification

We focus here on finite-state programs, i.e., programs in which the variables range over
finite domains. The significance of this class follows from the fact that a significant
number of the communication and synchronization protocols studied in the literature
are in essence finite-state programs [Liu89, Rud87]. Since each state is characterized
by a finite amount of information, this information can be described by certain atomic
propositions. This means that a finite-state program can be specified using propositional
temporal logic. Thus, we assume that we are given a finite-state program and an LTL
formula that specifies the legal computations of the program. The problem is to check
whether all computations of the program are legal. Before going further, let us define
these notions more precisely.

A finite-state program over a set Prop of atomic propositions is a structure of the
form P = (W;w0; R; V ), where W is a finite set of states, w0 2 W is the initial state,R � W 2 is a total accessibility relation, and V : W ! 2Prop assigns truth values
to propositions in Prop for each state in W . The intuition is that W describes all the
states that the program could be in (where a state includes the content of the memory,
registers, buffers, location counter, etc.),R describes all the possible transitions between
states (allowing for nondeterminism), and V relates the states to the propositions (e.g.,
it tells us in what states the proposition request is true). The assumption that R is total



(i.e., that every state has a child) is for technical convenience. We can view a terminated
execution as repeating forever its last state.

Let u be an infinite sequence u0; u1 : : : of states in W such that u0 = w0, anduiRui+1 for all i � 0. Then the sequence V (u0); V (u1) : : : is a computation of P . We
say thatP satisfies an LTL formula' if all computations of P satisfy '. The verification
problem is to check whether P satisfies '.

The complexity of the verification problem can be measured in three different
ways. First, one can fix the specification ' and measure the complexity with respect to
the size of the program. We call this measure the program-complexity measure. More
precisely, the program complexity of the verification problem is the complexity of the
sets fP jP satisfies 'g for a fixed '. Secondly, one can fix the program P and measure
the complexity with respect to the size of the specification. We call this measure the
specification-complexity measure. More precisely, the specification complexity of the
verification problem is the complexity of the sets f' jP satisfies 'g for a fixed P .
Finally, the complexity in the combined size of the program and the specification is the
combined complexity.

Let C be a complexity class. We say that the program complexity of the verification
problem is in C if fP jP satisfies 'g 2 C for any formula '. We say that the program
complexity of the verification problem is hard for C if fP jP satisfies 'g is hard forC for some formula '. We say that the program complexity of the verification problem
is complete for C if it is in C and is hard for C. Similarly, we say that the specification
complexity of the verification problem is inC if f' jP satisfies 'g 2 C for any programP , we say that the specification complexity of the verification problem is hard for C iff' jP satisfies 'g is hard for C for some program P , and we say that the specification
complexity of the verification problem is complete for C if it is in C and is hard for C.

We now describe the automata-theoretic approach to the verification problem. A
finite-state program P = (W;w0; R; V ) can be viewed as a Büchi automaton AP =(�;W; fw0g; �;W ), where � = 2Prop and s0 2 �(s; a) iff (s; s0) 2 R and a = V (s).
As this automaton has a set of accepting states equal to the whole set of states, any
infinite run of the automaton is accepting. Thus, L!(AP ) is the set of computations ofP .

Hence, for a finite-state program P and an LTL formula ', the verification problem
is to verify that all infinite words accepted by the automaton AP satisfy the formula '.
By Corollary 23, we know that we can build a Büchi automatonA' that accepts exactly
the computations satisfying the formula '. The verification problem thus reduces to the
automata-theoretic problem of checking that all computations accepted by the automatonAP are also accepted by the automaton A', that is L!(AP ) � L!(A'). Equivalently,
we need to check that the automaton that accepts L!(AP ) \ L!(A') is empty, whereL!(A') = L!(A') = �! � L!(A'):

First, note that, by Corollary 23, L!(A') = L!(A:') and the automaton A:' has
2O(j'j) states. (A straightforward approach, starting with the automaton A' and then
using Proposition 7 to complement it, would result in a doubly exponential blow-up.)
To get the intersection of the two automata, we use Proposition 6. Consequently, we
can build an automaton forL!(AP )\L!(A:') having jW j � 2O(j'j) states. We need to
check this automaton for emptiness. Using Proposition 13, we get the following results.



