

Trace preorderGiven a state p of an LTS \mathcal{L} , the word $\sigma = \alpha_1 \alpha_2 \dots \alpha_k \in A^*$ is
a trace of p when \exists transitions
 $p \xrightarrow{\alpha_1} p_1 \xrightarrow{\alpha_2} \dots p_{k-1} \xrightarrow{\alpha_k} p'$ It is
related as follows:We will use $p \xrightarrow{\sigma} p'$ as shorthand.Suppose that \mathcal{L}_1 and \mathcal{L}_2 are LTSS. The trace preorder
 $\leq_{tr} \subset S_1 \times S_2$ is defined as follows:
 $p \leq_{tr} q \iff \forall \sigma \in A^*. p \xrightarrow{\sigma} p' \Rightarrow \exists q'. q \xrightarrow{\sigma} q'$ Observation 1. \leq_{tr} is reflexive and transitive.

\mathscr{P} has a winning strategy $\Rightarrow p \sim q$

Let $GE \stackrel{\text{def}}{=} \{(p,q) \mid \mathscr{P} \text{ has a winning strategy}\}.$ Suppose that $(p,q) \in GE$ and $p \stackrel{a}{\to} p'$. Suppose that there does not exist a transition $q \stackrel{a}{\to} q'$ such that $(p',q') \in GE$. Then \mathscr{R} can choose the transition $p \stackrel{a}{\to} p'$ and \mathscr{P} cannot respond in a way which keeps him in a winnable position. But this contradicts the fact that that \mathscr{P} has a winning strategy for the game starting with (p,q). Thus GE is a bisimulation.

$p \sim q \Rightarrow \mathscr{P}$ has a winning strategy

Bisimulations are winning strategies:

If $p \sim q$ then there exists a bisimulation R such that $(p,q) \in R$. Whatever move \mathscr{R} makes, \mathscr{P} can always make a move such that the result is in R. Clearly, this is a winning strategy for P.

Hennessy Milner & Bisimulation Definition 18. An LTS is said to have finite image when from any state, $\sim_L \subseteq \sim$ (Soundness) the number of states reachable is finite. **Theorem 19** (Hennessy Milner). Let \mathcal{L} be an LTS with finite image. image finiteness. Then $\sim_L = \sim$. To prove this, we need to show: **Soundness** ($\sim_L \subseteq \sim$): If two states satisfy the same formulas then they are bisimilar. **Completeness** ($\sim \subseteq \sim_L$): If two states are bisimilar then they satisfy the same formulas. Remark 20. Completeness holds in general. The finite image assumption is needed only for soundness.

lisimulation, Games & Hennessy Milner logic - p.2

Soundness It suffices to show that \sim_L is a bisimulation. We will rely on Suppose that $p \sim_L q$ and $p \xrightarrow{a} p'$. Then $p \models \langle a \rangle \top$ and so $q \models \langle a \rangle \top$ – thus there is at least one q' such that $q \stackrel{a}{\rightarrow} q'$. The set of all such q' is also finite by the extra assumption – let this set be $\{q_1, \ldots, q_k\}$. Suppose that for all q_i we have that $p' \not\sim_L q_i$. Then $\exists \varphi_i$ such that $p' \vDash \varphi_i$ and $q_i \nvDash \varphi_i$. Thus while $p \vDash \langle a \rangle \bigwedge_{i \le k} \varphi_i$ we must have $q \nvDash \langle a \rangle \bigwedge_{i \le k} \varphi_i$, a contradiction. Hence there exists q_i such that $q \xrightarrow{a} q_i$ and $p' \sim_L q_i$.

Completeness 1

 $\sim \subseteq \sim_L$ (Completeness)

We will show this $p <_L q$ by structural induction on formulas. **Base:** $p \models \top$ then $q \models \top$. Also, $p \models \bot$ then $q \models \bot$. Induction:

- Modalities ($\langle a \rangle$ and [a]):
 - If $p \models \langle a \rangle \varphi$ then $p \stackrel{a}{\rightarrow} p'$ and $p' \models \varphi$. By assumption, there exists q' such that $q \xrightarrow{a} q'$ and $p' \sim q'$. By inductive hypothesis $q' \models \varphi$ and so $q \models \langle a \rangle \varphi$.
 - If $p \models [a]\varphi$ then whenever $p \xrightarrow{a} p'$ then $p' \models \varphi$. First, notice that $p \sim q$ implies that if $q \xrightarrow{a} q'$ then there exists p' such that $p \xrightarrow{a} p'$ with $p' \sim q'$. Since $p' \vDash \varphi$, also $q' \vDash \varphi$. Hence $q \vDash [a]\varphi$.

Completeness 2

isimulation, Games & Hennessy Milner logic – p.2

● Propositional connectives (∨ and ∧):

- if $p \vDash \varphi_1 \lor \varphi_2$ then $p \vDash \varphi_1$ or $p \vDash \varphi_2$. If it is the first then by the inductive hypothesis $q \vDash \varphi_1$, if the second then $q \models \varphi_2$; thus $q \models \varphi_1 \lor \varphi_2$.
- if $p \models \varphi_2 \land \varphi_2$ is similar.

Note that completeness does not need the finite image assumption - thus bisimilar states always satisfy the same formulas. In the proof, we used the fact that $\{\langle a \rangle, [a], \lor, \land, \top, \bot\}$ is enough for all of HM logic.

Sublogics of HM

$$L_{tr} ::= \langle a \rangle L_{tr} \mid \top$$

Theorem 21. Logical preorder on L_{tr} coincides with the trace preorder.

$$L_s ::= \langle a \rangle L_s \mid L_s \wedge L_s \mid \top$$

Bisimulation, Games & Hennessy Milner logic - p.3

Theorem 22. Logical preorder on L_s conicides with the simulation preorder.