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Univeristy of Southampton, UK

Bisimulation, Games & Hennessy Milner logic – p.1/32

Classical language theory

Is concerned primarily with languages, eg.

finite automata ↔ regular languages;

pushdown automata ↔ context-free languages;

turing machines ↔ recursively enumerable languages;

This is fine when we think of an automaton/TM as a
sequential process which has no interactions with the
outside world during its computation.

However, automata which accept the same languages can

behave very differently to an outside observer.
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The famous coffee machine example

Caffè

Bevanda 
al gusto 
di tè al 
limone

Inserire soldi
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We will discuss the observations one can make about such

systems.
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Labelled transition systems

A labelled transition system (LTS) L is a triple 〈S,A, T 〉
where:

S is a set of states ;

A is a set of actions ;

T ⊆ S × A× S is the transition relation .

We will normally write p
a−→ p′ for (p, a, p′) ∈ T .

Labelled transition systems generalise both automata and

trees. They are a central abstraction of concurrency theory.
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Trace preorder

Given a state p of an LTS L, the word σ = α1α2 . . . αk ∈ A∗ is
a trace of p when ∃ transitions

p
α1−→ p1

α2−→ . . . pk−1
αk−→ p′

We will use p
σ−→ p′ as shorthand.

Suppose that L1 and L2 are LTSs. The trace preorder
≤tr⊂ S1 × S2 is defined as follows:

p ≤tr q ⇔ ∀σ ∈ A∗. p σ−→ p′ ⇒ ∃q′. q σ−→ q′

Observation 1. ≤tr is reflexive and transitive.
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Trace equivalence

Trace equivalence is defined ∼tr=≤tr ∩ ≥tr, ie

p ∼tr q
def
= p ≤tr q ∧ q ≥tr p

It is immediate that when L1 = L2, ∼tr is an equivalence
relation on the states of an LTS

But traces are not enough: trace equivalence is very
coarse, since the coffee machines have the same traces.
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Simulation

Suppose that L1 and L2 are LTSs. A relation R ⊆ SL1
× SL2

is called a simulation whenever:

if pRq and p
a−→ p′ then there exists q′ such that q a−→ q′

and p′Rq′.

Observation 2. The empty relation is a simulation and arbitrary unions
of simulations are simulations.

Similarity ≤s⊆ S1 × S2 is defined as the largest simulation.
Equivalently, p ≤s q iff there exists a simulation R such that
(p, q) ∈ R.
Observation 3. Similarity is reflexive and transitive.

Observation 4. Simulation equivalence ∼s
def
=≤s ∩ ≥s.
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Simulation example 1

Simulation is more sensitive to branching (ie
non-determinism) than traces:
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Simulation example 2

But it is not entirely satisfactory.

p
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Bisimulation

Suppose that L1 and L2 are LTSs. A relation R ⊆ SL1
× SL2

is called a bisimulation whenever:

(i) if pRq and p
a−→ p′ then there exists q′ such that q a−→ q′

and p′Rq′;

(ii) if qRp and q
a−→ q′ then there exists p′ such that p a−→ p′

and p′Rq′.

Lemma 5. R is a bisimulation iff R and Rop are simulations.
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Properties of bisimulations

Lemma 6. ∅ is a bisimulation.

Proof. Vacously true.

Lemma 7. If {Ri}i∈I are a family of bisimulations then
⋃

i∈I Ri is a
bisimulation.

Proof. Let R =
⋃

i∈I Ri. Suppose pRq then there exists k such that
pRkq. In particular, qRkp and so qRp, thus R is symmetric.

If p
a−→ p′ then there exists q′ such that q

a−→ q′ and p′Rkq
′. But p′Rkq

′

implies p′Rq′.

Corollary 8. There exists a largest bisimulation ∼. It is called
bisimilarity.

If L1 = L2 then bisimilarity is an equivalence relation.
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Examples of bisimulations, 1
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Lemma 9. p ∼ q1.