Theorem 25. [LP85, SC85, VW86]

1. The program complexity of the verification problem is complete for NLOGSPACE.
2. The specification complexity of the verification problem is complete for PSPACE.
3. Checking whether a finite-state program P satisfies an LTL formula ' can be done

in time O(jP j � 2O(j'j)) or in space O((j'j+ log jP j)2).
We note that a time upper bound that is polynomial in the size of the program and

exponential in the size of the specification is considered here to be reasonable, since the
specification is usually rather short [LP85]. For a practical verification algorithm that is
based on the automata-theoretic approach see [CVWY92].

4.3 Synthesis

In the previous section we dealt with verification: we are given a finite-state program
and an LTL specification and we have to verify that the program meets the specification.
A frequent criticism against this approach, however, is that verification is done after sig-
nificant resources have already been invested in the development of the program. Since
programs invariably contain errors, verification simply becomes part of the debugging
process. The critics argue that the desired goal is to use the specification in the program
development process in order to guarantee the design of correct programs. This is called
program synthesis. It turns out that to solve the program-synthesis problem we need to
use automata on infinite trees.

Rabin Tree Automata Rabin tree automata run on infinite labeled trees witha uniform
branching degree (recall the definition of labeled trees in Section 2.5). The (infinite) k-
ary tree �k is the set f1; : : : ; kg�, i.e., the set of all finite sequences over f1; : : : ; kg.
The elements of �k are the nodes of the tree. If x and xi are nodes of �k, then there is an
edge from x to xi, i.e., x is the parent of xi and xi is the child of x. The empty sequence" is the root of �k. A branch � = x0; x1; : : : of �k is an infinite sequence of nodes such
that x0 = ", and xi is the parent of xi+1 for all i � 0. A �-labeled k-ary tree T , for a
finite alphabet �, is a mapping T : �k ! � that assigns to every node a label. We often
refer to labeled trees as trees; the intention will be clear from the context. A branch� = x0; x1; : : : of T defines an infinite word T (�) = T (x0); T (x1); : : : consisting of
the sequence of labels along the branch.

A k-ary Rabin tree automaton A is a tuple (�;S; S0; �;G), where � is a finite
alphabet, S is a finite set of states, S0 � S is a set of initial states, G � 2S � 2S
is a Rabin condition, and � : S � � ! 2Sk is a transition function. The automatonA takes as input �-labeled k-ary trees. Note that �(s; a) is a set of k-tuples for each
state s and symbol a. Intuitively, when the automaton is in state s and it is reading a
node x, it nondeterministically chooses a k-tuple hs1; : : : ; ski in �(s; T (x)) and then
makes k copies of itself and moves to the node xi in the state si for i = 1; : : : ; k. A
run r : �k ! S of A on a �-labeled k-ary tree T is an S-labeled k-ary tree such that
the root is labeled by an initial state and the transitions obey the transition function �;
that is, r(") 2 S0 , and for each node x we have hr(x1); : : : ; r(xk)i 2 �(r(x); T (x)).
The run is accepting if r(�) satisfies G for every branch � = x0; x1; : : : of �k. That is,



for every branch � = x0; x1; : : :, there is some pair (L;U ) 2 G such that r(xi) 2 L
for infinitely many i’s, but r(xi) 2 U for only finitely many i’s. Note that different
branches might be satisfied by different pairs inG. The language ofA, denotedL!(A),
is the set of trees accepted by A. It is easy to see that Rabin automata on infinite words
are essentially 1-ary Rabin tree automata.

The nonemptiness problem for Rabin tree automata is to decide, given a Rabin
tree automaton A, whether L!(A) is nonempty. Unlike the nonemptiness problem for
automata on finite and infinite words, the nonemptiness problem for tree automata is
highly nontrivial. It was shown to be decidable in [Rab69], but the algorithm there had
nonelementary time complexity; i.e., its time complexity could not be bounded by any
fixed stack of exponential functions. Later on, elementary algorithms were described
in [HR72, Rab72]. The algorithm in [HR72] runs in doubly exponential time and the
algorithm in [Rab72] runs in exponential time. Several years later, in [Eme85, VS85],
it was shown that the nonemptiness problem for Rabin tree automata is in NP. Finally,
in [EJ88], it was shown that the problem is NP-complete.

