
Consequence Relations and Natural Deduction

Joshua D. Guttman
Worcester Polytechnic Institute

September 9, 2010

Contents

1 Consequence Relations 1

2 A Derivation System for “Natural Deduction” 3

3 Derivations with Explicit Proof Objects 5

4 How to Beta-Reduce 8
4.1 How to α-Convert . 8
4.2 How to β-Reduce . 10

5 Reduction and Typing for Proof Terms 11

6 Normalization 13

1 Consequence Relations

A useful notion that cuts across both semantic (model-oriented) and syntac-
tic (derivation-oriented) issues is the notion of a consequence relation. We
will use capital Greek letters like Γ,∆ (Gamma and Delta) to refer to finite
sets of formulas, and lower case Greek letters like φ, ψ (phi and psi) to refer
to individual formulas. We will save ink by writing Γ,∆ for the set Γ ∪∆,
and Γ, φ for the set Γ ∪ {φ}, etc.

By φ[t1/x1, . . . tn/xn], we mean the result of plugging in the terms t1, . . . , tn
in place of the variables x1, . . . , xn. We assume that all the xi are different
variables, and that all of the plugging in happens at once. So, if there are

1

Version of: September 9, 2010 2

x2s inside the term t1, they are not substituted with t2s. Γ[t1/x1, . . . tn/xn]
means the result of doing the substitutions to all the formulas in Γ.

Definition 1 Suppose that � is a relation between finite sets of formulas
and individual formulas, as in Γ � φ. Then � is a consequence relation iff
it satisfies these properties:

Reflexivity: Γ, φ � φ;

Transitivity: Γ � φ and Γ, φ � ψ imply Γ � ψ;

Weakening: Γ � φ implies Γ,∆ � φ; and

Substitution: Γ � φ implies Γ[t1/x1, . . . tn/xn] � φ[t1/x1, . . . tn/xn].

For now, we will focus on formulas with no variables, so Substitution will
be irrelevant. We will ignore it until later. The Reflexivity and Tran-
sitivity rules ensure that a consequence relation is a partial order, when
restricted to sets containing just one assumption. The Weakening rule
“lifts” this partial order to sets with more members.

We refer to an instance of a relation Γ � φ or any Γ R φ as a judgment.
Both semantic notions such as entailment and syntactic notions such as

derivability give us examples of consequence relations. Suppose we have a
notion of model such as M |= φ as defined in the Dougherty lecture notes,
Def. 2.2.2.1 Then we have a corresponding notion of (semantic) entailment
defined:

Definition 2 Γ entails φ, written Γ φ, holds iff, for all models M:

If for each ψ ∈ Γ, M |= ψ,

then M |= φ.

That is, Γ φ means that every model that makes all of the formulas in Γ
true makes φ true too.

Lemma 3 Entailment is a consequence relation, i.e. satisfies reflexivity,
transitivity, and weakening in Def. 1:

1. Γ, φ φ;

2. Γ φ and Γ, φ ψ imply Γ ψ; and
1Available at URL http://web.cs.wpi.edu/~guttman/cs521_website/Dougherty_

lecture_notes.pdf.

http://web.cs.wpi.edu/~guttman/cs521_website/Dougherty_lecture_notes.pdf
http://web.cs.wpi.edu/~guttman/cs521_website/Dougherty_lecture_notes.pdf

Version of: September 9, 2010 3

Γ ` φ Γ ` ψ

Γ ` φ ∧ ψ
Γ ` φ ∧ ψ

Γ ` φ

Γ ` φ ∧ ψ
Γ ` ψ

Figure 1: ND Introduction and Elimination Rules for ∧

Γφ ` ψ

Γ ` φ→ ψ

Γ ` φ→ ψ Γ ` φ

Γ ` ψ

Figure 2: ND Introduction and Elimination Rules for →

3. Γ φ implies Γ,∆ φ.

We turn next to showing that a particular set of rules for constructing proofs
is also a consequence relation.

2 A Derivation System for “Natural Deduction”

We consider the rules suggested by Gerhart Gentzen as a “natural” form of
deduction [3]. Gentzen considered these rules natural because they seemed
to match directly the meaning of each logical operator.

