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Orders of Growth: Big O

If £, g are functions RT — R™, then
f € O(g)

means, for some Ny and multiplicative constant c,
for every n > Ny

f(n) < c-g(n)

Guttman ( WPI ) CS2223, Big Oh 30 Oct 12

2/17



Orders of Growth: Big O

If £, g are functions RT — R™, then
f € O(g)

means, for some Ny and multiplicative constant c,
for every n > Ny

f(n) < c-g(n)

"g eventually bounds f, to within a multiplicative constant”

Guttman ( WPI) (CS2223, Big Oh 30 Oct 12

2/17



Orders of Growth:

If £, g are functions RT — R™, then
feQg)

means, for some Ny and multiplicative constant c,
for every n > Ny

c-f(n) > g(n)

Guttman ( WPI ) CS2223, Big Oh 30 Oct 12

3/17



Orders of Growth:

If £, g are functions RT — R™, then
feQg)

means, for some Ny and multiplicative constant c,
for every n > Ny

c-f(n) > g(n)

"“f eventually bounds g, to within a multiplicative constant”

Guttman ( WPI) (CS2223, Big Oh 30 Oct 12

3/17



Orders of Growth:

If £, g are functions RT — R™, then
feQg)

means, for some Ny and multiplicative constant c,
for every n > Ny

c-f(n) > g(n)

"“f eventually bounds g, to within a multiplicative constant”

Q is just the converse of O
feQ(g) means g e O(f)
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Orders of Growth: ©

If £, g are functions RT — R™, then
feo(g)

means, for some Ny and multiplicative constants ¢, ci,
for every n > Ny

f(n) < co-g(n) and g(n) < ci-f(n)
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Orders of Growth: ©

If £, g are functions RT — R™, then
feo(g)

means, for some Ny and multiplicative constants ¢, ci,
for every n > Ny

f(n) < co-g(n) and g(n) < ci-f(n)

“f and g eventually agree, to within multiplicative constants”
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Orders of Growth: ©

If £, g are functions RT — R™, then
feo(g)

means, for some Ny and multiplicative constants ¢, ci,
for every n > Ny

f(n) < co-g(n) and g(n) < ci-f(n)

“f and g eventually agree, to within multiplicative constants”

fe®©(g) isjust f e O(g)and ge O(f)
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School multiplication

Input size: Number of digits in m and n (or bits)

Example: Input size 6

2 3 8
6 5 2
4 7 6
1 1.9 0
1 4 2 8
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Some Properties of 0,0 (1)

0O, © Reflexive:

f e O(f),o(f)
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Some Properties of 0,© (1)

0, © Reflexive:
f e O(f),o(f)

0, © Transitive:
feO(g) and g€ O(h) implies f € O(h)

feO(g) and geO(h) implies feO(h)
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Some Properties of 0,© (1)

0, © Reflexive:
f e O(f),o(f)

0, © Transitive:
feO(g) and g€ O(h) implies f € O(h)

feO(g) and geO(h) implies feO(h)
© Symmetric:

fe€©O(g) implies g e O(f)
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Some properties of 0,0 (2)

0, © Additive
f,g € O(h) implies f(x)+ g(x) € O(h(x))

f,g € ©(h) implies f(x)+ g(x) € ©(h(x))

f(x) + &(x) € ©(max(f(x), g(x)))
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Some properties of 0,0 (2)

0, © Additive
f,g € O(h) implies f(x)+ g(x) € O(h(x))

f,g € ©(h) implies f(x)+ g(x) € ©(h(x))
f(x) + &(x) € ©(max(f(x), g(x)))
0, © Preserved under scalar multiplication
feO(g) implies c-fe O(g)
fe©O(g) implies c-fecO(g)
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© Equivalence Classes

@ O gathers functions into equivalence classes

©(g) gathers all the fns
that grow about as fast as g

@ Every fn f belongs to one class
namely ©(f)

o If two classes overlap, they're identical

fe0O(g) and f € ©(h)
implies ©(h) = ©(g)
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© Equivalence Classes: Upper and Lower Bounds

Define max(f, g) = hmax and
min(f, &) = hmin

one value at a time:
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© Equivalence Classes: Upper and Lower Bounds