There are two relevant size parameters for Rabin tree automata. The first is the
transition size, which is size of the transition function (i.e., the sum of the sizes of the
sets j�(s; a)j for s 2 S and a 2 �); the transition size clearly takes into account the the
number of states in S. The second is the number of pairs in the acceptance conditionG.
For our application here we need a complexity analysis of the nonemptiness problem
that takes into account separately the two parameters.

Proposition 26. [EJ88, PR89] For Rabin tree automata with transition size m and n
pairs, the nonemptiness problem can be solved in time (mn)O(n).
In other words, the nonemptiness problem for Rabin tree automata can be solved in time
that is exponential in the number of pairs but polynomial in the transition size. As we
will see, this distinction is quite significant.

Realizability The classical approach to program synthesis is to extract a program from
a proof that the specification is satisfiable. In [EC82, MW84], it is shown how to extract
programs from (finite representations of) models of the specification. In the late 1980s,
several researchers realized that the classical approach is well suited to closed systems,
but not to open systems [Dil89, PR89, ALW89]. In open systems the program interacts
with the environment; such programs are called reactive programs [HP85]. A correct
reactive program should be able to handle arbitrary actions of the environment. If one
applies the techniques of [EC82, MW84] to reactive programs, one obtains programs
that can handle only certain actions of the environment. In [PR89, ALW89, Dil89], it is
argued that the right way to approach synthesis of reactive programs is to consider the
situation as an infinite game between the environment and the program.

We are given a finite set W of states and a valuation V : W ! 2Prop. The intuition
is that W describes all the observable states that the system can be in. (We will see
later why the emphasis here on observability.) A behavior r over W is an infinite word
over the alphabet W . The intended meaning is that the behavior w0; w1; : : : describes a
sequence of states that the system goes through, where the transition from wi�1 to wi
was caused by the environment when i is odd and by the program when i is even. That is,



the program makes the first move (into the first state), the environment responds with the
second move, the program counters with the third move, and so on. We associate withr the computation V (r) = V (w0); V (w1); : : :, and say that r satisfies an LTL formula' if V (r) satisfies '. The goal of the program is to satisfy the specification ' in the
face of every possible move by the environment. The program has no control over the
environment moves; it only controls its own moves. Thus, the situation can be viewed
as an infinite game between the environment and the program, where the goal of the
program is to satisfy the specification '. Infinite games were introduced in [GS53] and
they are of fundamental importance in descriptive set theory [Mos80].

Histories are finite words in W �. The history of a run r = w0; w1; : : : at the even
point i � 0, denoted hist(r; i), is the finite word w1; w3; : : : ; wi�1 consisting of all
states moved to by the environment; the history is the empty sequence " for i = 0.
A program is a function f : W � ! W from histories to states. The idea is that if
the program is scheduled at a point at which the history is h, then the program will
cause a change into the state f(h). This captures the intuition that the program acts in
reaction to the environment’s actions. A behavior r over W is a run of the program f ifsi = f(hist(r; i)) for all even i. That is, all the state transitions caused by the program
are consistent with the program f . A program f satisfies the specification ' if every
run of f over W satisfies '. Thus, a correct program can be then viewed as a winning
strategy in the game against the environment. We say that ' is realizable with respect
toW and V if there is a program f that satisfies ', in which case we say that f realizes'. (In the sequel, we often omit explicit mention of W and V when it is clear from the
context.) It turns out that satisfiability of ' is not sufficient to guarantee realizability of'.

Example 3. Consider the case where Prop = fpg, W = f0; 1g, V (0) = ;, andV (1) = fpg. Consider the formula Gp. This formula requires that p always be true,
and it is clearly satisfiable. There is no way, however, for the program to enforce this
requirement, since the environment can always moves to the state 0, making p false.
Thus, Gp is not realizable. On the other hand, the formula GFp, which requires p to
hold infinitely often, is realizable; in fact, it is realized by the simple program that maps
every history to the state 1. This shows that realizability is a stronger requirement than
satisfiability.