Each logical operator has one or a couple of rules that allow you to
prove formulas containing it as the outermost operator. These are called
introduction rules. Each operator also has one or a couple of rules that
allow you to prove other formulas by extracting the logical content in a
formula containing it as outermost operator. They are called elimination
rules. The introduction rules push formulas up in the partial ordering, while
the elimination rules hold them down. Between them, the introduction and
elimination rules fix the meaning of the logical operators purely in terms of
their deductive power.

All of this extends to much richer logics, as we will see.
The rules are spread out through Figs. 1–4.

Definition 4 A natural deduction derivation is a tree, conventionally writ-
ten with the conclusion, the root, at the bottom, such that each judgment is

Γ ` φ

Γ ` φ ∨ ψ
Γ ` ψ

Γ ` φ ∨ ψ

Γ ` φ ∨ ψ Γ, φ ` χ Γ, ψ ` χ

Γ ` χ

Figure 3: ND Introduction and Elimination Rules for ∨

Version of: September 9, 2010 4

Γ, φ ` φ
Γ ` ⊥
Γ ` φ

Figure 4: ND Axioms and Rule for ⊥

p ∧ q ` p ∧ q
p ∧ q ` p

p ∧ q ` p ∨ q
` (p ∧ q)→ (p ∨ q)

Figure 5: An Example Derivation

the conclusion of a rule.
A derivation is a natural deduction derivation in intuitionist proposi-

tional logic if each rule is one of those shown in Figs. 1–4.

An example derivation is shown in Fig. 5. It proves ` (p ∧ q) → (p ∨ q).
There are two questions we’d immediately like answers to. First, do the
derivable judgments form a consequence relation? That is, if Γ � φ means
that there is a derivation of Γ ` φ using our rules, then is � a consequence
relation?

Second, how do derivable judgments relate to entailment? If Γ ` φ is
derivable, then is Γ φ true? If Γ φ then is Γ ` φ derivable?

We can answer the first question affirmatively.

Lemma 5 The set of derivable judgments Γ ` φ form a consequence
relation.

Proof: 1. Reflexivity holds because Γ, φ ` φ is always a derivation.
2. Transitivity holds by Fig. 6.
3. Weakening holds by induction on derivations:

...
d1

...
Γ, φ ` ψ

Γ ` φ→ ψ

...
d2

...
Γ ` φ

Γ ` ψ

Figure 6: Composing Derivations for Transitivity

Version of: September 9, 2010 5

Base Case Suppose that there is a derivation of Γ ` φ consisting only of
an application of the Axiom rule. That is, φ ∈ Γ. Thus, φ ∈ Γ,∆, so
Γ,∆ ` φ is an application of the Axiom rule.

Induction Step Suppose that we are given a derivation d where the last
step is an application of one of the rules from Figs. 1–4, and the previ-
ous steps generate one or more subderivations di, each with conclusion
Γi ` ψi.

Induction hypothesis. Assume that for each of the subderivations di,
there is a weakened subderivation W (di) such that W (di) has conclu-
sion Γi,∆ ` ψi.

Construct the desired derivation of Γ,∆ ` φ by combining the weak-
ened subderivations W (di) using the same rule of inference.

ut
One part of the second question is easy to answer.

Lemma 6 ` ⊆ .
That is, if Γ ` φ is derivable, then Γ φ.

Proof: By induction on derivations. ut
On the other hand, ` (. There are entailment relations that cannot be
derived using these rules.

Challenge. Find a Γ, φ such that Γ φ but Γ ` φ is not derivable using
our rules. How would one prove it not derivable?

Question. If these rules do not characterize the semantic entailment rela-
tion generated from the classical |=, what do they characterize?

3 Derivations with Explicit Proof Objects

In this section we annotate our derivations with a representation of the
proofs the derivations construct. This will allow us to manipulate the forms
of proofs, and also to treat proof and computation in an overlapping way.
The remaining presentation draws heavily on [1, 2, 4].

Definition 7 By a context Γ, we mean a set of pairs consisting of a variable
and a formula, such that no variable appears more than once. We write
members of Γ in the form v : φ, so a context takes the form:

v1 : φ1, . . . vi : φi.

