Big O, Ω, Θ

Joshua D. Guttman

Worcester Polytechnic Institute

30 October 2012

Guttman (WPI)

CS2223, Big Oł

▲ ■ ● ■ のへの 30 Oct 12 1 / 17

・ロン ・四 ・ ・ ヨン ・ ヨン

Orders of Growth: Big O

If f, g are functions $\mathbb{R}^+ \to \mathbb{R}^+$, then

 $f \in O(g)$

means, for some N_0 and multiplicative constant c, for every $n > N_0$

 $f(n) \leq c \cdot g(n)$

Orders of Growth: Big O

If f, g are functions $\mathbb{R}^+ \to \mathbb{R}^+$, then

 $f \in O(g)$

means, for some N_0 and multiplicative constant c, for every $n > N_0$

 $f(n) \leq c \cdot g(n)$

"g eventually bounds f, to within a multiplicative constant"

(3)

Orders of Growth: $\boldsymbol{\Omega}$

If f, g are functions $\mathbb{R}^+ \to \mathbb{R}^+$, then

 $f \in \Omega(g)$

means, for some N_0 and multiplicative constant c, for every $n > N_0$

 $c \cdot f(n) \geq g(n)$

3 > < 3
 3
</p>

Orders of Growth: Ω

If f,g are functions $\mathbb{R}^+ \to \mathbb{R}^+$, then

 $f \in \Omega(g)$

means, for some N_0 and multiplicative constant c, for every $n > N_0$

 $c \cdot f(n) \geq g(n)$

"f eventually bounds g, to within a multiplicative constant"

3 > < 3
 3
</p>

Orders of Growth: Ω

If f,g are functions $\mathbb{R}^+ \to \mathbb{R}^+$, then

 $f \in \Omega(g)$

means, for some N_0 and multiplicative constant c, for every $n > N_0$

 $c \cdot f(n) \geq g(n)$

"f eventually bounds g, to within a multiplicative constant"

 Ω is just the converse of O $f \in \Omega(g)$ means $g \in O(f)$

()

Orders of Growth: Θ

If f, g are functions $\mathbb{R}^+ \to \mathbb{R}^+$, then

 $f \in \Theta(g)$

means, for some N_0 and multiplicative constants c_0, c_1 , for every $n > N_0$

$$f(n) \leq c_0 \cdot g(n)$$
 and $g(n) \leq c_1 \cdot f(n)$

A B < A B </p>

Orders of Growth: Θ

If f, g are functions $\mathbb{R}^+ \to \mathbb{R}^+$, then

 $f \in \Theta(g)$

means, for some N_0 and multiplicative constants c_0, c_1 , for every $n > N_0$

$$f(n) \leq c_0 \cdot g(n)$$
 and $g(n) \leq c_1 \cdot f(n)$

"f and g eventually agree, to within multiplicative constants"

A B A A B A

Orders of Growth: Θ

If f, g are functions $\mathbb{R}^+ \to \mathbb{R}^+$, then

 $f \in \Theta(g)$

means, for some N_0 and multiplicative constants c_0, c_1 , for every $n > N_0$

$$f(n) \leq c_0 \cdot g(n)$$
 and $g(n) \leq c_1 \cdot f(n)$

"f and g eventually agree, to within multiplicative constants"

 $f\in \Theta(g)$ is just $f\in O(g)$ and $g\in O(f)$

• • = • • = •

School multiplication

Input size: Number of digits in m and n (or bits) Example: Input size 6

Some Properties of O, Θ (1)

 O, Θ Reflexive:

 $f \in O(f), \Theta(f)$

Guttman (WPI)

イロト イ団ト イヨト イヨト

Some Properties of O, Θ (1)

 O, Θ Reflexive:

$$f \in O(f), \Theta(f)$$

 O, Θ Transitive:

 $f \in O(g)$ and $g \in O(h)$ implies $f \in O(h)$ $f \in \Theta(g)$ and $g \in \Theta(h)$ implies $f \in \Theta(h)$

- 4 目 ト - 4 日 ト - 4 日 ト

Some Properties of O, Θ (1)

 O, Θ Reflexive:

$$f \in O(f), \Theta(f)$$

 O, Θ Transitive:

 $f \in O(g)$ and $g \in O(h)$ implies $f \in O(h)$ $f \in \Theta(g)$ and $g \in \Theta(h)$ implies $f \in \Theta(h)$ Θ Symmetric:

 $f \in \Theta(g)$ implies $g \in \Theta(f)$

くほと くほと くほと

Some properties of O, Θ (2)

O, Θ Additive

 $f, g \in O(h)$ implies $f(x) + g(x) \in O(h(x))$ $f, g \in \Theta(h)$ implies $f(x) + g(x) \in \Theta(h(x))$ $f(x) + g(x) \in \Theta(\max(f(x), g(x)))$

★聞▶ ★ 国▶ ★ 国▶

Some properties of O, Θ (2)

 O, Θ Additive

 $egin{aligned} f,g \in O(h) & ext{implies} \quad f(x)+g(x) \in O(h(x)) \ f,g \in \Theta(h) & ext{implies} \quad f(x)+g(x) \in \Theta(h(x)) \ f(x)+g(x) \in \Theta(\max(f(x),g(x))) \end{aligned}$

 O, Θ Preserved under scalar multiplication

 $f \in O(g)$ implies $c \cdot f \in O(g)$ $f \in \Theta(g)$ implies $c \cdot f \in \Theta(g)$

A B F A B F

Θ Equivalence Classes

 Θ gathers functions into equivalence classes
 Θ(g) gathers all the fns that grow about as fast as g