Consider now the specification '. By Corollary 23, we can build a Büchi automatonA' = (�;S; S0; �; F ), where � = 2Prop and jSj is in 2O(j'j), such that L!(A') is
exactly the set of computations satisfying the formula '. Thus, given a state set W
and a valuation V : W ! 2Prop, we can also construct a Büchi automaton A0' =(W;S; S0; �0; F ) such that L!(A0') is exactly the set of behaviors satisfying the formula', by simply taking �0(s; w) = �(s; V (w)). It follows that we can assume without loss
of generality that the winning condition for the game between the environment and the
program is expressed by a Büchi automaton A: the program f wins the game if every
run of f is accepted by A. We thus say that the program f realizes a Büchi automatonA if all its runs are accepted by A. We also say then that A is realizable.

It turns out that the realizability problem for Büchi automata is essentially the solv-
ability problem described in [Chu63]. (The winning condition in [Chu63] is expressed



in S1S, the monadic second-order theory of one successor function, but it is known
[Büc62] that S1S sentences can be translated to Büchi automata.) The solvability prob-
lem was studied in [BL69, Rab72]. It is shown in [Rab72] that this problem can be
solved by using Rabin tree automata.

Consider a program f : W � ! W . Suppose without loss of generality that W =f1; : : : ; kg, for some k > 0. The program f can be represented by a W -labeled k-ary
tree Tf . Consider a node x = i0i1 : : : im, where 1 � ij � k for j = 0; : : : ;m. We note
that x is a history in W �, and define Tf (x) = f(x). Conversely, a W -labeled k-ary
tree T defines a program fT . Consider a history h = i0i1 : : : im, where 1 � ij � k
for j = 0; : : : ;m. We note that h is a node of �k, and define fT (h) = T (h). Thus,W -labeled k-ary trees can be viewed as programs.

It is not hard to see that the runs of f correspond to the branches of Tf . Let� = x0; x1; : : : be a branch, where x0 = " and xj = xj�1ij�1 for j > 0. Thenr = T (x0); i0; T (x1); i1; T (x2); : : : is a run of f , denoted r(�). Conversely, if r =i0; i1; : : : is a run of f , then Tf contains a branch �(r) = x0; x1; : : :, where x0 = ",xj = xj�1i2j+1, and T (xj) = i2j for j � 0. One way to visualize this is to think of the
edge from the parent x to its child xi as labeled by i. Thus, the run r(�) is the sequence
of edge and node labels along �.

We thus refer to the behaviors r(�) for branches � of a W -labeled k-ary tree T as
the runs of T , and we say that T realizes a Büchi automaton A if all the runs of T are
accepted by A. We have thus obtained the following:

Proposition 27. A program f realizes a Büchi automatonA iff the tree Tf realizes A.

We have thus reduced the realizability problem for LTL specifications to an automata-
theoretic problem: given a Büchi automaton A, decide if there is a tree T that realizesA. Our next step is to reduce this problem to the nonemptiness problem for Rabin tree
automata. We will construct a Rabin automaton B that accepts precisely the trees that
realize A. Thus, L!(B) 6= ; iff there is a tree that realizes A.

Theorem 28. Given a Büchi automaton A with n states over an alphabet W =f1; : : : ; kg, we can construct a k-ary Rabin tree automaton B with transition sizek2O(n logn) and O(n) pairs such that L!(B) is precisely the set of trees that realize A.

Proof: Consider an input tree T . The Rabin tree automaton B needs to verify that for
every branch � of T we have that r(�) 2 L!(A). Thus, B needs to “run A in parallel”
on all branches of T . We first need to deal with the fact that the labels in T contain
information only about the actions of f (while the information on the actions of the
environment is implicit in the edges). Suppose thatA = (W;S; S0; �; F ). We first define
a Büchi automaton A0 that emulates A by reading pairs of input symbols at a time. LetA0 = (W 2; S � f0; 1g; S0 � f0g; �0; S � f1g), where�0(s; ha; bi) = fht; 0i j t 2 �(s0; b)� F for some s0 2 �(s; a)� Fg [fht; 1i j t 2 �(s0; b) for some s0 2 �(s; a) \ Fg [fht; 1i j t 2 �(s0; b) \ F for some s0 2 �(s; a)g:



Intuitively, �0 applies two transitions of A while remembering whether either transition
visited F . Note that this construction doubles the number of states. It is easy to prove
the following claim:
Claim: A0 accepts the infinite word hw0; w1i; hw2; w3i; : : : over the alphabet W 2 iff A
accepts the infinite word w0; w1; w2; w3; : : : over W .