Version of: September 9, 2010 6

Γ ` s : φ Γ ` t : ψ
Γ ` 〈s, t〉 : φ ∧ ψ

Γ ` s : φ ∧ ψ
Γ ` fst(s) : φ

Γ ` s : φ ∧ ψ
Γ ` scd(s) : ψ

Figure 7: Rules for Conjunction, with Explicit Proof Objects

Γ ` s : φ
Γ ` 〈lft, s〉 : φ ∨ ψ

Γ ` s : ψ
Γ ` 〈rgt, s〉 : φ ∨ ψ

Γ ` s : φ ∨ ψ Γ, x : φ ` t : χ Γ, y : ψ ` r : χ
Γ ` cases(s, λx . t, λy . r) : χ

Figure 8: Rules for Disjunction, with Explicit Proof Objects

The empty context is permitted, i.e. when i = 0 there are no v : φ pairs.

Thus, a context is a finite partial function from variables to formulas. Hence-
forth, we will use Γ for contexts rather than simply sets of formulas.

We annotate each of the rules of Figs. 1–4 with explicit proof objects in
such a way that the introduction rules and elimination rules cancel out. If
a derivation ends with an introduction rule followed by an elimination rule,
then we should be able to extract the proof object for the subderivation be-
fore the two redundant steps. For instance, the conjunction introduction rule
constructs a pair object, from which the two elimination rules can extract
the components, i.e. recover the embedded proofs of the individual con-
juncts. Likewise, the disjunction introduction rules tag their subderivation
s : φ or s : ψ, so that the cases construct can insert it into the appropriate
branch proving χ. The rule for falsehood has a less symmetrical role: We
call it the “empty promise” rule, on the grounds that it should never be
possible to apply it to a closed (variable-free) term s. We give the syntax
of explicit proof terms in Fig. 11. Compound terms of certain forms may
be reduced as indicated in the reduction rules shown in Fig. 12. We regard
Fig. 12 as giving a kind of operational semantics for an extremely simple
programming language. Unfortunately, the most important reduction rule,
the “beta rule” β, is not as simple as it looks.

Γ, x : φ ` s : ψ
Γ ` λx . s : φ→ ψ

Γ ` s : φ→ ψ Γ ` t : φ
Γ ` (st) : ψ

Figure 9: Rules for Implication, with Explicit Proof Objects

Version of: September 9, 2010 7

Γ, x : φ ` x : φ
Γ ` s : ⊥

Γ ` emp(s) : φ

Figure 10: Rules for Axioms and Falsehood, with Explicit Proof Objects

s, t, r ::= v |
〈s, t〉 | fst(s) | scd(s) |
(λv . s) | s t |
〈lft, s〉 | 〈rgt, s〉 | cases(s, t, r)

v ::= x | y | v′ . . .

Figure 11: Syntax of Proof Terms

fst(〈s, s′〉) −→r s
scd(〈s, s′〉) −→r s′

cases(〈lft, s〉, t, r) −→r t s
cases(〈rgt, s〉, t, r) −→r r s
(λv . s) t −→r s[t/v] (β)

Figure 12: Reduction Rules for Proof Terms

Version of: September 9, 2010 8

4 How to Beta-Reduce

The rule for β-reduction is complicated by the need to rename bound vari-
ables when evaluating s[t/v], i.e. plugging a term t into a term s in place of
v. The problems arise when t contains a free occurrence of a variable x, but
within s, v has an occurrence in the body of some λ-binder λx . r. In this
situation, x’s free occurrences in t would be “captured” by this λ-binder.

As an example, consider

(λv . (λx . (x v))) (x).

If we reduce it by plugging in x in place of v, we should not obtain (λx . (x x)).
Nothing here asks us to accept a function x and apply it to itself.

Instead, we would like to change the name of the bound variable x in
λx . (x v) before plugging in the meaningful, externally chosen value for x
in place of v. Thus, we first α-convert λx . (x v) by renaming its x to some
new variable z. Now there is no danger and we plug in the free x in place of
v without risk of capturing x, obtaining λz . (z x). After all, the renaming
can do no harm: the bound variable x or z will really only get its value later
when we apply this term to some argument, which will furnish its value.

For this reason, we first explain how to α-convert.

4.1 How to α-Convert

Definition 8 (Free and bound variables) We define the free variables
and the bound variables of a term recursively:

fv(v) = {v} bv(v) = ∅
fv(s t) = fv(s) ∪ fv(t) bv(s t) = bv(s) ∪ bv(t)

fv(λv . s) = fv(s) \ {v} bv(λv . s) = bv(s) ∪ {v}

The variables of s are those of both kinds: vars(s) = fv(s) ∪ bv(s).