Proof. R = { (p, qi) | i ∈ N } is a bisimulation.
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Examples of bisimulations, 2
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Reasoning about bisimilarity

To show that states p, q are bisimilar it suffices to find a
bisimulaion R which relates p and q;

It is less clear how to show that p and q are not
bisimilar, one can:

enumerate all the relations which contain (p, q) and
show that none of them are bisimulations;
enumerate all the bisimulation and show that none of
them contain (p, q);
borrow some techiniques from game theory...
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Bisimulation game, 1

We are given two LTSs L1, L2. The configuration is a pair of
states (p, q), p ∈ L1, q ∈ L2. The bisimulation game has two
players: P and R. A round of the game proceeds as
follows:

(i) R chooses either p or q;

(ii) assuming it chose p, it next chooses a transition p
a−→ p′;

(iii) P must choose a transition with the same label in the
other LTS, ie assuming R chose p, it must find a
transition q

a−→ q′;

(iv) the round is repeated, replacing (p, q) with (p′, q′).
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Bisimulation game, 2

Rules: An infinite game is a win for P. R wins iff the game
gets into a round where P cannot respond with a transition
in step (iii).

Observation 10. For each configuration (p, q), either P or R has a
winning strategy.

Theorem 11. p ∼ q iff P has a winning strategy. (p ≁ q iff R has a
winning strategy.)
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P has a winning strategy⇒ p ∼ q

Let GE
def
= { (p, q) | P has a winning strategy }.

Suppose that (p, q) ∈ GE and p
a−→ p′. Suppose that there

does not exist a transition q
a−→ q′ such that (p′, q′) ∈ GE.

Then R can choose the transition p
a−→ p′ and P cannot re-

spond in a way which keeps him in a winnable position. But

this contradicts the fact that that P has a winning strategy

for the game starting with (p, q). Thus GE is a bisimulation.
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p ∼ q ⇒ P has a winning strategy

Bisimulations are winning strategies:

If p ∼ q then there exists a bisimulation R such that (p, q) ∈ R.

Whatever move R makes, P can always make a move such

that the result is in R. Clearly, this is a winning strategy for

P .
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Examples of non bisimilar states

Bisimilarity is branching-sensitive.
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Similarity and bisimilarity

Theorem 12. ∼⊂≤ ∩ ≥ and in general the inclusion is strict.

Proof. Any bisimulation and its opposite are clearly simulations. On the
other hand, the following example shows that bisimilarity is finer than
simulation equivalence.
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Recap: equivalences

∼ ⊂ ∼s ⊂ ∼tr

Bisimilarity is the finest (=equates less) equivalence we
have considered.
Claim 13. Bisimilarity is the finest “reasonable” equivalence, where
“reasonable” means that we can observe only the behaviour and not the
state-space.

We will give a language, the so-called Hennessy Milner
logic, which describes observations/experiments on LTSs.
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Hennessy Milner logic

Suppose that A is a set of actions. Let

L ::= [a]L | 〈a〉L | ¬L | L ∨ L | L ∧ L | ⊤ | ⊥

Given an LTS we define the semantics by structural
induction over the formula ϕ:

q � [A]ϕ if for all q′ such that q a−→ q′ we have q′ � ϕ;

q � 〈A〉ϕ if there exists q′ such that q a−→ q′ and q′ � ϕ;

q � ¬ϕ if it is not the case that q � ϕ;

q � ϕ1 ∨ ϕ2 if q � ϕ1 or q � ϕ2;

q � ϕ1 ∧ ϕ2 if q � ϕ1 and q � ϕ2;

q � ⊤ always;

q � ⊥ never;
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HM logic example formulas

〈a〉⊤ – can perform a transition labelled with a;

[a]⊥ – cannot perform a transition labelled with a;

〈a〉[b]⊥ – can perform a transition labelled with a to a
state from which there are no b labelled transitions.

〈a〉([b]⊥ ∧ 〈c〉⊤) – ?
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Basic properties of HM logic

Lemma 14 (“De Morgan” laws for HM logic).

[a] = ¬〈a〉¬;

〈a〉 = ¬[a]¬;

∧ = ¬(¬ ∨ ¬);
∨ = ¬(¬ ∧ ¬);
⊤ = ¬⊥;

⊥ = ¬⊤.