In order to be able to run A0 in parallel on all branches, we apply Proposition 10
to A0 and obtain a deterministic Rabin automaton Ad such that L!(Ad) = L!(A0).
As commented in Section 2.2, Ad has 2O(n logn) states and O(n) pairs. Let Ad =(W 2; Q; fq0g; �; G).

We can now construct a Rabin tree automaton that “runs Ad in parallel” on all
branches of T . Let B = (W;Q; fq0g; �0; G), where �0 is defined as follows:�0(q; a) = �(q; ha; 1i)� � � ��(q; ha; ki):
Intuitively, B emulates Ad by feeding it pairs consisting of a node label and an edge
label. Note that if �(q; ha; ii) = ; for some 1 � i � k, then �0(q; a) = ;.
Claim: L!(B) is precisely the set of trees that realize A.

It remains to analyze the size of A. It is clear that it has 2O(n logn) states and O(n)
pairs. Since it is deterministic, its transition size is k2O(n logn).

We can now apply Proposition 26 to solve the realizability problem.

Theorem 29. [ALW89, PR89] The realizability problem for Büchi automata can be
solved in exponential time.

Proof: By Theorem 28, given a Büchi automaton A with n states over an alphabetW = f1; : : : ; kg, we can construct a k-ary Rabin tree automaton B with transition sizek2O(n logn) and and O(n) pairs such that L!(B) is precisely the set of trees that realizeA. By Proposition 26, we can test the nonemptiness of B in time kO(n)2O(n2 logn).
Corollary 30. [PR89] The realizability problem for LTL can be solved in doubly expo-
nential time.

Proof: By Corollary 23, given an LTL formula ', one can build a Büchi automatonA'
with 2O(j'j) states such that L!(A') is exactly the set of computations satisfying the
formula '. By combining this with the bound of Theorem 29, we get a time bound ofk2O(j'j)

.

In [PR89], it is shown that the doubly exponential time bound of Corollary 30 is essen-
tially optimal. Thus, while the realizability problem for LTL is decidable, in the worst
case it can be highly intractable.

Example 4. Consider again the situation where Prop = fpg, W = f0; 1g, V (0) = ;,
and V (1) = fpg. Let ' be the formulaGp. We have A' = (W; f1g; f1g; �;W ), where�(1; 1) = f1g, and all other transitions are empty (e.g., �(1; 0) = ;, etc.). Note thatA' is deterministic. We can emulate A' by an automaton that reads pairs of symbols:A0' = (W 2;W � f0; 1g; fh1; 0ig; �0;W � f1g), where �(h1; 0i; h1; 1i) = fh1; 1ig,
and all other transitions are empty. Finally, we construct the Rabin tree automaton



B = (W;W � f0; 1g; h1; 0i; �0; (L;U )), where �0(s; a) is empty for all states s and
symbol a. Clearly, L!(B) = ;, which implies that Gp is not realizable.

We note that Corollary 30 only tells us how to decide whether an LTL formula is
realizable or not. It is shown in [PR89], however, that the algorithm of Proposition 26 can
provide more than just a “yes/no” answer. When the Rabin automaton B is nonempty,
the algorithm returns a finite representation of an infinite tree accepted byB. It turns out
that this representation can be converted into a program f that realizes the specification.
It even turns out that this program is a finite-state program. This means that there are
a finite set N , a function g : W � ! N , a function �1 : N �W ! N , and a function�2 : N !W such that for all h 2W � and w 2 W we have:

– f(h) = �2(g(h))
– g(hw) = �1(g(h); w)

Thus, instead of remembering the history h (which requires an unbounded memory),
the program needs only to remember g(h). It performs its action �1(h) and, when it
sees the environment’s action w, it updates its memory to �2(g(h); w). Note that this
“memory” is internal to the program and is not pertinent to the specification. This is in
contrast to the observable states inW that are pertinent to the specification.
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