Be careful: there are terms in which a variable v occurs both free and bound.
For instance, letting s be (λv . x v)(v), v ∈ fv(s) ∪ bv(s).

We call an object σ = v 7→ v′ a (one-variable) replacement. Suppose
that λv . s is a lambda expression whose topmost bound variable v is the
same as the argument of σ. Then the result of σ on λv . s is λv′ . s′, where
s′ arises by replacing every free occurrence of v by v′ throughout s.

For instance, the result of σ = v 7→ v′ on the term

λv . ((λv . v x) v)

Version of: September 9, 2010 9

is
λv′ . ((λv . v x) v′).

The body of the first term has only one free occurrence of v, which has been
replaced by v′.

If v′ 6∈ fv(λv . s), then the result of σ = v 7→ v′ on λv . s will represent
the same function as λv . s. We cannot prove this currently, since we
haven’t formalized “the function that s represents.” However, the claim is
a reasonable constraint on any formalization we would give: The name of
the bound variable v doesn’t matter, since it is gone as soon as we plug in
an argument for v. Moreover, we will plug in the argument in the same
locations in the result λv′ . s′ as in λv . s.

Two terms are α-equivalent if one can be obtained from the other by
applying this operation to their parts.

Definition 9 α-equivalence, written ≡α, is the smallest relation such that:

1. s≡α s;

2. if s≡α s′ and t≡α t′, then (s t)≡α (s′ t′);

3. if s≡α s′, then (λv . s)≡α (λv . s′);

4. if v′ 6∈ fv(λv . s), and λv′ . s′ is the result of v 7→ v′ on λv . s, then

(λv . s)≡α (λv′ . s′).

Lemma 10 Let s, t be terms.

1. bv(s) and fv(s) are finite.

2. If t is a subterm of s, then fv(t) ⊆ vars(s).

3. Let F ⊆ V be a finite set of variables. There is an s′ such that s′ ≡α s
and bv(s′) ∩ F = ∅.

4. There is a s′ such that s′ ≡α s and bv(s′) ∩ fv(t) = ∅.

5. There is an s′ such that s′ ≡α s and: (i) any two λ-expressions within
s′ bind different variables and (ii) bv(s′) ∩ fv(s′) = ∅.

A term s′ satisfying the conditions (i,ii) in Clause 5 is said to be in “standard
form.” People frequently assume, in the middle of a proof, that any term
they’re working with is in standard form. Clause 5 justifies this, because
even if the term isn’t in standard form, some α-equivalent term is.

Version of: September 9, 2010 10

Proof: 1. By induction on the structure of terms. Base case. If s is a
variable v, then bv(v) = ∅ and fv(v) = {v}, both of which are finite.

Induction step. Suppose (i.h.) that bv(s) and fv(s) are finite, and so are
bv(t) and fv(t).

Then so are fv(s t) and bv(s t), since the union of two finite sets is finite.
fv(λv . s) is a subset of fv(s), so finite. bv(λv . s) is the union of the finite
set {v} with a finite set, so also finite.

2. For every path p to an occurrence of a free variable v in t, consider
q_p, where q is a path in s to an occurrence of t. Then q_p is a path to v.
It is a path to a bound occurrence if q traverses some λv, and otherwise it
is a path to a free occurrence.

3. Let 〈vi〉i∈N be an infinite sequence that enumerates all the variables
v ∈ V. For any term t, let fresh(t) = max{i : vi ∈ F ∪ vars(t)}: so fresh(t)
is well-defined because F and vars(t) are finite. Now argue by induction on
the structure of terms.

Base case. If s is a variable v, then bv(v) = ∅, so s′ can be v.
Induction step. Suppose given t0 and t1. Assume (i.h.) that there are t′0

and t′1 such that t′i ≡α ti and bv(t′i) ∩ F = ∅.
If s = (t0 t1), then the desired s′ is s′ = (t′0 t

′
1).

If s = λv . t0, and v 6∈ F , then the desired s′ is s′ = λv . t′0.
Otherwise, let v′ = fresh(t′0), and let t′ result from s′ under v 7→ v′.
4. Apply Clause 3 to F = fv(t).
5. Use v′ = fresh(t′0) as in Clause 3, starting with F = vars(s). ut

4.2 How to β-Reduce

Terminology varies slightly among the different notions introduced in the
next definition.

