Consequence Relations and Natural Deduction

Joshua D. Guttman

Worcester Polytechnic Institute

31 Aug 2010

Guttman (WPI)

(3)

Consequence Relation

- \preceq : relates finite sets of formulas Γ and individual formulas φ
- $\begin{array}{ll} \preceq \text{ is a consequence relation iff} \\ \text{Reflexivity: } \Gamma, \varphi \preceq \varphi \\ \text{Transitivity: } \Gamma \preceq \psi & \text{ if } \Gamma \preceq \varphi \text{ and } \Gamma, \varphi \preceq \psi \\ \text{Weakening: } \Gamma, \Delta \preceq \varphi & \text{ if } \Gamma \preceq \varphi \\ \text{Substitution: } \Gamma[t_1/x_1, \dots t_n/x_n] \preceq \varphi[t_1/x_1, \dots t_n/x_n] & \text{ if } \Gamma \preceq \varphi \end{array}$

(日) (周) (三) (三)

Consequence as an Ordering

Guttman (WPI)

<ロト </p>

Consequence and Entailment

```
\label{eq:gamma-formula} \begin{split} \mathsf{\Gamma} \Vdash \varphi \text{, holds iff, for all models } \mathbb{M}\text{:} \\ & \text{ If for each } \psi \in \mathsf{\Gamma} \text{, } \mathbb{M} \models \psi \text{,} \\ & \text{ then } \mathbb{M} \models \varphi \text{.} \end{split}
```

▲圖 ▶ ▲ 国 ▶ ▲ 国

\Vdash is a Consequence Relation

Reflexivity: $\Gamma, \varphi \Vdash \varphi$; Transitivity: $\Gamma \Vdash \varphi$ and $\Gamma, \varphi \Vdash \psi$ imply $\Gamma \Vdash \psi$; and Weakening: $\Gamma \Vdash \varphi$ implies $\Gamma, \Delta \Vdash \varphi$.

(日) (同) (三) (三)

A *natural deduction derivation* is a tree in which each judgment is the conclusion of a rule.

The conclusion, the root, goes at the bottom

< ∃ > .

Conjunction Rules

$$\frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi}$$

$$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} \qquad \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi}$$

Guttman (WPI)

▲ ■ ● ○ < ○
 31 Aug 10 7 / 14

Implication Rules

$$\frac{\mathsf{\Gamma} \varphi \ \vdash \ \psi}{\mathsf{\Gamma} \ \vdash \ \varphi \rightarrow \psi}$$

$$\frac{\Gamma \vdash \varphi \rightarrow \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

Guttman (WPI)

▲ ■ ▶ ■ つへへ 31 Aug 10 8 / 14

・ロト ・聞 ト ・ ヨト ・ ヨト

Disjunction Rules

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Axiom and Bottom

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

A Derivation

 $\frac{ \begin{array}{c|c} p \land q \vdash p \land q \\ \hline p \land q \vdash p \\ \hline p \land q \vdash p \lor q \\ \hline (p \land q) \rightarrow (p \lor q) \end{array}}{ \left(\begin{array}{c} p \land q \vdash p \land q \\ \hline \end{array} \right)}$

<ロ> (日) (日) (日) (日) (日)

Proof: 1

- 1. **Reflexivity** holds because $\overline{\Gamma, \varphi \vdash \varphi}$ is always a derivation.
- 2. Transitivity holds by:

Proof: 2

3. Weakening holds by *induction on derivations*:

Base Case Suppose that there is a derivation of $\Gamma \vdash \varphi$ consisting only of an application of the Axiom rule. That is, $\varphi \in \Gamma$. Thus, $\varphi \in \Gamma, \Delta$, so $\overline{\Gamma, \Delta \vdash \varphi}$ is an application of the Axiom rule.

Proof: 3

Induction Step Suppose that we are given a derivation d where the last step is an application of one of the rules, and the previous steps generate one or more subderivations d_i , each with conclusion $\Gamma_i \vdash \psi_i$. Induction hypothesis. Assume that for each of the subderivations d_i , there is a weakened subderivation $W(d_i)$ such that $W(d_i)$ has conclusion $\Gamma_i, \Delta \vdash \psi_i$. Construct the desired derivation of $\Gamma, \Delta \vdash \varphi$ by combining the weakened subderivations $W(d_i)$ using the same rule of inference.

Proof: 3

Induction Step Suppose that we are given a derivation d where the last step is an application of one of the rules, and the previous steps generate one or more subderivations d_i , each with conclusion $\Gamma_i \vdash \psi_i$. Induction hypothesis. Assume that for each of the subderivations d_i , there is a weakened subderivation $W(d_i)$ such that $W(d_i)$ has conclusion $\Gamma_i, \Delta \vdash \psi_i$. Construct the desired derivation of $\Gamma, \Delta \vdash \varphi$ by combining the weakened subderivations $W(d_i)$ using the same rule of inference.

This is really a Program operating on Proofs

• • = • • = •