Define max(f, g) = hmax and
min(f, g) = hmin
one value at a time:

hmax(n) = max(f(n), g(n))
hmin(n) = min(f(n), g(n))
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© Equivalence Classes: Upper and Lower Bounds

Define max(f, g) = hmax and
min(f, g) = hmin
one value at a time:
hmax(n) = max(f(n), g(n))
hmin(n) = min(f(n)7g(n))

So
f,g € Qbmin) and f,g € O(hmax)
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© Equivalence Classes: Upper and Lower Bounds

Define max(f, g) = hmax and
min(f, g) = hmin
one value at a time:

hmax(n) = max(f(n), g(n))
hmin(n) = min(f(n), g(n))
So
f,g € Qbmin) and f,g € O(hmax)

©(hmin) is a greatest lower bound for ©(f), ©(g)
©(hmax) is a least upper bound for ©(f), ©(g)
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© Equivalence Classes are Dense

Suppose that
feO(g) but f¢0O(g)

Define mid(f, g) = h one value at a time:
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© Equivalence Classes are Dense

Suppose that
feO(g) but f¢0O(g)

Define mid(f, g) = h one value at a time:

h(n) = (f(n) - g(n))*/?
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© Equivalence Classes are Dense

Suppose that
feO(g) but f¢0O(g)

Define mid(f, g) = h one value at a time:

h(n) = (f(n) - g(n))*/?

Then
feO(h) and he O(g)
But
fZ0O(h) and h¢O(g)
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Proof: f € O(h) and h € O(g)

@ Suppose for all x > Ny, f(x) < c-g(x)

@ Multiplying through by f(x):  (f(x))? < ¢ f(x) - g(x)
taking square roots,

F(x) < Ve (F(x)-g(x))/? = Ve h(x)
So f € O(h)

© Multiplying through by g(x):  f(x) - g(x) < ¢ - (g(x))?
taking square roots,

h(x) = (f(x) - g(x))"/? < Ve - g(x)
So he O(g)
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Proof: f & ©(h)

Q If f € ©(h), then for x > Np:
(f(x) - g(x))/? < ¢ - f(x)

@ Squaring:
f(x) - g(x) < - (f(x))?

© Dividing through:
g(x) < ¢ f(x)

© Hence g € O(f), contrary to assumption
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Proof: h & ©(g)

Q If h € ©(g), then for x > Np:
g(x) < c- (f(x) - g(x)*?

@ Squaring,
(g(x))* < - (f(x) - &(x))

© Dividing through
g(x) < ¢ f(x)

© Hence g € O(f), contrary to assumption
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Some Orders of Growth

O(1) Vector ref
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Some Orders of Growth

o(1)
O(log n) Binary search
O(n) Linear search
O(nlogn) Merge sort

Vector ref
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Some Orders of Growth

O(1) Vector ref

O(log n) Binary search

O(n) Linear search

O(nlogn) Merge sort
?)

O(n

Insertion sort
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Some Orders of Growth

O(1) Vector ref
O(log n)
O(n)

O(nlogn) Merge sort
?)

O(n

Binary search

Linear search

Insertion sort

0(2”) Largest independent set in a graph of size n
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Some Orders of Growth

O(1) Vector ref
O(log n)
O(n)

O(nlogn) Merge sort
?)

O(n

Binary search

Linear search
Insertion sort

o(2" ) Largest independent set in a graph of size n
O(n!) Generate all permutations of n
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Find the Order of Growth

An Exercise

@ Multiply m, n by the school method

@ Given an alg. A, an input /, and a bound k,
check if A halts on i before step k

@ Factor n by trial division

@ Given n and a claimed prime factorization,
check correctness

o Given a formula,
search for a proof of it in set theory
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Has A terminated on i by step k?

Input size: Total width w (in bits) of A and integers i, k
Worst case strategy: Let k use most input bits, k ~ 2%
Effect: Often have to wait 2" steps to see

So: Exponential
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Big-O, Big-©

o f € ©(g) clusters functions into equivalence classes
@ Big-O determines a partial ordering

» Greatest lower bounds and least upper bounds exist
» Ordering is dense

@ Big-O ordering: implementation-independent estimate of cost
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