Definition 11 Let s = λv . s0, and let t be a term. Let s′ = λv′ . s′0 be
chosen in some canonical way such that s′≡α s and bv(s′)∩ fv(t) = ∅. Then
s′0[t/v′] is defined to be the result of replacing every free occurrence of v′ with
the term t.

We say (s t) β-reduces to r iff r ≡α s′0[t/v′], and we write (s t)→b r.
We write s→β1 t for the least relation such that:

1. s→b t implies s→β1 t;

2. s0 →β1 s1 implies:

(a) (s0 t)→β1 (s1 t);

Version of: September 9, 2010 11

(b) (t s0)→β1 (t s1); and

(c) λv . s0 →β1 λv . s1.

→β is the least relation which is transitive and closed under ≡α and includes
→β1. Thus, s→β t holds whenever s≡α t, or s→β1 t, or there is an r such
that s→β r and r →β t.

The relation →b gives the correct meaning for the last line of Fig. 12.

5 Reduction and Typing for Proof Terms

Throughout Section 4, we ignored the other proof terms, generated using
pairing 〈·, ·〉 and the functions fst, scd, cases. It can be easily extended to
the larger language. In particular, the definition of ≡α extends mechanically
through the remaining proof terms, with the same properties. The reduction
relation takes the form:

Definition 12 The one-step reduction relation −→1 is the smallest relation
such that:

1. If s −→r t as defined in Fig. 12, then s −→1 t;

2. s0 −→1 s1 implies:

(i) (s0 t) −→1 (s1 t); (ii) (t s0) −→1 (t s1);
(iii) λv . s0 −→1 λv . s1; (iv) fst(s0) −→1 fst(s1);
(v) scd(s0) −→1 scd(s1); (vi) 〈s0, t〉 −→1 〈s1, t〉;

(vii) 〈t, s0〉 −→1 〈t, s1〉 (viii) cases(s0, t, r) −→1 cases(s1, t, r);
(ix) cases(t, s0, r) (x) cases(t, r, s0) −→1 cases(t, r, s1).

−→1 cases(t, s1, r);

The reduction relation −→ is the least relation which is transitive and closed
under ≡α and includes −→1.

Thus, s −→ t holds whenever s ≡α t, or s −→1 t, or there is an r such
that s −→ r and r −→ t.

We have also ignored the typing discipline, and the whole discussion of
Section 4 is equally applicable if it is altered or discarded. However, the
type structure ensures that interesting additional properties hold true of
the reduction relation. We here follow Barendregt [1, Section 3.1].

We will write henceforth Γ ` s : φ to mean that there is a derivation
using the explicit proof rules (Figs. 7–10) where Γ ` s : φ is the last line of
the derivation (the root of the tree).

Version of: September 9, 2010 12

Lemma 13 (Context Lemma) Suppose that Γ,Γ′ are contexts.

1. If Γ ⊆ Γ′, then Γ ` s : φ implies Γ′ ` s : φ.

2. If Γ ` s : φ, then fv(s) ⊆ dom(Γ).

3. Γ ` s : φ, and Γ′ = Γ |̀ fv(s), then Γ′ ` s : φ

Proof: By induction on derivations. Clause 1 is the analog to Weakening
(Lemma 5) in the explicit proof formalism. ut
Clause 2 of this lemma has a significant consequence: it says that the closed
proof objects—the ones with no free variables—are very important. They
are the only ones that prove a conclusion with no premises, i.e. with Γ = ∅.
The other clauses say that premises in Γ with variables not appearing free
in the right hand side do no good (Clause 3) and do no harm (Clause 1).

We next summarize what must be true when Γ ` s : φ, as a function of
the syntactic form of s as a proof term. Naturally, for a given proof term, we
can use this lemma repeatedly on its subexpressions to unfold the derivation
from the bottom up.