In particular, to get the full logic it suffices to consider just the

subsets {〈a〉,∨,⊥,¬} or {[a],∧,⊤,¬} or {〈a〉, [a],∨,∧,⊤,⊥}.
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Distinguishing formulas

p
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� 〈a〉(〈b〉 ∧ 〈c〉) 2 〈a〉(〈b〉 ∧ 〈c〉)
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2 〈a〉(¬〈b〉) � 〈a〉(¬〈b〉)
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Logical equivalence

Definition 15. The logical preorder ≤L is a relation on the states of an
LTS defined as follows:

p <L q iff ∀ϕ. p � ϕ ⇒ q � ϕ

It is clearly reflexive and transitive.

Definition 16. Logical equivalence is ∼L
def
=≤L ∩ ≥L. It is an

equivalence relation.

Observation 17. Actually, for HM, ≤L=∼L=≥L. This is a
consequence of having negation.

Proof. Suppose p ≤L q and q � ϕ. If p 2 ϕ then p � ¬ϕ, hence
q ⊢ ¬ϕ hence q 2 ϕ, a contradiction. Hence p � ϕ.
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Hennessy Milner & Bisimulation

Definition 18. An LTS is said to have finite image when from any state,
the number of states reachable is finite.

Theorem 19 (Hennessy Milner). Let L be an LTS with finite image.
Then ∼L=∼.

To prove this, we need to show:

Soundness (∼L⊆∼): If two states satisfy the same
formulas then they are bisimilar.

Completeness (∼⊆∼L): If two states are bisimilar then
they satisfy the same formulas.

Remark 20. Completeness holds in general. The finite image
assumption is needed only for soundness.
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Soundness

∼L⊆∼ (Soundness)
It suffices to show that ∼L is a bisimulation. We will rely on
image finiteness.

Suppose that p ∼L q and p
a−→ p′. Then p � 〈a〉⊤ and so

q � 〈a〉⊤ – thus there is at least one q′ such that q a−→ q′. The

set of all such q′ is also finite by the extra assumption – let

this set be {q1, . . . , qk}. Suppose that for all qi we have that

p′ ≁L qi. Then ∃ϕi such that p′ � ϕi and qi 2 ϕi. Thus while

p � 〈a〉∧i≤k ϕi we must have q 2 〈a〉∧i≤k ϕi, a contradiction.

Hence there exists qi such that q a−→ qi and p′ ∼L qi.
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Completeness 1

∼⊆∼L (Completeness)
We will show this p <L q by structural induction on formulas.
Base: p � ⊤ then q � ⊤. Also, p � ⊥ then q � ⊥.
Induction:

Modalities (〈a〉 and [a]):

If p � 〈a〉ϕ then p
a−→ p′ and p′ � ϕ. By assumption,

there exists q′ such that q a−→ q′ and p′ ∼ q′. By
inductive hypothesis q′ � ϕ and so q � 〈a〉ϕ.

If p � [a]ϕ then whenever p a−→ p′ then p′ � ϕ. First,
notice that p ∼ q implies that if q a−→ q′ then there
exists p′ such that p a−→ p′ with p′ ∼ q′. Since p′ � ϕ,
also q′ � ϕ. Hence q � [a]ϕ.
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Completeness 2

Propositional connectives (∨ and ∧):
if p � ϕ1 ∨ ϕ2 then p � ϕ1 or p � ϕ2. If it is the first then
by the inductive hypothesis q � ϕ1, if the second then
q � ϕ2; thus q � ϕ1 ∨ ϕ2.
if p � ϕ2 ∧ ϕ2 is similar.

Note that completeness does not need the finite image as-

sumption – thus bisimilar states always satisfy the same for-

mulas. In the proof, we used the fact that {〈a〉, [a],∨,∧,⊤,⊥}
is enough for all of HM logic.
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Image finiteness

The theorem breaks down without this assumption:
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Easy to check, using the bisimulation game, that p1 ≁ p2.

Solution: Introduce infinite conjunction to the logic.
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Sublogics of HM

Ltr ::= 〈a〉Ltr | ⊤
Theorem 21. Logical preorder on Ltr coincides with the trace preorder.

Ls ::= 〈a〉Ls | Ls ∧ Ls | ⊤
Theorem 22. Logical preorder on Ls conicides with the simulation
preorder.

Bisimulation, Games & Hennessy Milner logic – p.32/32