• Every fn f belongs to one class namely $\Theta(f)$

• If two classes overlap, they're identical

 $f \in \Theta(g)$ and $f \in \Theta(h)$ implies $\Theta(h) = \Theta(g)$

< ∃ > < ∃

Define $\max(f,g) = h_{\max}$ and $\min(f,g) = h_{\min}$ one value at a time:

(3)

Define $\max(f,g) = h_{\max}$ and $\min(f,g) = h_{\min}$ one value at a time: $h_{\max}(n) = \max(f(n),g(n))$ $h_{\min}(n) = \min(f(n),g(n))$

3 > < 3
 </p>

Define $\max(f,g) = h_{\max}$ and $\min(f,g) = h_{\min}$ one value at a time: $h_{\max}(n) = \max(f(n), g(n))$ $h_{\min}(n) = \min(f(n), g(n))$ So $f,g \in \Omega(h_{\min})$ and $f,g \in O(h_{\max})$

Guttman (WPI)

CS2223, Big Oh

30 Oct 12 9 / 17

()

Define $max(f,g) = h_{max}$ and $\min(f, g) = h_{\min}$ one value at a time: $h_{\max}(n) = \max(f(n), g(n))$ $h_{\min}(n) = \min(f(n), g(n))$ So $f, g \in \Omega(h_{\min})$ and $f, g \in O(h_{\max})$ $\Theta(h_{\min})$ is a greatest lower bound for $\Theta(f), \Theta(g)$

 $\Theta(h_{\text{max}})$ is a least upper bound for $\Theta(f), \Theta(g)$

A B F A B F

Θ Equivalence Classes are Dense

Suppose that

$$f\in O(g)$$
 but $f
ot\in \Theta(g)$

Define mid(f,g) = h one value at a time:

→ Ξ →

Θ Equivalence Classes are Dense

Suppose that

$$f \in O(g)$$
 but $f
ot\in \Theta(g)$

Define mid(f,g) = h one value at a time:

$$h(n) = (f(n) \cdot g(n))^{1/2}$$

< ≣ > <

Θ Equivalence Classes are Dense

Suppose that

$$f\in O(g)$$
 but $f
ot\in \Theta(g)$

Define mid(f, g) = h one value at a time:

$$h(n) = (f(n) \cdot g(n))^{1/2}$$

Then

$$f \in O(h)$$
 and $h \in O(g)$

But

$$f
ot\in \Theta(h)$$
 and $h
ot\in \Theta(g)$

Proof: $f \in O(h)$ and $h \in O(g)$

Suppose for all $x > N_0$, $f(x) \le c \cdot g(x)$

Multiplying through by f(x): $(f(x))^2 \le c \cdot f(x) \cdot g(x)$ taking square roots,

$$f(x) \leq \sqrt{c} \cdot (f(x) \cdot g(x))^{1/2} = \sqrt{c} \cdot h(x)$$

So $f \in O(h)$

Multiplying through by g(x): f(x) ⋅ g(x) ≤ c ⋅ (g(x))² taking square roots,

$$h(x) = (f(x) \cdot g(x))^{1/2} \le \sqrt{c} \cdot g(x)$$

So $h \in O(g)$

< 3 > < 3 >

Proof: $f \notin \Theta(h)$

• If $f \in \Theta(h)$, then for $x > N_0$:

$$(f(x) \cdot g(x))^{1/2} \leq c \cdot f(x)$$

O Squaring:

$$f(x) \cdot g(x) \leq c^2 \cdot (f(x))^2$$

Oividing through:

$$g(x) \le c^2 \cdot f(x)$$

• Hence $g \in O(f)$, contrary to assumption

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Proof: $h \notin \Theta(g)$

• If $h \in \Theta(g)$, then for $x > N_0$:

$$g(x) \leq c \cdot (f(x) \cdot g(x))^{1/2}$$

Squaring,

$$(g(x))^2 \leq c^2 \cdot (f(x) \cdot g(x))$$

Oividing through

$$g(x) \le c^2 \cdot f(x)$$

• Hence $g \in O(f)$, contrary to assumption

A B A A B A

O(1) Vector ref

イロト イ団ト イヨト イヨト

O(1) Vector ref $O(\log n)$ Binary search

→ Ξ →

-

O(1) Vector ref $O(\log n)$ Binary search O(n) Linear search

< ≧ > <

O(1) Vector ref $O(\log n)$ Binary search O(n) Linear search $O(n \log n)$ Merge sort

O(1) Vector ref $O(\log n)$ Binary search O(n) Linear search $O(n \log n)$ Merge sort $O(n^2)$ Insertion sort

O(1) Vector ref $O(\log n)$ Binary search O(n) Linear search $O(n \log n)$ Merge sort $O(n^2)$ Insertion sort

 $O(2^n)$ Largest independent set in a graph of size n

. . .

O(1) Vector ref $O(\log n)$ Binary search O(n) Linear search $O(n \log n)$ Merge sort $O(n^2)$ Insertion sort

> $O(2^n)$ Largest independent set in a graph of size nO(n!) Generate all permutations of n

. . .

Find the Order of Growth

An Exercise

- Multiply *m*, *n* by the school method
- Given an alg. A, an input *i*, and a bound *k*, check if A halts on *i* before step *k*
- Factor *n* by trial division
- Given *n* and a claimed prime factorization, check correctness
- Given a formula, search for a proof of it in set theory

Has \mathcal{A} terminated on *i* by step *k*?

Input size: Total width w (in bits) of A and integers i, kWorst case strategy: Let k use most input bits, $k \sim 2^w$ Effect: Often have to wait 2^w steps to see So: Exponential

Big-O, Big- Θ

- $f \in \Theta(g)$ clusters functions into equivalence classes
- Big-O determines a partial ordering
 - Greatest lower bounds and least upper bounds exist
 - Ordering is dense
- Big-O ordering: implementation-independent estimate of cost

A B K A B K