Lemma 14 (Generation) Suppose that Γ ` s0 : φ. If s0 is of the form:

v, then x : φ ∈ Γ;

〈s, t〉, then φ = φ1 ∧ φ2 and Γ ` s : φ1 and Γ ` t : φ2;

fst(s), then for some ψ, Γ ` s : φ ∧ ψ;

scd(s), then for some ψ, Γ ` s : ψ ∧ φ;

λv . s, then φ = φ1 → φ2 and Γ, v : φ1 ` φ2;

(s t), then for some ψ, Γ ` s : ψ → φ and Γ ` t : ψ;

〈lft, s〉, then φ = φ1 ∨ φ2 and Γ ` s : φ1;

〈rgt, s〉, then φ = φ1 ∨ φ2 and Γ ` s : φ2;

cases(s, t, r), then for some disjunction ψ1 ∨ ψ2, Γ ` s : ψ1 ∨ ψ2, and
Γ ` t : ψ1 → φ, and Γ ` r : ψ2 → φ.

Proof: The proof is essentially by pattern matching the form of each rule’s
conclusion. The only wrinkle is in the last clause, where we have an implica-
tion ψ1 → φ because we have lambda-bound the variable in each subsidiary
derivation in the or-elimination rule. ut

Version of: September 9, 2010 13

Lemma 15 (Subterms typable) Suppose that Γ ` s : φ, and t is a
subterm of s. Then for some Γ′ and some ψ, Γ′ ` t : ψ.

Indeed, with our current rules, Γ′ ⊇ Γ and ψ is a subformula of φ.

Proof: By induction on the derivations. ut
Note, however, that there are some terms that are not typable with any Γ
and φ. An example is (x x). So no term with any part of this form is typable
in this system.

The following lemma shows that proof terms are generic. Derivations do
not depend on the fact that any formula is atomic. Thus, the same explicit
proof term can have many typings (and prove many theorems) if an atomic
formula part is replaced by a compound.

Lemma 16 (Generic proof objects) Suppose for some atomic formula
p, Γ, x : p ` s : φ. Then for any ψ, Γ, x : ψ ` s : φ′, where φ′ results from
φ by replacing every occurrence of p with the formula ψ.

Lemma 17 Suppose that Γ, x : φ ` s : ψ and Γ ` t : φ. Then Γ `
s[t/x] : ψ.

This leads directly to a crucial theorem. It relates the reduction relation of
Def. 12 to derivations (or type judgments, which is the same thing).

Theorem 18 (Subject Reduction) Suppose that s −→ t and Γ ` s : φ.
Then Γ ` t : φ also.

This is also known as a type preservation theorem, since it says that the type
φ is preserved no matter how we reduce s. The phrase “subject reduction”
comes from the idea that in the judgment s : φ, s is the “subject” and φ is
the “predicate.” It says that when the subject reduces, the predicate still
applies. Theorems of this form are ubiquitous in programming language
semantics.

6 Normalization

A term t is a normal form with respect to a reduction relation such as our
−→ if it has no parts that can be reduced, i.e. there is no s 6= t such that
t −→ s. If s −→ t and t is a normal form, then we think of t as a value that
the program s computes. If in addition t is closed—it has no free variables—
this is especially appropriate. Particularly in our context where it means
that t proves a theorem φ with no premises: ∅ ` t : φ. In this section, we
will prove that every well-typed term has a normal form.

Version of: September 9, 2010 14

Theorem 19 (Normal Form) If Γ ` s : φ, then there is a normal form
t such that s −→ t. By Thm. 18, Γ ` t : φ.

If a derivation system satisfies the analogue of Thm. 19, then a great
deal of information about what it proves follows by considering the forms of
its closed normal forms. This is a crucial technique for proving consistency
theorems, and also for proving that one derivation system is a conservative
extension of another.

[[To be continued. . .]]

References

[1] Henk Barendregt. Lambda calculi with types. Handbook of logic in
computer science, 2:117–309, 1992.

[2] Henk Barendregt and Silvia Ghilezan. Lambda terms for natural de-
duction, sequent calculus and cut elimination. Journal of Functional
Programming, 10(01):121–134, 2000.

[3] Gerhard Gentzen. Investigations into logical deduction. In Manfred Sz-
abo, editor, Complete Works of Gerhard Gentzen. North Holland, 1969.
Originally published in Mathematische Zeitschrift, 1934–1935.

[4] Ralph Loader. Notes on simply typed lambda calculus. Technical Report
ECS-LFCS-98-381, University of Edinburgh, 1998. At URL http://
www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/.

http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/
http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/

	Consequence Relations
	A Derivation System for ``Natural Deduction''
	Derivations with Explicit Proof Objects
	How to Beta-Reduce
	How to -Convert
	How to -Reduce

	Reduction and Typing for Proof Terms
	Normalization

